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1. The Problem
There are facilities which are connected by a communication-network. A

company manages the network. The network system may often break down by a damage
of even only one point. Whenever the system breaks down the company must seek the
damaged places, checking points one by one, and must repair them. This kind of
maintenauce of the system is done daily and in the long run. The cost of maintenaunce is
paid by all facilitiesjointly. Then thisjoint cost must be allocated among them. How
much must each facility pay its share of the cost ?

In this paper the facilities with communication network are expressed by a graph.
We assume the graph is a $\mathrm{r}\infty \mathrm{t}\mathrm{e}\mathrm{d}$ tree. At the $\mathrm{r}\infty \mathrm{t}$ there is the company. The other
vertices are facilities. The ex.pected search cost of a damaged place is calculated,
following the minimax critenon. This means that we imagine someone (called the hider)
damages the system deliberately, and for the company (called the searcher) it costs to
look for the place, and the hider and the searcher do a zero-sum game in which the payoff
to the hider is the search cost. Then the expected search cost is the value of the game.
For each subset of the facilities we can calculate the expected search cost in the same way.
So we have a cost function defined on the subsets of the facilities. Then we apply the

$\mathrm{c}\mathrm{o}\mathrm{o}_{\mathfrak{R}}\mathrm{r}a\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ game theory in order to allocate thejoint cost. The kemel of a cooperative
game is adopted as a solution. It was defined in $\mathrm{D}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{S}/\mathrm{M}\mathrm{a}\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{l}\mathrm{e}\mathrm{r}[2]$ . Since the resulting

$\mathrm{c}\mathrm{o}\mathrm{o}_{\mathfrak{R}^{\mathrm{r}}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ game is seen to be convex, the definition of the kemel becomes simple.
About applications of cooperative game theory to cost allocations on the network,

the reader can find sources in the references of $\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{t}/\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{o}\mathrm{t}[4]$ . About search theory,
or search games, see $\mathrm{A}\mathrm{h}\mathrm{l}\mathrm{S}\mathrm{W}\mathrm{e}\mathrm{d}\mathrm{e}/\mathrm{w}_{\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{r}}\mathrm{e}\mathrm{n}[1]$, Gal [3], $\mathrm{N}\mathrm{a}\mathrm{k}a\mathrm{i}[10]$ , and $\mathrm{R}\mathrm{u}\mathrm{c}\mathrm{k}\mathrm{l}\mathrm{e}[11]$ .

2. The Model
A graph (or undirected graph) $G$ is an ordered pair (V, $E$) in which

$V\equiv\{0,1\cdots,n\}$ is a finite set of vertices, and $E$ is a finite set of pairs of different vertices,
$(i,j)$ , called edges. If $(i,j)\in E$ , we say $i$ and $j$ are adjacent. A path between Vertices
$i_{0}$ and $i_{s}$ is a finite sequence of distinct edges of the form $(i_{0},i_{1}),(i_{1’ 2}i),\ldots,$ ($i$ i$S- 1’$ s). If $i_{0}=$

$i_{s}$ then this path is called a cycle. A simple path between $i$ and $j$ is a path between $i$

and $j$ with no repeated vertices. $G$ is said to be connected if for any $i,j\in V$ , there is a
path between $i$ and $j$ .

Throughout this paper we assume a graph $G\equiv(V,E)$ is a rooted tree, i.e., it is
connected, it has $n$ edges, it has no cyc.le, and Vertex $0$ is designated the root. It is well-
known that for any $i,j\in V$ , there is uniquely a simple path between $i$ and $j$ . The set of
vertices on this path is denoted by $[i,j]$ . For $i,j\in V$ such that $i\neq j,$ $i$ is called an
ancestor of $j$ if $i\in[0,j]$ . $j$ is called a descendant of $i$ if $i$ is an ancestor of $j$ . $j$ is
called a child of $i$ if $j$ is a descendant of and adjacent to $i$ . For $i\in V$ , let $D_{i},$ $K_{i}$ , and
4 for $i\neq 0$ be the sets of all descendants, all children and all ancestors of $i$ respectively.
We let $D\equiv D_{0}$ . Define the set of leaves by $L\equiv\{i\in V : K_{i}=\emptyset\}$ . For any $j\in D$ , there
is uniquely $a(j)\in A$, such that $j\in K_{a(j)}$ . Let $V_{i}\equiv\{i\}\cup D_{i}$ . For $i\in V$ and $\mathrm{Y}\subseteq D_{i}$ ,

define $D_{(i,Y)}\equiv \mathrm{Y}\cup$ {$j\in D_{i}$ : $j\in A_{\mathrm{y}}$ for some $y\in Y$} $= \bigcup_{y\in Y}[i_{\mathcal{Y}},]$ . Define a tree with $i$

as its root by $G_{(i,\})}\equiv(D_{(i,Y\rangle}\cup\{i\},\{(o(j),j)\in E:j\in D_{(i,Y)}\})$ . In this paper for a
nonnegative-valued function $g$ on $D$ , we let $g( \mathrm{Y})\equiv\sum_{i\in Y}g(i)$ , where $\mathrm{Y}\subseteq D$ . We let
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$g(\mathrm{Y})=0$ if $\mathrm{Y}=\emptyset$ . For a finite set $X,$ $|X|$ is the cardinality of $X$ . Each edge
$(a(j),j)(j\in D)$ is associated with a positive number $d(j)$ , called the weight of
$(a(j),j)$ . The length of a path is the sum of the weights of all the edges in the path. For
$i,j\in V$ , we define $d(i,j)$ by the length of the simple path between $i$ and $j$ . Clearly
$d(a(j),j)=d(j)$ for $j\in D$ .

Define a game on $G$ . Player 1 (the hider, abbreviated as H) hides among one of
all vertices in $D$ , and stays there. Player 2 (the searcher, abbreviated as S) examines
each vertex until $\mathrm{S}$ finds $\mathrm{H}$ , traveling along edges. It is assumed that at the beginning of
the search $\mathrm{S}$ is at $0$ , and that $S$ travels along the simple path between $i$ and $j$ when
$(i,j)\not\in E$ and $\mathrm{S}$ examines $i$ after having examined $j$ . Associated with the examination
of $i\in D$ is the examination cost that consists of two parts:(I) a traveling cost $d(i,j)>0$
of examining $i$ after having examined $j$ , and (II) an examination cost $c>0$ . There is
not a probability of overlooking $\mathrm{H}$ , given that the right vertex is searched. For
convenience, we let $d(i,i)=0$ for all $i\in D$ . Before searching (hiding resp.), $\mathrm{S}(\mathrm{H}$

resp.) must deteImine a strategy so as to make the cost of finding $\mathrm{H}$ as small (large resp.)
as possible.

A (pure) strategy for $\mathrm{H}$ is expressed by an element, say $i$ , of $D$ , which means $\mathrm{H}$

determines on hiding in $i$ . $D$ is the set of all strategies for H. A strategy for $\mathrm{S}$ is $a$

$\mathrm{p}\mathrm{e}\mathrm{I}\mathrm{m}\mathrm{u}\iota a\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$on $D$ . Thus under a permutation $0,$ $\mathrm{S}$ examines Vertices $\sigma(1),\sigma(2),\ldots,\sigma(n)$

in this order. For convenience we let $\sigma(n+1)=\sigma(0)=0$ .
For simplicity we assume in this paper

(2.1) $\mathrm{S}\mathrm{t}\mathrm{I}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{S}$ along each edge in $E$ at most twice in his search.

Intuitively it is efficient in distance for $\mathrm{S}$ to choose a ffImutation which indicates $a$

search procedure satisfying (2.1). For $\mathrm{Y}\subseteq D$ , let $\Sigma(\mathrm{Y})$ be the set of all permutations
on $\mathrm{Y}$ which satisfies (2.1). We let $\Sigma\equiv\Sigma(D)$ . For a strategy pair $(i,\sigma)\in D\cross\Sigma$ , the
cost of finding $\mathrm{H}$ , written as $f(i,\sigma)$ , is:

(2.2) $f(i, \sigma)=o^{1}(\sum_{1x\underline{-}}^{i}d(\sigma(X),\sigma(X-)1))+\sigma^{-1}(i)C$ .

Letting payoffs for $\mathrm{H}$ and $\mathrm{S}$ be $f(i,\sigma)$ and-f $(i,\sigma)$ respectively, we have a finite,
two-person zero-sum game, denoted by $(f;D,\Sigma)$ . Let $(f;P,Q)$ be the mixed
extension of $(f;D,\Sigma)$ and we call it a game $G$ just as we denote the graph. The
elements of $P$ and $Q$ are expressed as $p=(p(1),\ldots,p(n))\in P$ and $q=\{q(\sigma)\}\in Q$ ,

where $p(i)$ is the probability that $\mathrm{H}$ chooses $i\in D$ , and $q(\sigma)$ is the probability that $\mathrm{S}$

chooses $\sigma\in\Sigma$ . Thus

(2.3) $p(D)=1,p(i)\geq 0$ for all $i\in D$ , and $q(\Sigma)=1,q(\sigma)\geq 0$ for all $\sigma\in\Sigma$ .

For a strategy pair $(p,q)\in P\mathrm{x}Q,$ $f(p,q)$ is the expected cost of finding H. In the
same way we can define a game on $G_{(i;1’)}(i\in V,\mathrm{Y}\subseteq D_{i})$, in which at the beginning of
the search $\mathrm{S}$ is at $i$ , and $\mathrm{Y}$ is the set of pure strategies of H. Call the mixed extension
of this game a game $G_{(i;1’)}$ .
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Theorem 2.1. The value of the game $G_{()}i;\mathrm{Y}$ is $C(i; \mathrm{Y})\equiv d(D_{(iY});)+\frac{1\mathrm{Y}\mathrm{I}+1}{2}c$ .

An outline of the proof is given in Section 5. For each $S\subseteq D,C(0;S)$ is the expected
search cost for the company. And in turn, $C(0;S)$ is thejoint cost in which the
facilities in $S$ must pay when they consider the maintenaunce cooperatively. For each
$S\subseteq D$ , define

(2.4) $v(S) \equiv\sum_{i\in S}c(0;\{l\})-C(0;s)=\sum_{i\in s}d(0,i)-d(D_{(},)\sigma S)+\frac{\mathrm{I}S1-1}{2}C$ ,

and $v(S)=0$ if $S=\emptyset$ . $v(S)$ is the saving of the cost which is obtained by considering
jointly the maintenaunce of the network of $S$ . Our purpose is to consider how the total
saving $v(N)$ should be reallocated to each company. In order to analyse this, we apply
the solution-concepts in cooperative games in characteristic-function form. In the next
section we analyse a cooperative game $(D,v)$ .

3. Analysis of the Model.
In this section we show that the characteristic-function $\mathrm{v}$ defined in (2.4) is

convex. Then we calculate the kemel of the game $(D,v)$ . About the computffional
complexity of solution-concepts in coopaerative games related to cost allocation, see
Meggido [9].

Proposition 3.1. (i) $v$ is convex, i.e., $v(S)+v(T)\leq v(S\cup T)+v(S\cap T)$ for all
$S,T\subseteq D$ .
(ii) If $j\in K_{i}$ , then $j$ is more desirable than $i$ in $(D,v)$ . I. $\mathrm{e}.$ ,

$v(S\mathrm{U}\{j\})\geq v(S\cup\{l\})$ whenever $i,j\not\in S$.
(iii) If $j\in K_{i}\cap L$ , then $i$ and $j$ are symmetric. I. $\mathrm{e}.$ ,

$v(S\cup\{j\})=v(S\cup\{i\})$ whenever $i,j\not\in S$ .
Outline of the proof: (i) By (2.4), for all $S,T\subseteq D$ ,

$B\equiv v(S\cup T)+v(S\cap T)-v(S)-\mathcal{V}(T)$

$=-d(D_{(})\alpha s\cup T)-d(D_{(\cap T)})0,s+d(D_{(0s});)+d(D_{(0;\tau)})$ .
It suffices to prove $B\geq 0$ . By induction on the number of the vertices.
$(\mathrm{i}\mathrm{i})(\mathrm{i}\mathrm{i}\mathrm{i})$ Assume $j\in K_{i}$ . Whenever $i,j\not\in S.$ ,

$E\equiv v(S\cup\{i\})-v(s\cup\{i\})=d(j)+d(D_{(\{i})0;s\cup\})-d(D)(0,s\cup\{j\})$ .
It suffices to prove $E\geq 0$ in (ii) and $E=0$ in (iii). $\square$

By Proposition 3.1 (i) we see that the core of $(D,v)$ is nonempty. Furthermore the
nucleolus, the prekernel, and the kemel coincide and consists of a single point. For these
facts, see $\mathrm{M}\mathrm{a}\mathrm{s}\mathrm{C}\mathrm{h}\mathrm{l}\mathrm{e}\Gamma/\mathrm{P}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{g}/\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{y}[8]$and $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{y}[12]$ . So we identify the kemel as $a$

point and it can be defined as follows. Define the set of pre-imputations by
$\mathrm{X}^{*}=\{x\in R^{n} : x(D)=\mathcal{V}(D)\}$ , where the i-th component of $x$ is denoted by $\chi(l)$ , and it
corresponds to $i\in D$ . For each $x\in \mathrm{X}^{*}$ and $i,j\in D,$ $i\neq j$ , we define the maximum
surplus of $i$ over $j$ by $s_{\ddot{y}}(x) \equiv\max\{e(s,x):s\in\sigma_{\ddot{g}}\}$ , where
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$\sigma_{jl}\cdot\equiv$ {$S\subseteq D:i\in S$ and $j\not\in S$} and $e(S,x)\equiv v(S)-\chi(S)$ . The kernel of $(D,v)$ is a point
$x\in \mathrm{X}^{*}$ such that

(3.1) $s_{\ddot{y}}(x)=s_{j}.(x)$ for all $i,j\in D,i\neq j$ .

Again, by Proposition 3.1 $(\mathrm{i})$ , the kemel is included in the core, i.e., $e(S,x)\leq 0$ for all
$S\subseteq D$ if $x$ is the kemel point. By Proposition 3.1 $(\mathrm{i}\mathrm{i})$ and (iii) and by Theorem 4.8 of
Maschler [7], we have the next property of the kemel point.

Proposition 3.2. Assume $x$ is the kemel point. If $j\in K_{i}$ , then $x(j)\geq x(i)$ . If
$j\in K_{i}\cap L$ , then $x\circ$ ) $=x(i)$ .

In order to calculate the kernel, first we must consider the maximum surplus, and we have
the next proposition.

Proposition 3.3. Assume $\mathrm{x}$ is the kemel point.
(i) $s_{\ddot{y}}(x)= \max\{e(D\backslash V_{j},x),e(D\backslash v\},x)\}$ and $s_{j}.(x)=e(D\backslash \{l\},x\rangle$ for $j\not\in L$ and
$j\in K_{i},$ $i\neq 0$ .
(ii) $s_{\ddot{y}}(x)=e(D\backslash \{J\},\chi)$ and $s_{j}.(x)=e(D\backslash \{l\},\chi)$ for $j\in L$ and $j\in K_{i}$ .
(iii) $s_{\ddot{y}}(x)= \max\{e(D\backslash V_{j},x),e(D\backslash \{;\},\chi)\}$ for $i,j\in K_{0}$ .

Define $z(j) \equiv\max\{x\mathrm{O})-d(j),x(V_{j})-v(V)j\}$ for all $j\in D$ .

Theorem 3.4. Suppose $x\in \mathrm{X}^{*}(v)$ . $x$ is the kemel point if and only if:
(i) For $i,$ $j$ such that $j\in K_{i}$ and $i\neq 0,$ $x(l)=\mathrm{Z}(j)$ .
(ii) For $i,j\in K_{0}$ , $z(i)=z(j)$ .
Outline of the proof: Assume $x$ is the kemel point. By (3.1) and Proposition 3.3, we
have
(3.2) $\max\{e(D\backslash V_{j},x),e(D\backslash \{i\},x)\}=e(D\backslash \{i\},x)$ for $j\not\in L$ and $j\in K_{\iota}$ ,

(3.3) $e(D\backslash \{]\},x)=e(D\backslash \{l\},x)$ for $j\in L$ and $j\in K_{i}$ ,

(3.4) $\max\{e(D\backslash V_{i},x),e(D\backslash \{l\},x)\}=\max\{e(D\backslash V_{j},x),e(D\backslash \{i\},x)\}$ for $i,j\in K_{0}$ .

From these, (2.4) and (3.1), we have (i) and (ii). Assume $y\in \mathrm{X}^{*}(v)$ satisfies (i) and
(ii). Suppose $i\in K_{0}$ , and $j\in L\cap V_{i}$ . By (i), for $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{I}\gamma$ point $s\in V_{i},$ $y(s)$ is expressed
by $y(j)$ , considering the simple path between $s$ and $j$. Next suppose $k\in K_{0}$ , and
suppose for every point $s\in V_{k},$ $y\langle s$) is expressed by $y(r),$ $r\in L\cap V_{k}$ . In particul$a\mathrm{r},$ $J^{i\langle i)}$

is expressed by $y(j)$ . $y(k)$ is expressed by $y(r)$ . By (ii) we have a relation between
$y(i)$ and $)^{j}\langle k$). Consequently we have a relation between $y(j)$ and $)^{i}(r)$ . So, for every
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point $s\in D,$ $y(s)$ is expressed by $\mathcal{Y}(j)$ . Then by the equation: $y(D)=v(D),$ $y(j)$ is
detelmined uniquely. Hence we must have $y=x$ . $\square$

Applying Theorem 3.4 we can calculate the kemel inductively.

4. A Numerical Example
The next example illustrates the calculation of the kemel point by applying

previous results.

Example 4.1. Let $V=\{0,1,\ldots,9\}$ and
$E=\{(0,1),(1,2),(1,3),(3,4),(3,5),(0,6),(6,7),(6,8),(6,9)\}$ .

Figure 1.

By Theorem 3.4, we have $x(1)=x(2),x(3)=X(4)=x(5)$ and $x(6)=x(7)=X(8)=\chi(9)$ .
Furthermore, $x(1\rangle$ $= \max\{x(3)-d(3),X(345)-\mathcal{V}(345)\}$ , and
$\max\{x(12345)-\mathcal{V}(12345),X(1)-d(1)\}=\max\{X(6789)-\mathcal{V}(6789),x(6)-d(6)\}$ .
Suppose $d(j)=1$ for all $j\in D$ , then we have

$x(1)=3X(3)-4-c,$ $x(3)= \frac{14}{9}+\frac{17c}{36},$ $x(6)= \frac{3}{4}+\frac{7c}{16}$ if $c \leq\frac{4}{3}$ ,

$x(1)=3X(3)-4-c,$ $x(3)=^{\frac{23}{15}}+ \frac{22c}{45},$ $x(6)= \frac{4}{5}+\frac{2c}{5}$ if $\frac{4}{3}\leq c\leq 3$ ,

2 $4c$

$x(1)=X(3)-1,$ $x(3)=X(6)+1,$ $x(6)=-39+-$ if $c\geq 3$ .

If $c$ is large enough then $x(i) \approx\frac{4c}{9}$ for all $i$ .

5. Outline of the proof of Theorem 2.1.
For $j\in D$ , we write as

(5.1) $w(j)\equiv 2d(j)+C$ .

$w\mathrm{O})$ is the cost of the retum trip which starts at $a(j)$ and examines $j$ . For $i\in V$ and
$\mathrm{Y}\subseteq D_{i}$ , we let $w(i;\mathrm{Y})\equiv|\mathrm{Y}\mathrm{b}+2d(D_{(;)})iY^{\cdot}$ This is the cost of the most efficient return trip
which starts at $i$ and examines all vertices in Y.

First we define a strategy for $\mathrm{H}$ and analyse its properties in the game
$G\equiv(f;P,Q)$ . Define $p^{*}\in P$ inductively as follows: For $j\in D\backslash K_{0}$ , let

(5.2) $\frac{p^{*}(a(j))}{c}=\frac{p^{*}(V_{J})}{w(V_{j})}$
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For $j,k\in K_{0}$ , let

(5.3) $\frac{p^{*}(V_{j})}{w(V_{j})}=\frac{p^{*}(V_{k})}{w(V_{k})}$ .

Suppose $S$ is at $i$ . The left hand side of (5.2) is the probability per unit cost when he
examines $i$ , while the right hand side is the probability per unit cost when he remms
to $i$ after examining all vertices in $V_{j}$ . By (2.3), (5.2) and (5.3), $p^{*}\in P$ is defined
completely and uniquely. The following proposition gives basic properties of $p^{*}$ .

Lemma 5.1. (i) For $i\in D,$ $\frac{p^{*}(i)}{c}=\frac{p^{*}(D_{i})}{w(D_{i})}$ .

(ii) For $i\in K_{0},$ $p^{*}(V_{i})= \frac{w(V)}{w(D)}$ .

For any $\sigma\in\Sigma,$ $\sigma^{*}$ is defined to be a mixed strategy such that $S$ chooses $\sigma$ and
its reverse with probability 1/2 respectively.

Lemma 5.2. Suupose $\sigma\in\Sigma$ . Then $f(i;\sigma)=C(0;D)$ for all $i\in D$ .

Lemma 5.3. For any $\sigma\in\Sigma,$ $f(p^{*},\sigma)=C((\},D)$ .

From Lemmas 5.2 and 5.3 we see in the game $G,$ $p^{*}$ and $\sigma^{*}$ are optimal strategies for
$\mathrm{H}$ and $S$ respectively. The value of the game is $C(\mathrm{O},D)$ . For the game $G_{(:)}iY(i\in V$ and
$\mathrm{Y}\subseteq D_{i})$ , we can give $a$ similar argument as in the case of the game $G$ because of the
inductive structure of the tree and in ductive definition of $p^{*}$ . Arguments in detail is
omitted here. This completes the proof of the theorem.
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