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ABSTRACT. Parallel two-stage tandem queueing system with no intermediate waiting
room is considered. An arriving customer according to a homogeneous Poisson process,
when his first stage service is finished, can enter both of the second stage channels. We call
this model as an interchangeable queueing system. The service times are not independent
but depend upon each other. It is assumed that their service distribution is the bivariate
exponential distribution of Marshall and Olkin. The standard representation of the mul-
tivariate exponential distribution of Marshall and Olkin is derived and the throughput of
this system is obtained using a matrix-geometric approach. Finally, comparison with the
throughput of an ordinary parallel two-stage tandem queueing system is discussed.

1. Introduction
In most of queueing systems, it has been assumed that the service times of all servers

are mutually independent. However, this assumption is not realistic, because the com-
petition or cooperation among servers occurs.

Mitchell, Paulson and Weswick [5] simulated a correlated two-stage tandem queue-
ing model in which their service distribution is a special case of the bivariate gamma
distribution of Paulson [14] and discussed the performance of the system for both the
positively and negatively correlated cases. Their simulation indicates that the mean
waiting time at the second stage with infinite intermediate buffer spaces is smaller than
the case of mutually independent service times. For this model Wolff [16] briefly showed
the same result for the positively correlated case by means of usual stochastic ordering
since two service time random variables have positively quadrant dependent property.

Yoneyama [17] considered a correlated two-stage tandem queueing model in which
their service distribution is the bivariate exponential distribution (abbreviated as BVE)
of Marshall and Olkin [4], and obtained the mean number of customers in the system
and showed analytically that it decreases according to the increasing of the correlation
parameter.

To the best of our knowledge, Nishida, Watanabe and Tahara [7] first discussed the
application of the BVE in the queueing theory. They considered a two-server queueing
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model in which their service distribution is the BVE and obtained the steady state
probabilities. As an extension of their model, Nishida and Yoneyama [8] considered a
multiserver queueing model in which their sevice distribution is the multivariate expo-
nential distribution (abbreviated as MVE) of Marshall and Olkin [4] and showed how
to get the steady state probabilities. For this model, Yoneyama [18] obtained both the
queueing time and the waiting time distribution and showed that Little’s law holds for
their mean.

Assaf et al. [1] showed that the BVE is a bivariate phase type (abbreviated as BPH)
distribution and its multivariate extension is a multivariate phase type (abbreviated as
MPH). Raftery [15] introduced a continuous multivariate exponential distribution and
O’Cinneide and Raftery [10] showed that it is MPH and derived its MPH representation.

On the other hand, Nishida [9] considered an interchangeable parallel two-stage tan-
dem queueing system without waiting room. He called the discipline that a customer
who finished the first stage service can enter both of the second stage channels as an
interchangeable queueing system. He found the optimal allocation of service rates for
the first and second stage channels in the sense of minimizing the rate of loss calls.

In this paper, as an extension of the model introduced by Nishida [9], we consider an
interchangeable parallel two-stage tandem queueing system in which the service times
of each two channels in the first and second stage are assumed to follow the BVE. For
this system we get the throughput of the system using a matrix-geometric approach of
Neuts [6], and compare the throughput of the system with those of an ordinary parallel
two-stage tandem queue and an interchangeable parallel two-stage tandem queue whose
service distribution is an ordinary exponential distribution.

A closely related model is that by Latouche and Neuts [3]. An approach is closely
related to Heavey, Papadopoulos and Browne [2], Papadopoulos, Heavey and O’Kelly
$[11,12]$ and Papadopoulos and O’Kelly [13]. Similarly to the definition by the above
four papers, the throughput is defined as a critical input rate on the assumption that
the first queue is never empty.

Before we describe the model fully, we derive the standard MPH representation of
the MVE and get the BVE for the simplest case.

2. Standard MPH representation of MVE
The random vector $\mathrm{Y}=(\mathrm{Y}_{1}, \cdot\cdot., \mathrm{Y}_{n})$ is said to have the multivariate exponential

distribution (MVE) of Marshall and Olkin [4] if there exist independent exponential
random variables $X_{1},\cdots,$ $X_{k}$ such that for $i=1,$ $\cdots,$ $n,$ $Y_{i}= \min_{j\in J_{i}j}X$ where $J_{i}\subset$

$\{1, \cdots, k\}$ .
Assaf et al. [1] first formulated a multivariate phase type (MPH) distribution in the

following way. Suppose $\{V(t):t\geq 0\}$ is a regular Markov chain with finite state-space
$E$ . Let $\Gamma_{1},\cdots,$ $\Gamma_{n}$ be $n$ non-empty subsets of $E$ such that once $V$ enters $\Gamma_{i}$ it never
leaves. Suppose that $\bigcap_{i=1}^{n}\Gamma_{i}$ consists of one state $\triangle$ , into which absorption is certain.
Let $\beta$ be an initial probability vector on $E$ , which puts all its mass on states in $E\backslash \{\triangle\}$ .

The infinitesimal generator $Q$ of $V$ is of the form

$\mathrm{Q}=$ (1)
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where $\mathrm{T}$ is a square matrix, $\mathrm{e}$ is a column vector of ones, and $0$ is a column vector of
zeros. Define $Y_{i}= \inf\{t : V(t)\in\Gamma_{i}\}(i=1, \cdots, n)$ . Then the distribution of $(Y_{1}, \cdots, Y_{n})$

is MPH.
Assaf et al. [1] showed that the MVE is MPH since each $X_{i}$ is $\mathrm{P}\mathrm{H}$ . It is of interest to

give the standard MPH representation of the MVE, using the results of Assaf et al. [1].
To derive the standard MPH representation of the MVE, we specify explicitly the

ingredients $E,$ $\Gamma_{1},$
$\cdot\cdot.,$

$\Gamma_{n},$ $\mathrm{T}$ and $\beta$ . The state-space is $E=\{1, \cdot\cdot., m, \triangle\}$ , with $2^{n}$

elements $\mathrm{q}=(q_{1}, \cdots, q_{n})$ , where $q_{i}\in\{0,1\}$ . We have $\Gamma_{i}=\{\mathrm{q}, \triangle\}(i=1, \cdots, n)$ , where
$q_{i}=0$ , so that $\{\triangle\}=\bigcap_{i=1}^{n}\Gamma_{i}$ . $\mathrm{T}$ has the following block patitioned structure:

$\mathrm{T}=$ $-\rceil$

$\rceil$

(2)

where

$do=-( \sum i=n1\mu i+\sum^{n}i<j\mu_{i}j+\sum_{i<j<k}\mu_{i}jk+\cdots+\mu 123\cdots n)n$

and all the unmarked entries are zeros.
The submatrices are defined as below. The dimensionality of $\mathrm{B}$ is 1 $\cross(1\leq l\leq$

$n-1),$ $\mathrm{C}$ is $\cross(1\leq k\leq n-2,2\leq l\leq n-1)$ and $\mathrm{D}$ is $\cross(1\leq k\leq n-1)$ .
If $\mathrm{q}=(q_{1}, , . ., q_{n})$ and $\mathrm{r}=(r_{1}, \cdots, r_{n})$ are two states in $E\backslash \{\triangle\}$ , we denote by $b_{\mathrm{q}\mathrm{r}},$

$c_{\mathrm{q}\mathrm{r}}$

and $d_{\mathrm{q}\mathrm{r}}$ the corresponding element of submatrices $\mathrm{B},$
$\mathrm{C}$ and $\mathrm{D}$ , respectively. $b_{\mathrm{q}\mathrm{r}},$

$c_{\mathrm{q}\mathrm{r}}$

and $d_{\mathrm{q}\mathrm{r}}$ will be zero unless one of the following holds:
(i) $r_{i_{1}}=r_{i_{2}}=\cdots=r_{i_{u}}=0(1\leq u\leq l)$ .

Then
$b_{\mathrm{q}\mathrm{r}}=\mu_{i_{1}}i2\ldots i_{l}$ $(1\leq l\leq n-1)$ .

(ii) there is a $u$ such that $q_{i_{u}}=r_{i_{u}}=0(1\leq u\leq k)$ , and $q_{j_{v}}\neq r_{j_{v}},$ $r_{j_{v}}=0(1\leq$

$v\leq l-k)$ .
Then

$c_{\mathrm{q}\mathrm{r}}= \mu_{j_{1}\cdots j}l-k+\sum_{u=1}^{k}\mu iuj1\ldots j\mathrm{t}-k+\mu_{i_{1}\cdots i_{k}j1}\ldots j_{l-k}$ $(1\leq k\leq n-2,2\leq l\leq n-1)$ .

(iii) there is a $u$ such that $q_{i_{u}}=r_{i_{u}}=0(1\leq u\leq k)$ .
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Then

$d \mathrm{r}=d\mathrm{q}0+\sum_{u=1}\mu iku+\sum_{u<v}^{k}\mu i_{u}i_{v}+\cdots+\mu_{i_{1}}\ldots i_{k}$ $(1\leq k\leq n-1)$ .

where $i_{u}\subset\{1, \cdots, n\}$ and $j_{v}\subset\{1, \cdots, n\}$ .
To define $\beta$ , let $\mathrm{Y}=(\mathrm{Y}_{1}, \cdots, Y_{n})$ be a random vector taking values in $\{1, \cdots, m\}$ and

$pj_{1}\cdots j_{n}=P[\mathrm{Y}_{1}=j_{1}, \cdots, Y_{n}=jn]$ , where $j_{h}$ ranges corresponding to the state $\mathrm{q}$ , we have

$\beta_{\mathrm{q}}=\{$

$p_{q_{1}\cdots q_{n}}$ if $q_{i}\neq 0(i=1, \cdots, n)$ ,
$0$ otherwise.

This completes the specification of the standard MPH representation of the MVE of
Marshall and Olkin [4].

Consider the simplest, bivariate case, where $n=2$ and $m=3$ . Then the state-space
consists of the four elements $(1, 1)$ , $(1, 0)$ , $(0,1)$ and $(0,0)$ , where $\Gamma_{1}=\{(0,1), (0,0)\}$ ,
and $\Gamma_{2}=\{(1,0), (0,0)\}$ , so that $\triangle=(0,0)$ . Then $\mathrm{T}$ is $3\cross 3$ matrix

$\mathrm{T}=$ (3)

The initial distribution may be written in the form $\beta=(1,0,0,0)$ . From the results
of Assaf et al. [1], $\overline{F}(t_{1}, t_{2})=P(Y_{1}>t_{1}, Y_{2}>t_{2})$ has the following closed form

$\overline{F}(t_{1}, t_{2})=\alpha e^{\mathrm{T}t_{2}}\mathrm{g}_{2}e^{\mathrm{T}(-}\mathrm{g}1t_{1}t_{2})\mathrm{e}$ if $t_{1}\geq t_{2}\geq 0$ ,
$=\alpha e^{\mathrm{T}t_{1}}\mathrm{g}_{1}e^{\mathrm{T}()}t_{2}-t1\mathrm{g}_{2}\mathrm{e}$ if $t_{2}\geq t_{1}\geq 0$ , (4)

where

$\alpha=(1,0,0)$ , $\mathrm{g}_{1}=[_{0}^{1}0$ $001$ $000$ , $\mathrm{g}_{2}=$ , and $\mathrm{e}=$ .

They yield

$\overline{F}(t_{1}, t_{2})=e^{-(\mu_{1}+}\mu 12)t_{1}-\mu 2t2$ if $t_{1}\geq t_{2}\geq 0$ ,
$=e^{-\mu_{1}-(}t_{1}\mu_{2}+\mu_{1}2)t_{2}$ if $t_{2}\geq t_{1}\geq 0$ , (5)

consequently we get

$\overline{F}(t_{1}, t_{2})=e^{-\mu_{1}t_{1}}-\mu 2t2-\mu 12\max(t_{1},t_{2})$ , (6)

which gives the bivariate exponential distribution (BVE) of Marshall and Olkin [4].
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3. Description of model
We consider a two-stage tandem queueing system with no intermediate buffers, in

which each stage consists of two channels in parallel. Customers arrive at the queue,
which is assumed to be infinite, according to a homogeneous Poisson process with rate
$\lambda$ . After completion of the first stage service, each customer can enter both of the second
stage channels. Namely, when the second stage channel which is located on as the same
line as his first stage channel is busy, he can enter another channel in the second stage if
it is free. We call this operation interchangeable. On the other side, after completion of
the first stage service, each customer can enter only the second stage channel which is
located on as the same line as his first stage channel if it is free. We call this operation
ordinary. If a customer has already completed service of two stages, then he departs
the system. But if he has not completed service of the second stage and his second
stage channel is not free, he has to stay there, that is to say, this channel is blocked,
and when his second stage channel has completed service, he can enter that channel. In
the interchangeable case, a blocking occurs only when both of the second stage channels
are busy, whereas in the ordinary case, it always occurs when the second stage channel
which is located on as the same line as his first stage channel is busy.

The service times of each two channels in the first and second stages are not inde-
pendent but depend upon each other. It is assumed that their service distribution is
the BVE given by (6). We call this model correlated. On the other side, we call a model
in which their service distribution is an usual exponential distribution independent.

It is assumed that customers can transfer between channels instantaneously. Service
to a customer at any channel, once initiated, is completed without interruptions. The
queueing discipline is first-come first-served.

As shown in Fig. 1, the model I is interchangeable and correlated. We denote
the throughput of this system by $\lambda_{I,C}^{*}$ . Similarly, the model II, III and IV are inter-
changeable and independent, ordinary and correlated and ordinary and independent,
respectively. We denote the throughput of the model II, III and IV by $\lambda_{I,I}^{*},$ $\lambda_{O,C}^{*}$ and
$\lambda_{O,I}^{*}$ , respectively.

4. Analysis of model I
We give numbers 1, 2, 3 and 4 to channels in the first and second stage as shown

in Fig. 1. The joint service distribution of channel 1 and 2 and channel 3 and 4 are
respectively given as follows:

$\overline{F_{1}}(t_{1}, t_{2})=e^{-\mu_{1}()-\alpha}t_{1}+t2\max(t_{1},t_{2})$ ,

$\overline{F_{2}}(t_{3}, t_{4})=e^{-\mu_{2}()-\alpha}t_{3}+t4\max(t_{3},t_{4})$ . (7)

The model I under consideration can be studied as a continuous time Markov chain with
state-space $\{(0,j) : 1 \leq j\leq m_{0}\}\cup\{(i,j) : i\geq 0,1\leq j\leq m\}$ . The state $(0,j)$ denotes
that the system is in the boundary state and $m_{0}$ denotes the number of the boudary
states. In the state $(i,j),$ $i$ denotes the number of customers in the queue, whereas $j$

denotes the state of the network consisting of four channels and $m$ denotes the number
of states in the network.
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Model I (Interchangeable, Correlated)

first stage second $\mathrm{s}\mathrm{t}\mathrm{a}E\mathrm{e}$

$\lambda^{*}1$ . $\mathbb{C}$

Model ]$\mathrm{I}$ (Interchangeable, Independent)

first stage second stage

$\lambda^{*}1.1$

Model III (Ordinary, Correlated)

first $\mathrm{s}\mathrm{t}\mathrm{a}\sigma e$ $\wedge \mathrm{e}_{\mathrm{i}rightarrow}-\mathrm{f}_{-}.\cap \mathfrak{n}t\mathrm{i}-\mathrm{q}\uparrow_{-\mathrm{a}\sigma \mathrm{e}_{-}}$

$\lambda^{*}0$ . $\mathrm{c}$

Model IV (Ordinary, Independent)

first stage second sta@e

$\lambda^{*}0.1$

Fig. 1 Models
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The states of the network are described by the vector:

$(s_{1,2,3,4}sSS)$

where $s_{i}(i=1,2,3,4)$ can take any value from $0$ to 2 with

$\mathit{8}_{i}=\{$

$0$ -the i-th channel is idle,
1 -the i-th channel is in service,
2 -the i-th channel is blocked.

Then the boundary states are

$(0,0,0,0),$ $(1,0,0,0),$ $(0,1,0,0),$ $(0,0,1,0),$ $(0,0,0,1)$ ,
$(0,0,1,1),$ $(1,0,1,0),$ $(1,0,0,1),$ $(0,1,1,0),$ $(0,1,0,1)$ ,
$(1, 0,1,1),$ $(0,1,1,1),$ $(0,2,1,1),$ $(2,0,1,1)$ .

The states of the network are

$(1, 1, 0,0),$ $(1,1,1,0),$ $(1,1,0,1),$ $(1,1,1,1),$ $(2,1,1,1)$ ,
(1, 2, 1, 1), (2, 2, 1, 1).

By ordering the states as described above, the infinitesimal generator of the continuous
time Markov chain has the following block patitioned structure:

$\mathrm{Q}=$
$..$ .

(8)

where all the unmarked entries are zeros.
The dimensionality of $\mathrm{A}_{01}$ is $14\cross 14,$ $\mathrm{A}_{02}$ and $\mathrm{A}_{03}$ are $7\cross 14,$ $\mathrm{A}_{04}$ is $14\cross 7,$ $\mathrm{A}_{\mathrm{O}}$ ,

$\mathrm{A}_{1},$ $\mathrm{A}_{2}$ and A3 are $7\cross 7$ .
Let $\mathrm{p}$ equal the steady state probabilities of the network, assuming that the queue is

never empty, which has elements $p(j)(1\leq j\leq 7)$ . We can determine $\mathrm{p}$ , by solving the
system

$\mathrm{p}\mathrm{A}=0$ , $\mathrm{p}\mathrm{e}=1$ (9)

where the conservative matrix given by

$\mathrm{A}=\mathrm{A}_{\mathrm{O}}+\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}$ (10)

and $\mathrm{e}$ is $(7\cross 1)$ column vector with all elements equal 1. The equilibrium condition is
given (see Neuts [6]) by

$\mathrm{p}\mathrm{A}_{\mathrm{O}}\mathrm{e}<\mathrm{p}(\mathrm{A}_{2}+2\mathrm{A}_{3})\mathrm{e}$. (11)
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From this relationship the critical input rate, $\lambda^{*}$ , to the system can be determined. In
the steady state, this critical input rate is identical to the maximum throughput rate of
the system.

The conservative matrix of the model I becomes

$\mathrm{A}=$ $-\mu_{2}\mu\alpha\alpha 0_{b_{2}}^{1}0$ $a_{1}-a1-\mu 1-a\alpha 00_{2}0\mu_{1}$ (12)

where

$a_{1}=2\mu_{1}+\alpha$ ,
$a_{2}=2\mu_{2}+\alpha$ ,
$b_{1}=2\mu_{1}+\mu_{2}+2\alpha$ ,
$b_{2}=\mu_{1}+2\mu_{2}+2\alpha$ .

When $\mu_{1}=\mu_{2}=\mu$ and $\theta=\alpha/\mu$ , the equilibrium condition (11) in this case is given by

$\lambda<\mu(2+\theta)[1-p(4)]+\mu\theta[p(1)+p(7)]$ . (13)

By solving the system (9) and substituting $p(j)$ into (13), if $\mu=1$ , we obtain

$\lambda<\frac{4(1+\theta)^{2}(6+\theta)}{16+21\theta+3\theta^{2}}=\lambda_{I,C}^{*}$ . (14)

When $\theta=0$ , that is, the service times of each two channels in the first and second stage
are independent, the maximum throughput rate (14) yields

$\lambda_{I,I}^{*}=\frac{3}{2}$ (15)

which gives the maximum throughput rate of the model II.

5. Analysis of model III
As additional boundary states, the states $(2, 0,1, \mathrm{o})$ and $(0,2,0,1)$ are combined with

the boundary states of the model I. Similarly, the states $(2, 1, 1, 0)$ and $(1, 2, 0,1)$ are
combined with the states of the network of the model I. The infinitesimal generator of
the continuous time Markov chain has the same block patitioned structure as that of
the model I. The dimensionality of $\mathrm{A}_{01}$ is 16 $\cross 16,$ $\mathrm{A}_{02}$ and $\mathrm{A}_{03}$ are $9\cross 16,$ $\mathrm{A}_{04}$ is
16 $\mathrm{x}9,$ $\mathrm{A}_{\mathrm{O}},$ $\mathrm{A}_{1},$ $\mathrm{A}_{2}$ and A3 are $9\cross 9$ .

Let $\mathrm{p}$ equal the steady state probabilities of the network, assuming that the queue is
never empty, which has elements $p(j)(1\leq j\leq 9)$ . The relationship (9), (10) and (11)
also hold for the model III.
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The conservative matrix of the model III becomes
$\mathrm{A}=$

$[^{a_{2}}a_{2^{-}}-\alpha\mu_{2}-\mu_{2}00000a_{1}$ $a_{2^{-}}-\mu\mu\alpha 000^{\mu_{2}}0^{b}211$ $a_{2^{-}} \frac{\mu_{2}0}{\alpha,00}\mu_{2}\mu 0_{b_{1}}1$ $-b_{1\mu_{2}}\mu_{1}\mu\mu_{2}\mu\alpha\alpha 0^{-}0_{2}1$
$-b\mu 2\mu 10000_{1}002$ $-b\mu_{2}\mu 0000^{1}00_{1}2$

$a_{1}-\mu\mu\alpha\overline{0_{b_{2}}0}0_{1}02\mu_{1}$ $a_{1} \frac{\mu_{1}\alpha 000}{\mu_{2}0_{b}}\mu_{1}-2$ $a_{1}-\mu_{1}a_{1}-\mu_{1}-a\alpha 0_{2}0000]$

(16)
where $b_{12}=\mu_{1}+\mu_{2}+2\alpha$ .

When $\mu_{1}=\mu_{2}=\mu$ and $\theta=\alpha/\mu$ , the equilibrium condition (11) in this case is given
by

$\lambda<\mu(1+\theta)[1+p(1)+p(5). +p(6)+p(9)-p(4)]$ . (17)

By solving the system (9) and substituting $p(j)$ into (17), if $\mu=1$ , we obtain

$\lambda<\frac{4(1+\theta)}{3}=\lambda_{O,c}^{*}$ . (18)

When $\theta=0$ , that is, the service times of each two channels in the first and second stage
are independent, the maximum throughput rate (18) yields

$\lambda_{O,I}^{*}=\frac{4}{3}$ , (19)

which gives the maximum throughput rate of the model IV.

6. Comparison of throughput
If

$\theta=\theta_{0}=0.125$ , (20)

then
$\lambda_{I,I}^{*}=\lambda_{o,c}*$ .

Consequently, since both $\lambda_{I,C}^{*}$ and $\lambda_{O,C}^{*}$ are increasing function with respect to $\theta>0$ ,
we obtain the following result.

Theorem.

$\lambda_{O,I}^{*}<\lambda_{O,C}^{*}\leq\lambda_{I}^{*},I<\lambda_{I,C}^{*}$ if $0<\theta\leq\theta_{0}$ ,
$\lambda_{O,I}^{*}<\lambda_{I}*,\lambda_{o,c}I<*<\lambda_{I,C}^{*}$ if $\theta_{0}<\theta$ . (21)

The following explanation is derived from the above theorem. When the correla-
tion parameter is small, an interchangeable parallel two-stage tandem queueing model
with independent service times improves the throughput of the system better than an
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ordinary parallel two-stage tandem queueing model with correlated service times, by
utilizing an empty channel. When the correlation parameter is large, an ordinary par-
allel two-stage tandem queueing model with correlated service times improves it better
than an interchangeable parallel two-stage tandem queueing model with independent
service times, by the frequent occurrence of the event that two channels finish service
at the same time.
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