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Abstract

This paper gives the dynamic programming formulation of the bottleneck
Reve’s puzzle, in which the movements of the discs are restricted by the bottleneck
size, $b$ , where $b(\geq 1)$ is a preassigned integer. We have derived some local-value
relationships, and based on these, we have given an algorithm that enables us to
determine the optimal value function as well as the related parameters without
appealing to the dynamic programming equations.
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1 Introduction

We consider the following problem, henceforth called the Bottleneck
$Reves)$ Puzzle: Given are four pegs, $S,$ $P_{1},$ $P_{2}$ and $D$ , and $n(\geq 1)$ discs,
labelled $D_{1},$ $D_{2},$

$\ldots,$
$D_{n}$ in increasing order, so that
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$D_{n}>D_{n-1}>\cdots>D_{2}>D_{1}$ .

Initially, the discs rest on the source peg, $S$ , in a tower in standard
position in small-on-large ordering (with $D_{n}$ at the bottom and $D_{1}$ at
the top). For any collection $T$ of discs (on any peg), the narrowness
of $T$ , denoted by $N(T)$ , is defined to be the label-index of the smallest
disc of $T$ , that is

$N(T)= \min\{\dot{i} : D_{i}\in T\}$ ,

with
$N(\phi)=\infty$ ( $\phi$ being the empty set).

The problem is to shift the tower of $n(\geq 1)$ discs in standard position
on $S$ to the standard position on the destination peg, $D$ , in minimum
number of moves (using the auxiliary pegs, $P_{1}$ and $P_{2}$ ), where each
move can transfer only the topmost disc from one peg to another under
the condition that a disc $D_{i}$ may not be placed on a tower of discs $T$ if

$\dot{i}>N(T)+b-1$ ,

where $b(\geq 1)$ is a preassigned integer, called the bottleneck size.
Any arrangement of the discs on the four pegs that can be obtained

without violating the conditions of the bottleneck Reve’s puzzle, will
be called a legal position. For $b=1$ , the above problem reduces to the
Reve’s puzzle, introduced by Dudeney [1], and later studied by Roth
[6], Hinz [2] and Majumdar [3]. When $b=n$ , any disc can be placed on
any other disc. It may be mentioned here that any disc can be placed on
an empty peg, and further that, $b$ is the maximum size of an ”inverted
tower” that can be formed without violating the given conditions of the
problem.
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The problem with three pegs was first posed by Wood [7]. Later,
the problem was taken up by Poole [5], but in a different setting. For

the 4-peg generalization, we have adopted the version of Poole.
In the next section, we give the Dynamic Programming $(\mathrm{D}\mathrm{P})$ for-

mulation of the bottleneck Reve’s puzzle, from which some local-value
relationships are obtained. These local-value relationships are then ex-
ploited to give a recursive algorithm for the bottleneck Reve’s puzzle in
Section 3.

2 Dynamic Programming Formulation

For the 3-peg bottleneck Tower of Hanoi problem with $n(\geq 1)$ discs
and the bottleneck size $b(\geq 1)$ , let $g_{3}(n, b)$ denote the minimum number
of moves required to shift the tower of $n$ discs from its starting position
to a legal (but not necessarily standard) position on another peg, and
let $M_{3}(n, b)$ denote the minimum number of moves required to solve the
bottleneck Tower of Hanoi problem. Then, $g_{3}(n, b)$ and $M_{3}(n, b)$ satisfy
the following relationships, established by Poole [5].
Lemma 2.1 : For $n(\geq 1)$ and $b(\geq 1)$ ,

(1) $g_{3}(n, b)=2g_{3}(n-b, b)+b,$ $n\geq b$ ,

$g_{3}(n, b)=n$ for all $0\leq n\leq b$ ,

(2) $M_{3}(n, b)=2g_{3}(n-1, b)+1,$ $n\geq 1$ ,
$M_{3}(0, b)=0$ for all $b\geq 1$ .

The complete solution to the bottleneck Tower of Hanoi problem,
due to Poole [5], is given in the following theorem.
Theorem 2.1 : Given $n\geq 1$ and $b\geq 1$ , let

$n=bq+r$ (with $q\in\{0,1,$ $\ldots\},$ $0\leq r<b$).
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Then,

(1) $g_{3}(n, b)=(b+r)2^{q}-b$ ,

(2) $M_{3}(n, b)=$
Now, given $n(\geq 1)$ and $b(\geq \mathrm{I})$ , let $g_{4}(n, b)$ be the minimum number

of moves required to shift the tower of $n$ discs from its starting posi-
tion to a legal position on another peg (using all the 4 pegs), and let
$M_{4}(n, b)$ , be the minimum number of moves required to solve the bottle-
neck Reve’s puzzle. Then, the dynamic programming equations (DPE)
satisfied by $g_{4}(n, b)$ and $M_{4}(n, b)$ are given in the following lemma.
Lemma 2.2 : For $n(\geq 1)$ and $b(\geq 1)$ ,

(1) $g_{4}(n, b)=0 \leq k\leq b\min_{n-}2\{g4(k, b)+g3(n-b-k, b)\}+b,$ $n\geq b$ ,
$g_{4}(n, b)=n$ for all $0\leq n\leq b$ ,

(2) $M_{4}(n, b)= \min_{0\leq l\leq n-1}2\{g_{4}(\iota, b)+g_{3}(n-l-1, b)\}+1,$ $n\geq 1$ ,
$M_{4}(0, b)=0$ for all $b\geq 1$ .

Proof: (1) In order to find the DPE satisfied by $g_{4}(n, b)$ , we note
that the transfer of the tower from its starting position on $S$ to a legal
position on another peg, say, $P_{1}$ , may be affected as follows:
Step 1 : First, move the topmost $k$ (smallest, consecutive) discs from
$S$ to a legal position on $P_{2}$ (using all the four pegs). This involves a
minimum $g_{4}(k, b)$ number of moves.
Step 2 : Next, shift the (consecutive) $n-b-k$ discs from $S$ to
the legal position on $D$ , using the three pegs available, in (minimum)
$g_{3}(n-b-k, b)$ number of moves.
Step 3: Then, transfer the remaining $b$ (largest) discs from $S$ to $P_{1}$ in
an inverted tower (in $b$ number of moves).

Now, in the next two steps, following Step 1 and Step 2 in reverse
order so as to shift the discs from $D$ and $P_{2}$ respectively to $P_{1}$ , we get

153



the desired tower, in (minimum)

$2\{g_{4}(k, b)+g_{3}(n-b-k, b)\}+b$

number of moves, where $k(0\leq k\leq n-b)$ is to be determined so as to
minimize the above expression.

(2) In order to find the DPE satisfied by $M_{4}(n, b)$ , the steps followed
are:
Step 1 : First, transfer the topmost $l$ discs from $S$ to the legal position
on some auxiliary peg, say, $P_{1}$ , (using all the four pegs), in (minimum)
$g_{4}(l, b)$ number of moves.
Step 2 : Next, move the $n-l-1$ discs from $S$ to the legal position on
$P_{2}$ , using the three pegs available, in (minimum) $g_{3}(n-l-1, b)$ number
of moves.
Step 3 : Shift the largest disc, $D_{n}$ , thus freed, from $S$ to $D$ .

In the next two steps, Step 1 and Step 2 are followed in reverse order
so as to move the discs from $P_{2}$ and $P_{1}$ respectively to $D$ . Then, the
total number of moves involved is

$2\{g_{4}(l, b)+g3(n-^{\iota}-1, b)\}+1$

and $l(0\leq l\leq n-1)$ is to be chosen so that the above expression is
minimized.

All these complete the proof of the lemma. $\square$

It may be mentioned here that

$M_{4}(n, 1)=g_{4}(n, 1)$ for all $n\geq 1$ ,

and it has been shown by Majumdar [4] that the above scheme is op-
timal for the problem with $b=1$ . However, for $n>b\geq 2$ , it remains
to show that the schemes followed to find the DPE satisfied by $g_{4}(n, b)$

and $M_{4}(n, b)$ are indeed optimal.
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For $n,$ $b(\geq 1)$ fixed, let

$G(n, k, b)=2\{g_{4}(k, b)+g_{3}(n-b-k, b)\}+b;0\leq k\leq n-b$ , (2.1)

$F(n, l, b)=2\{g_{4}(l, b)+g_{3}(n-l..-1, b)\}+1;0\leq l\leq n-1$ . (2.2)

Furthermore, let

$k_{\min}(n, b)= \min\{k : 0\leq k\leq n-b, g_{4}(n, b)=G(n, k, b)\}$ , (2.3)

$k_{\max}(n, b)= \max\{k:0\leq k\leq n-b, g_{4}(n, b)=G(n, k, b)\}$ , (2.4)

$l_{\min}(n, b)= \min\{l : 0\leq l\leq n-1, M_{4}(n, b)=F(n, l, b)\}$ , (2.5)

$l_{\max}(n, b)= \max\{l : 0\leq l\leq n-1, M_{4}(n, b)=F(n, l, b)\}$ , (2.6)

with

$k_{\min}(b, b)=k_{\max}(b, b)=0=l_{\min}(1, b)=l_{\max}(1, b)$ for all $b\geq 1$ . (2.7)

In the following lemmas, we give some local-value relationships sat-
isfied by the optimal value functions $g_{4}(n, b)$ and $M_{4}(n, b)$ , and the op-
timal partition numbers $k_{\min}(n, b),$ $k_{\max}(n, b),$ $l_{\min}(n, b)$ and $l_{\max}(n, b)$ .

Lemma 2.3 : (1) For $b(\geq 1)$ fixed, both $g_{4}(n, b)$ and $M_{4}(n, b)$ are
strictly increasing in $n(\geq 1)$ .

(2) For $n(\geq 1)$ fixed, each of $g_{4}(n, b)$ and $M_{4}(n, b)$ is non-increasing
in $b(\geq 1)$ .
Proof: Part (1) can be proved by induction on $n$ , while part (2) can
be established by induction on $n$ and $b$ . The details are omitted. $\square$

Lemma 2.4 : For any $n(\geq 1)$ and $b(\geq 1)$ , let

$P(n, b)=k_{\min}(n, b)/k_{\max}(n, b)/l_{\min}(n, b)/l_{\max}(n, b)$ .
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Then,

(1) $P(n, b)\leq P(n+1, b)\leq P(n, b)+1$ ,

(2) $g_{4}(n+1, b)-g_{4}(n, b)=2^{s}$ for some integer $s\geq 0$ ,

(3) $M_{4}(n+1, b)-M_{4}(n, b)=2^{t}$ for some integer $t\geq 1$ ,

(4) $g_{4}(n+1, b)-g_{4}(n, b)\leq g_{4}(n+2, b)-g_{4}(n+1, b)$

$\leq 2\{g_{4}(n+1, b)-g_{4}(n, b)\}$ ,

(5) $M_{4}(n+1, b)-M_{4}(n, b)\leq M_{4}(n+2, b)-M_{4}(n+1, b)$

$\leq 2\{M_{4}(n+1, b)-M_{4}(n, b)\}$ .

Proof: We prove parts (2) and (4) together with

$k_{\min}(n, b)\leq k_{\min}(n+1, b)\leq k_{\min}(n, b)+1$ . $(A)$

We note that $G(n+1, k, b)$ is not minimized at $k=k_{\min}(n, b)-1$ ,
for, otherwise, we would have the following chain of inequalities

2 $\{g_{3}(n+2-b-kmin(n, b), b)-g_{3}(n+1-b-kmin(n, b), b)\}$

$<g_{4}(n+1, b)-g4(n, b)$

$\leq 2\{g_{3}(n+1-b-kmin(n, b), b)-g3(n-b-kmin(n, b), b)\}$

which,therefore, would lead to a contradiction. Continuing in this way,
we can show that $G(n+1, k, b)$ is minimized at none of the values
$k=k_{\min}(n, b)-1,$ $k_{\min}(n, b)-2,$ $\ldots$ , and consequently, we get the l.h.s.
inequality of (A).

The proof in the remaining cases is by induction on $n$ . The results
are true for $n=1$ . So, we assume the validity of the results for $N$

with $1\leq N\leq n$ . Furthermore, it is sufficient to consider the case when
$k_{\min}(n+1, b)\geq k_{\min}(n, b)+1$ . Now, since

2 $\{g_{4}(k_{\min}(n+1, b), b)-g_{4}(k_{\min}(n+1, b)-1, b)\}$

$\leq g_{4}(n+1, b)-g4(n, b)$

$\leq 2\{g_{4}(k_{\min}(n, b)+1, b)-g_{4}(kmin(n, b), b)\}$
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the induction hypothesis gives

$k_{\min}(n+1, b)\leq k_{\min}(n, b)+1\Rightarrow k_{\min}(n+1, b)=k_{\min}(n, b)+1$ .

Thus, the proof of (A) is complete.
To prove part (2), we first note that

$g_{4}(n+1, b)-g4(n, b)=$

For $n\geq b+1$ , by $(A)$ , either

$g_{4}(n+1, b)-g_{4}(n, b)=2\{g_{3}(n+1-b-kmin(n, b),$ $b)$

- $g_{3}(n-b-kmin(n, b),$ $b)\}$ ,

or,

$g_{4}(n+1, b)-g_{4}(n, b)=2\{g_{4}(k_{\min}(n, b)+1, b)-g_{4}(kmin(n, b), b)\}$ ,

and in either case, we get the desired result, in the first case the result
following by virtue of Theorem 2.1 (1), and in the second case, the result
follows by virtue of the induction hypothesis.

To prove part (4), we consider the following four cases that may
arise:

Case 1 : $k_{\min}(n+2, b)=k_{\min}(n+1, b)=k_{\min}(n, b)$ ,

Case 2 : $k_{\min}(n+2, b)=k_{\min}(n+1, b)+1,$ $k_{\min}(n+1, b)$

$=k_{\min}(n, b)$ ,

Case 3 : $k_{\min}(n+2, b)=k_{\min}(n+1, b)--k_{\min}(n, b)+1$ ,

Case 4 : $k_{\min}(n+2, b)=k_{\min}(n+1, b)+1,$ $k_{\min}(n+1, b)$

$=k_{\min}(n, b)+1$ .

In all the Cases 1-4, the proof follows readily; for example, in Case 4,
by virtue of the induction hypothesis, we have the following chain of
inequalities
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$g_{4}(n+2, b)-g4(n+1, b)$

$=2\{g_{4}(k_{\min}(n, b)+2, b)-g4(kmin(n, b)+1, b)\}$

$\geq 2\{g_{4}(k_{\min}(n, b)+1, b)-g_{4}(kmin(n, b), b)\}$

$=g_{4}(n+1, b)-g4(n, b)$ .

Similarly,

$g_{4}(n+2, b)-g4(n+1, b)\leq 2\{g_{4}(n+1, b)-g_{4}(n, b)\}$ .

All these complete the induction. $\square$

Corollary 2.1 : For any $n,$ $b(\geq 1)$ ,
(1) $G(n+1, k, b)$ is minimized at $k=k_{\min}(n, b)+1,$ $k_{\min}(n+2, b)$ ,
$k_{\max}(n, b),$ $k_{\max}(n+2, b)-1$ ,
(2) $F(n+1, l, b)$ is minimized at $l=l_{\min}(n, b)+1,$ $l_{\min}(n+2, b)$ ,
$l_{\max}(n, b),$ $\iota_{na},x(n+2, b)-1$ ,
Proof: We prove part (1) only.

To prove that $G(n+1, k, b)$ is minimized at $k=k_{\min}(n, b)+1$ , we
need only consider the case when

$k_{\min}(n+1, b)=k_{\min}(n, b)$ .

Now, if $G(n+1, k, b)$ does not attain its minimum at $k=k_{\min}(n, b)+1$ ,
then we get the following chain of inequalities

2 $\{g_{4}(k_{\min}(n, b), b)-g4(k_{\min}(n, b)-1, b)\}$

$<g_{4}(n+1, b)-g4(n, b)$

$<2\{g_{4}(k_{\min}(n, b)+1, b)-g_{4}(kmin(n, b), b)\}$ .

Then, by Lemma 2.4(2),
$2^{s}<g_{4}(n+1, b)-g_{4}(n, b)<2^{s+1}$ for some integer $s\geq 1$ ,

which violates Lemma 2.4(2) itself.
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Hence, $G(n+1, k, b)$ must be minimized at $k=k_{\min}(n, b)+1$ .
The proof of the remaining parts is similar. $\square$

We conclude this section with the following lemma, which states
that, for $n(\geq 1)$ and $b(\geq 1)$ fixed, in determining the values of $g_{4}(n, b)$

$(M_{4}(n, b))$ , it is sufficient to keep track of $k_{\min}(n, b)$ and $k_{\max}(n, b)$

$(l_{\min}(n, b)$ and $l_{\max}(n, b))$ only.

Lemma 2.5 : For $n(\geq 1)$ and $b(\geq 1)$ fixed,
(1) $G(n, k, b)$ is minimized at all $k$ with $k_{\min}(n, b)\leq k\leq k_{\max}(n, b)$ ,
(2) $F(n, \iota, b)$ is minimized at all $l$ with $l_{\min}(n, b)\leq l\leq l_{\max}(n, b)$ .
Proof : We prove part (1) only. Proof for part (2) is similar.

Without loss of generality, we may assume that

$k_{\max}(n, b)=kmin(n, b)+M$ for some $M\geq 2$ . (2.8)

Now, if $G(n, k, b)$ is not minimized at $k=k_{\min}(n, b)+1$ , then we would
have the following inequality:

$g_{4}(k_{\min}(n, b)+1,$ $b)-g4(k_{\min}(n, b),$ $b)$

$>g_{3}(n-b-k_{\min}(n, b),$ $b)-g_{3}(n-b-1-k_{\min}(n, b),$ $b)$ . $(B)$

In this case, $G(n, k, b)$ cannot be minimized at $k=k_{\min}(n, b)+2$ , for
otherwise,

$g_{4}(k_{\min}(n, b)+2,$ $b)-g4(kmin(n, b)+1,$ $b)$

$<g_{3}(n-b-1-k_{\min}(n, b),$ $b)-g3(n-b-2-k_{\min}(n, b),$ $b)$ .

which, together with $(B)$ , would lead to a contradiction. Proceeding
in this way, we can conclude that $G(n..’ k, b)$ cannot be minimized at
$k=k_{\min}(n, b)+N$ for all $N\geq 2$ , contradicting our assumption (2.8).

Hence, $G(n, k, b)$ must be minimized at $k=k_{\min}(n, b)+1$ . Continuing
the argument, we get the desired result. $\square$
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3 Recursive Algorithm

Starting with (2.7), the Lemma 2.4 enables us to calculate $k_{\min}(n, b)$

$(k_{\max}(n, b))$ and $l_{\min}(n, b)(l_{\max}(n, b))$ , and hence, $g_{4}(n, b)$ and $M_{4}(n, b)$

respectively for given $n$ and $b$ . The following algorithm calculates $g_{4}(n, b)$ ,
$k_{\min}(n, b),$ $l_{\max}(n, b)$ and $M_{4}(n, b)$ for given $n,$ $b(\geq 1)$ . In determining
the values of $g_{4}(n, b)$ and $M_{4}(n, b)$ , we have made use of Corollary 2.1.
Since explicit expressions of these quantities are not available, this al-
gorithm is the only one to calculate the optimal partition numbers as
well as the optimal value functions.

Algorithm: kmin(n,b), $\mathrm{g}4(\mathrm{n},\mathrm{b})$ , lmax(n,b), $\mathrm{M}4(\mathrm{n},\mathrm{b})$

$/*$ n,b $( >1 )$ - given integers $*/$

kmin(b,b) $=0$

lmax(l,b) $=0$

for $\mathrm{j}$ from $0$ to $\mathrm{b}$ do
$\mathrm{g}3(\mathrm{j},\mathrm{b})=\mathrm{i}$

$\mathrm{g}4(\mathrm{j},\mathrm{b})=\mathrm{j}$

$/*$ Determination of kmin(n,b) and $\mathrm{g}4(\mathrm{n},\mathrm{b})$ $*/$

for $\mathrm{i}$ from $\mathrm{b}+1$ to $\mathrm{n}$ do
$\mathrm{g}3(\mathrm{i},\mathrm{b})=2*\mathrm{g}\mathrm{s}(\mathrm{i}^{-_{\mathrm{b}\mathrm{b}}},)+\mathrm{b}$

$\mathrm{k}=$ kmin(i-l,b)

gl $=\mathrm{g}4(\mathrm{k},\mathrm{b})+\mathrm{g}3(\mathrm{i}-\mathrm{b}-_{\mathrm{k},\mathrm{b}})$

g2 $=\mathrm{g}4(\mathrm{k}+1,\mathrm{b})+\mathrm{g}\mathrm{s}(\mathrm{i}-\mathrm{b}^{-_{\mathrm{k}^{-}}}1,\mathrm{b})$

$\mathrm{g}4(\mathrm{i},\mathrm{b})=2*\mathrm{g}2+\mathrm{b}$

if $(\mathrm{g}1=_{\mathrm{g}2})$ then kmin(i,b) $=\mathrm{k}$

else kmin(i,b) $=\mathrm{k}+1$

$/*$ Determination of lamx(n,b) and $\mathrm{M}4(\mathrm{n},\mathrm{b})$ $*/$

for $\mathrm{i}$ from 2 to $\mathrm{n}$ do
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$1=$ lmax $(\mathrm{i}-1,\mathrm{b})$

Ml $=\mathrm{g}4(1,\mathrm{b})+\mathrm{g}\mathrm{s}(\mathrm{i}-_{1^{-1,\mathrm{b}}})$

M2 $=\mathrm{g}4(1+1,\mathrm{b})+\mathrm{g}3(\mathrm{i}rightarrow 1^{-}2,\mathrm{b})$

$\mathrm{M}4(\mathrm{i},\mathrm{b})=2*\mathrm{M}1+1$

if (Ml $=\mathrm{M}2$ ) then lmax(i,b) $=1+1$

else lmax(i,b) $=1$
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