
Maintaining a Dynamic Set of Processors
in a Distributed System

Satoshi Fujita\dagger Masafunli Yanlashitat

Abstract
$C_{\mathit{0}\gamma\}}\epsilon ider$ a distributed system consisting of a set V of pro-
cessors, $\mathit{0}71daSS$ urne $t\tau_{1_{\beta}a}t$ evpry pair of processors can directly
comm unicate with each otlt er. A simple scheme $i_{\mathrm{t}}\mathrm{s}$ proposed,
for keeping a dynam.$i.c$ set $U\subseteq V$ of processors in a $(lp\dot{S}tr\dot{?}\iota_{ute}d$

ma$7l.7l$ er. $T\prime_{\mathrm{t}}e$ dynamic set s i’pports the following three basic
operations: Insert inserts the caller itself in U. $ar\mathrm{t}\prime l$, Delete
removes the caller $it_{\mathit{8}C}lf$ from U . Find searches a processor
in U. To dem onstrate the efficiency of scllenl e . $a?l$ am ortizcrl
analysis of the message complpxity of operatio $r\iota s$ is performed;
each oper$(\prime ti,\mathrm{o}r\iota re(\mathit{1}^{u.ires}.9+3\log_{2}(|V|-1)nteSSa_{J^{es}}l$.

The proposed scheme can be $(\iota_{II^{ll?\rho}})d$ to $many\uparrow,mportarlt$

$p’\cdot obl_{C}ms:e.g.$. to the load $bal\mathrm{c}lC?,ng$ problrm by simply us-
$i71/$(the set as afree list”. to the $n1$ utual exclusion problem
by $co7\mathfrak{l}strnCti71g$ a circular list in $u’ l[] iCh$ a token is circulated.
a $7\mathrm{t}d$ to constrttct ($motl\iota$ er data $strnct,\cdot urC$ like FIFO queue.

1 Introduction

Data structures play an important role in designing time
efficient algorithlns. In a similar sellse, “processor struc-
tures” can be used to design communication efficient dis-
tributed algorithms. For example, many of the routing
and broadcasting problems can be solved efficiently, by
letting the processors maintain a spanning tree of the
network. Also the spanning tree can be used to effi-
ciently solve other problems such as the leader election
problem (e.g., the extrema-finding problem) [1, 3, 5, 7].
An in-tree is used to solve the mutual exclusion problem
[2, 10, 11], and the decentralized object finding problem
[4].

Unlike a data structure used in a sequential algorithm,
a processor structure is (of course) shared by the pro-
cessors in a distributed system. However, it does not
mean that every processor must know the whole struc-

$r_{\mathrm{D}\mathrm{e}\mathrm{p}\cdot \mathrm{t}}\mathrm{a}1\mathrm{t}111\mathrm{e}11$ of Elcctrical $\mathrm{E}\mathrm{u}\mathrm{g}\mathrm{i}_{1}1\mathrm{e}\mathrm{e}1^{\cdot}\mathrm{i}_{1}\mathrm{l}\mathrm{g}$. Faculty of Engineering,
Hiroshima University, $\mathrm{K}\mathrm{a}\mathrm{g}_{\dot{C}\iota 11}1\mathrm{i}\mathrm{y}\mathrm{a}\mathrm{l}\mathrm{n}\mathrm{a}1- 4- 1,$ $\mathrm{H}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{i}- \mathrm{H}\mathrm{i}_{\mathrm{f}}\mathrm{o}\mathrm{S}11\mathrm{i}_{1}\mathrm{U}\mathrm{a},$ 739

$\mathrm{J}\mathrm{a}_{1^{)\mathrm{a}11}}$.

ture. Rather, each processor usually maintains only a
local structure, and the whole structure is kept consis-
tent, nevertheless. For example, a processor recognizes
only the set of local ports corresponding to the tree edges
incident on it (rather than all tree edges), for maintain-
ing a spanning tree.

This paper discusses how to maintain a dynamic set
of processors. The dynamic set supports the following
three operations:. lnsert: This operation adds the processor that calls

the operation in the set as a new element.. Delete: This operation removes the processor that
calls the operation from the set.. Find: This operation returns the identifier of a pro-
cessor in the set.

The message complexity of each of the operations is very
small. To observe it, we perform an amortized analysis
which is based on the amortized analysis invented by
Ginat et $al[6]$, and show that only $9+3\log_{2}(|V|-1)$

messages are required per operation.
The main idea of the scheme is to maintain a dynalnic

set U of processors in the form of a distributed circular
list: Each processor has a local register to store the next
pointer to “next processor”. We naturally identify the
distributed system with a directed graph G with the
node set being the set of processors, i.e., there is a di-
rected edge from u to v iff the next pointer of u points to
v . Dynamic set U is maintained in such a way that all
processors in U are included in a unique directed cycle
C in G , and that $G-C$ are in-trees, each of whose sinks
has the next pointer to a processor in C .

C may include processors not in U , since deletion is
simply achieved by marking itself in most of the cases.
Removal of marked processors from C will be done later,
when Find is executed. Insert and Find called by a pro-
cessor not in C , say u , follow the directed path starting

数理解析研究所講究録
950巻 1996年 106-112 106

with u , until it encounters a processor in cycle C , say
v , and for lnsert, u and v update the next pointers so
as to insert u as the next processor of v . The message
complexity of those operations therefore mainly depends
on the length of directed path the caller traverses. To
shorten the path, we adopt the heuristic of path com-
pression used in the Union-Find algorithm [8].

The data structure proposed in this paper can be used
to solve many important problems: To solve $\mathrm{t}1_{1}\mathrm{e}$ load
balancing problem, we can simply regard the dynamic
set as the ((

$\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}$ list”. To solve the mutual exclusion
problem, we circulate a single token along C and regard
it as a token ring system. We can further use it to
construct another data structure like FIFO queue.

The paper is organized as follows. In Section 2, we
propose a basic scheme for sharing a set in a distributed
manner. In Section 3, we show several applications of
the scheme. Section 4 concludes the paper with future
problems.

2 The Schenle

2.1 The Model

In what follows, we call a processor a node, since we
will identify a distributed system with a directed graph
with the node set being the set of processors (in the
sense we explained in Section 1). Consider a distributed
system with a node set $V=\{0,1, \ldots, n-1\}$. We assume
that every pair of nodes in V can directly communicate
with each other in the blocking mode, i.e., each message
transfer is synchronized using the hand shaking. A local
area network connected by a shared bus (e.g., Ethernet)
is an example of systenls satisfying the assumption on
communication.

Let $U(\subseteq V)$ be the subset of nodes that satisfy an
arbitrary fixed property 72. Suppose that each node in V

knows if it is a member of U , and that the membership
to U may dynamically change. This paper discusses how
to implement the three operatiolls lnsert, Delete and Find
efficiently, with respect to such a dynamic set U . The
efficiency is nueasured by the message complexity, i.e.,
the number of messages excllanged.

2.2 Data Structure

In the proposed scheme, each node $v\in V$ has a local
register r_{v} to store the next pointer that points to a node

circular $\mathrm{l}\mathrm{i}.\mathrm{q}\mathfrak{t}$. $C_{\text{ノ}^{}\gamma}$

Figure 1: An example of graph G .

in V. (We use two more registers t_{2} , and m_{v} . We explain
about them later.) The node pointed by r_{v} is called the
next node of v . By associating a directed edge from v to

r_{τ} , with each ordered pair $(v, r_{\tau},)$, we naturally obtain a
directed graph G , in which every node has exactly one
outgoing edge. Figure 1 illustrates an example of G , in
which, for example, node 1 points to node 3 (i.e., $r_{1}=3$)
and node 3 points to node 6 (i.e., $r_{3}=6$). Graph G is
dynamic in the sense that its configuration dynamically
changes, since nodes autonomously update their local
registers.

In our scheme, graph G is always kept connected. It
therefore consists of a unique directed cycle and a set of
in-trees whose sinks point to a node in the cycle, since
every node in G has exactly one outgoing edge. Fur-
ther, the cycle is maintained so as to include all nodes
in U . We implelnent the dynamic set U in a form of dis-
tributed circular list occured in G as the cycle. As you
will see, the circular list may contain nodes not in U ,
since, in many cases, Delete only marks the caller to dis-
tinguish it from the nodes.in U and the actual deletion
process from the circular list is postponed until Find is
executed. Local register (flag) m_{v} is used to memorize
if v is marked or not. That $v\in U$ iff $m_{\iota},$ $=0$ is intended
to hold.

We create a single token to show the “anchor” node,
and let it circulate along the circular list. Local register
(flag) t_{τ} , is used to memorize if v has the token. That v

is the anchor iff $t_{v}=1$ is intended to hold. The anchor
is handled in such a way that it is not marked unless
$U=\emptyset$. The role of the anchor is two folds. First, it is

107

used to guarantee the deadlock-freedom by using it as
an arbiter. Next, it is used to check whether $U=\emptyset$ or
not.

2.3 Primitive Operations

The system is $\mathrm{i}_{11}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{e}\mathrm{d}$ as follows, assuming that ini-
tially $U=V$ holds. Hence, for each $v\in V,$ $m_{\mathrm{I}},$ $=0$,
initially. Local registers $r_{\eta)}$ are initialized to $r_{\tau},$ $:=v+1$
(mod n) for each $v\in V$, i.e., the corresponding G is a
single directed cycle. The token is initially given to node
$0(\in V)$. Hence, initially, $t_{l},$ $=1$ iff $v=0$. In the follow-
ing, we present three procedures Find, lnsert and Delete
that are implementations of corresponding primitive op-
erations, respectively. Those procedures are assumed to
be executed as atomic ones, in the sense that once the
execution starts, the processor is dedicated to execute
it, until it finishes. The only exception is the case in
which Delete is initiated by the anchor; the anchor may
handle a message that Delete does not expect before it
finishes, to avoid possible deadlocks.

2.3.1 Procedure FindNode

We first present a procedure FindNode that is used as a
central subroutine in the implementations of the three
operations. When a node v calls FindNode, it returns
$w,$ $r_{w},$ $t_{u},,$ $?\eta_{\{v}$ and S , where w is either the first node in
U appeared in the unique directed path $P_{\tau},(G)$ from v

(if $U\neq\emptyset$), or the anchor node (otherwise). Here S is
the set of nodes appeared in P_{τ}

) (G) , excluding v and w ,
and is used to apply the heuristic of path compression
later.

If a returned value $m_{1’)}=1$, i.e., if FindNode cannot
find a node in $U,$ $U=\emptyset$ and therefore w is the anchor,
i.e., $t_{\tau\iota},$ $=1$. FindNode is given in Figure 2.

Each node u on the path traversed, upon receiving a
message $M’$ from v , acts as follows:. If $M^{t}=\mathrm{i}\mathrm{n}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{r}\mathrm{e},$ tllen

-if $m_{\iota},=1$ and $t_{\tau},$ $=0$, i.e., if $u\not\in U$ and is not
the anchor, then it replies $\mathrm{s}\mathrm{k}\mathrm{i}_{\mathrm{P}}\mathrm{m}- \mathrm{e}(r_{u})$ to v

and blocks the execution of u , until it receives
message contract from v .

-else it replies found$(r_{?},, t_{\tau},, m_{v})$ to v , and blocks
the execution of u until it receives a message
from v .

procedure FindNode {For initiator v . }
begin

$S:=\emptyset$; {Nodes to be contracted. }
$w:=r_{v}$;
repeat

Send $(\mathrm{i}\mathrm{n}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{r}\mathrm{e}, w)$;
Receive(M, w) ;
if $M=\mathrm{s}\mathrm{k}\mathrm{i}\mathrm{p}_{-}\mathrm{m}\mathrm{e}(r_{w})$ then
$S:=S\cup\{w\}$ and $w:=r_{w}$

until $M=\mathrm{f}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}(rw’ tw’ mw)$;
return $w,$ r_{w},m_{w} and S

end

Figure 2: Procedure FindNode.

. If $M’=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}(w)$, then $r_{?\iota}:=w$.. If $M’=$ place-token, then $t_{\tau\iota}:=1$. {Used in
Delete. }. If $M’=\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{v}\mathrm{e}$ -token, then $t_{\tau\iota}:=0$ and $r_{\tau\iota}:=v$. $\{$

Used in lnsert. }. If $M’=\mathrm{u}\mathrm{n}\mathrm{b}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}$, then it unblocks the execution of
u , but does nothing else.

All nodes traversed by FindNode block themselves un-
til a further instruction (message) arrives from v , which
will be issued in the procedure that calls FindNode as a
subroutine. Note that for the simplicity of description,
v may send or receive a message to or from v itself. In
this case, we assume that v behaves like other u (with-
out actually exchanging messages), except that v does
not block itself.

2.3.2 Procedure Find

Suppose that a node v wishes to find a node $u\in U$ and
calls Procedure Find. If $m_{I},$ $=0$, it returns v itself, since
$m_{\tau},$ $=0$ implies $v\in U$. If $t_{v}=m_{\mathrm{t}}.,$ $=1$, it returns Fail,
since $U=\emptyset$ in this case. When v is neither an element
in U nor the anchor, Find \cdot returns a $u\in U$ as long as
$U\neq\emptyset$. If $U=\emptyset$, Fail is returned. The node u found is
the first node in U appeared in the directed path $P_{v}(G)$

from v . Find is given in Figure 3.

2.3.3 Procedure Delete

Suppose that a node v wishes to delete itself from U

and calls Procedure Delete. If v is not the anchor, i.e., if

108

procedure Find {For initiator v . }
begin

if $m_{v}=0$ then return v ;
if $t_{\tau 1}=1$ thell return Fail;
Call FindNode;
{It returns $w,$ $r_{w},t_{w},$ m_{w} , and S . }
$r_{v}:=w;$ { r_{v} points to the found node. }
$\mathrm{s}_{\mathrm{e}\mathrm{n}}\mathrm{d}(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}(w), x)$ for all $x\in S$;
{Path compressed. }
if $m_{w}=0$ then return w

else return Fail
elld

Figure 3: Procedure Find.

$t_{v}=0$, then the deletion is simply achieved by marking
itself.

Otherwise, if it is the anchor, Delete first finds a node
$u\in U$ by calling FindNode, transfers the token to u ,
lnarks itself, and then the path compression is applied.
As mentioned, if a message is waiting for being pro-
cessed when the anchor v is executing FindNode, sus-
pending FindNode, it first handles the message, which
belongs to another execution instance of operation ini-
tiated by a node $v’$, in order to guarantee deadlock-
freedom. The message must be an inquire. When v

receives the inquire, it freezes the execution of Find-
Node after $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{y}\mathrm{i}_{1}$ the path compression for nodes in
the current S , and responds to the inquire first. Find-
Node resumes control when v finishes the execution of
instruction given by $v’$. A more formal description of
this (

$‘ \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\Gamma \mathrm{r}\mathrm{u}\mathrm{p}\mathrm{t}$ handler” is given in below.

. If inquire arrives from $v’$ while waiting for a re-
ply from a node w , then Send (contract $(w),$ x) for
all $x\in S,$ $S:=\emptyset$, and Send $(\mathrm{n}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k},w)$ (i.e., it
((

$\mathrm{f}\mathrm{l}\mathrm{u}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{S}$” the current S). The message arriving from
w is discarded. It then replies $\mathrm{f}_{0}\mathrm{u}\mathrm{n}\mathrm{d}(r_{\mathrm{t}}tm)$ to
$v’$ (since it does not complete the deletion), and
blocks itself until it receives a further instruction
(including unblock instruction) from $v’$ and finishes
executing it. Finally, v resumes the execution of
FindNode $\mathrm{f}\mathrm{r}\mathrm{o}\ln$ the point it is suspended.. If inquire arrives from $v’$ immediately after receiv-
ing $\mathrm{s}\mathrm{k}\mathrm{i}_{\mathrm{P}^{\lrcorner \mathrm{n}}}\mathrm{e}(r_{\mathrm{t}\iota},)$ from w (before sending out an-
other inquire), it first executes $S:=S\cup\{w\}$ and
$w:=r_{\tau\iota},$, and then does the sequence of instructions

procedure Delete {For initiator v with $m_{\mathrm{t}},$ $=0.$ }
begin

if $t_{v}=0$ then $m_{v}:=1$ and terminate;
Call FindNode;
{It returns $w,$ $r_{\tau v},t_{w},$ m_{w} , and S . }
$r_{v}:=w$;
if $w\neq v$ then $t_{v}:=0$ and
Send $(\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{e}-\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{n},w)$; {Send token. }
$m_{v}:=1$; {Mark itself. }
Send $(\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}(w), x)$ for all $x\in S$;
{Path compressed. }
$\mathrm{s}_{\mathrm{e}\mathrm{n}}\mathrm{d}(\mathrm{u}\mathrm{n}\mathrm{b}1_{0}\mathrm{c}\mathrm{k}, w)$

end

Figure 4: Procedure Delete.

given for the above case.. Finally, if inquire has already arrived when v en-
ters FIndNode, it simply delays $\mathrm{F}_{1}\mathrm{n}\mathrm{d}\mathrm{N}\mathrm{o}\mathrm{d}\mathrm{e}$ and pro-
cesses the inquire first.

FindNode finds v itself as w , when $U=\{v\}$. In this
case, as the result, $t_{2^{1}}=m_{v}=1$ holds. Delete is given in
Figure 4.

2.3.4 Procedure lnsert

Suppose that a node v wishes to add itself in U and
calls procedure Insert. It first looks for a node w in U by
calling FindNode. Then it inserts v in the circular list as
the next node of w . If $t_{w}=m_{w}=1$, which implies that
$U=\emptyset$, the anchor is transferred to v from w . A $\mathrm{f}_{0\Gamma \mathrm{n}}1\mathrm{a}1$

description of lnsert is given in Figure 5.

2.4 Observing Correctness

First, observe that the circular list C contains every
node in U all the time. To this end, we observe that all
nodes not in C are marked. Every node is not marked
and resides in the circular list C at the time of initia-
tion. Suppose that an unmarked node u exists outside
of C at some time instant. Then either u was removed
fronl c despite that it was not marked, or its mark was
removed despite that it was outside of C . The latter
case never occur since the removal of mark occurs only
in Insert and it always inserts the caller as the next node
of the node in U that $\mathrm{F}_{\mathrm{I}}\mathrm{n}\mathrm{d}\mathrm{N}\mathrm{o}\mathrm{d}\mathrm{e}$ found. Let us check that
the former case does not occur, either. This occurs only

109

procedure Insert {For initiator v with $m_{v}=1.$ }
begin

Call FindNode;
{It returns $w,$ $r_{w},$ $t_{\not\in \mathrm{t}},,$ $m_{\mathrm{t}\{},$, and S . }
$m_{11}:=0$; {Remove mark. }
if $t_{w}=m_{1\{},$ $=1\mathrm{t}1_{1}\mathrm{e}\mathrm{n}$

$\mathrm{s}_{\mathrm{e}\mathrm{n}}\mathrm{d}(\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{V}\mathrm{e}_{-}\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{n},w),$ $r_{v}:=v$ and
$t_{\mathrm{t}},$ $:=1$ {Token Received. }
else $r_{\tau 1}:=r_{w}$ and $\mathrm{S}\mathrm{e}\mathrm{n}\mathrm{d}_{\mathrm{C}\mathrm{o}}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}(v),$ $w)$;
{ v inserted. }
Send $(\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}(w), x)$ for all $x\in S$

{Path compressed. }
end

Figure 5: Procedure Insert.

when a contract message is sent to an unmarked node.
However, FindNode always returns a set S of marked
nodes. Therefore, C includes all nodes in U .

Second, we observe that the graph G is weakly con-
nected, i.e., the procedures never generate a new di-
rected cycle besides C . To this end, we examine the
following claims:

1. At any time instant, C contains the anchor.
2. Any contract message to a node x asks for setting

its next pointer to a node in C .
The first claim holds, since the anchor is in C at the initi-
ation time, and it is transferred to a node found by Find-
Node, i.e., to a descendant of the current anchor. The
second claim also holds, since in each procedure, each of
contract messages takes w as its argument, where w is
the node found by FindNode (cases of Find and lnsert),
or a node reachable from the anchor (the case of Delete
initiated by the anchor). In both cases, w is a node in
C . Hence the anchor is reachable from every node in
G at any time instant, or in other words, G is weakly
connected.

Finally, we observe the deadlock-freedom of the
scheme. Suppose that a deadlock occurs. Then there
are a set D of nodes who are executing $\mathrm{F}\mathfrak{l}\mathrm{n}\mathrm{d}\mathrm{N}\mathrm{o}\mathrm{d}\mathrm{e}$, and
each of search paths encounters a node already blocked
by another search path. Since the number of outdegree
of every node is 1, it implies that every node in C be-
longs to one of the search paths (because there is only
one cycle in G). However, this is a contradiction, since
an execution instance of FindNode sends an inquire to
the anchor, and it terminates by finding the anchor.

The following theorem can be shown using the ob-
servations, by induction on the set of time instants, at
which an operation is performed.

Theorem 1 The implementations of operations Find,
lnsert and Delete are correct. \square

2.5 Amortized Message Complexity

In this subsection, we evaluate the amortized message
complexity of the scheme.

Let \mathcal{E} be a sequence of events (i.e., operations per-
formed) with. X Insert operations and. Y Find or Delete operations.

Let N^{-} (resp. N^{+}) denote the total number of nodes
deleted from (resp. added to) U during \mathcal{E} .

2.5.1 Inquiries Received by Nodes in the Cir-
cular List

The total number of messages received by or sent from
nodes in the circular list during \mathcal{E} is at most

$3(X+Y)+3N^{-}+3(X+Y)$

since each call of FindNode discards at nlost three mes-
sages (due to FindNode initiated by the anchor), and
since, upon receiving an inquiry, a node either replies
skip-me and then receives contract (and it is excluded
from the circular list), or replies found and then re-
ceives unblock, remove-token, or place-token. Since
$N^{-}\leq Y$, the total number of messages handled by those
nodes during \mathcal{E} is at most

$6X+6Y+3Y=6X+9Y$,

which is a constant per operation in an amortized sense.

2.5.2 Inquiries Received by Nodes Not in the
Circular List

Next, let us count the total number of messages handled
by nodes not in the circular list. Let T be the set of
nodes excluded from the circular list. Note that T forms
a forest. In what follows, a primitive event implies an
event associated with an event in \mathcal{E} which modifies the
configuration of T ; i.e., it either deletes a node from T

110

with cost zero, inserts a node to T as a root of existing
trees with cost zero, or applies a path compression to
T with a cost equals to the length of the compressed
path. Note that the cost of a primitive event equals to
the number of inquire messages received by nodes not
in the circular list during the event in \mathcal{E} associated with
the primitive event.

In the following, we prove that the cost of a primitive
event is at most $\log_{2}|V|$ in the amortized sense. To ob-
tain the bound, we apply the potential function method
invented in [6]. Let the size $s(v)$ of a node v in T be the
number of descendants of v including v itself. Let the
potential of T be

$\Phi(T)=\frac{1}{2}\sum_{Tl1\in}\log 2S(v)$.

Define the amortized cost of a path compression over
a path of k edges to be $k-\Phi(T)+\Phi(T’)$, where T

and $T’$ are the forests before and after the compression,
respectively. For any sequence of m events, we have

$\sum_{i=1}^{m}a_{i}=\sum_{i=1}^{m}(t_{i}-\Phi i-1+\Phi_{i})=i1\sum_{=}^{nl}t_{i}-\Phi 0+\Phi_{m}$,

where $a_{i},$ t_{i} , and Φ_{i} are the amortized cost of the i^{1l})

primitive event, the actual cost of the $i^{f\prime_{1}}$ primitive event,
and the potential after the $i^{t\prime_{\mathrm{t}}}$ prilllitive event, respec-
tively, and Φ_{0} is the potential of the initial forest. Since
$\Phi_{0}=0$ (recall that T_{0} is an empty forest) and $\Phi_{m}\geq 0$,
we have

$\sum_{i=1}^{m}t_{i}\leq\sum_{i=1}^{\mathit{7}||}a_{i}$.

Now, let us bound the anlortized cost a_{i} for each prim-
itive event.

An insertion of a node into T increases the potential
by at most $\log_{2}(|V|-1)$, and a deletion of a node from
T following a path compression, does not increase the
potential. Since none of those primitive events take ac-
tual cost, the amortized cost of those primitive events
is at most $\log_{2}(|V|-1)$. On the other hand, by using a
similar argument to [6] we can also claim that the amor-
tized cost of a path compression is at most $\log_{2}(|V|-1)$.
Since the number of inquiry messages per event in \mathcal{E} as-
sociated with a primitive event is at most $\log_{2}(|V|-1)$ in
the amortized sense, and since each of such inquiries is
followed by two messages (i.e., skip-me and contract),
we have the following theorems.

Theorem 2 The number of messages handled by nodes
not in the circular list is at most 3 $\log_{2}(|V|-1)$ per event
in \mathcal{E} in the amortized sense. \square

Theorem 3 For any sequence of events with X Insert
operations and Y Find or Delete operations, the amor-
tized message complexity of each operation of the pro-
posed scheme is at most

$(6+3\log 2(|V|-1))x+(9+3\log_{2}(|V|-1))Y$.

\square

3 Applications

3.1 Load Balancing

Suppose that at any time instant, each node in G is
either lightly loaded, mediumly loaded or heavily loaded.
For convenience, we associate the load of a node with the
number of $‘(\mathrm{t}\mathrm{a}\mathrm{s}\mathrm{k}\mathrm{S}$ ” in the ready-queue of the node. A
task is dynamically created and removed on each node.
A load balancing problem is the problem of migrating
tasks of heavily loaded nodes to lightly loaded nodes as
quick as possible [9].

The scheme proposed in Section 2 can be applied to
the load balancing problem as follows. The basic idea
is to let U be the set of lightly loaded nodes. When the
load balancing algorithm is initiated, all nodes in V are
assumed to be lightly loaded, i.e., $U=V$. If the load
of a node v not in U becomes light, it inserts itself in U

by performing Insert. On the other hand, when the load
of a node $v\in U$ increases to medium, it deletes itself
$\mathrm{f}\mathrm{r}\mathrm{o}\ln U$ by performing Delete. If a node with heavy load
wishes to migrate some $\mathrm{t}\mathrm{a}s$ks to a light one, it performs
Find to find a light node.

Theimer and Lantz’s load balancing algorithm, for ex-
ample, essentially requires $O(|V|)$ messages to find out a
lightly loaded node in the worst case, while ours requires
$O(\log_{2}|V|)$ messages (in the amortized sense).

3.2 Mutual Exclusion

We initiate the system such that $U=\emptyset$. If a node wishes
to enter the critical section, it performs Inse $r\mathrm{t}$ and waits
for it becoming the anchor. If a node v wishes to leave
the critical section, it performs Delete. Since v is the
anchor, Delete first sends the token to the next node

111

in C (who is $\mathrm{w}\mathrm{a}\mathrm{i}\mathrm{t}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ for its turn), and then deletes v

from C . This mutual exclusion algorithm requires only
$O(\log_{2}|V|)$ messages per entry. Furthermore, this has
the following advantage.

In many cases, the set of nodes which are interested
in entering the critical section is a rather small dynamic
subset U of the whole node set V . The above solu-
tion can be viewed as a token ring system among U , in
which U may dynamically change. The token is circu-
lated among the small group U .

3.3 FIFO Queue

A FIFO queue can be implemented, by modifying the
proposed scheme as follows. We let the token represent
the head of the circular list. We modify FindNode so
that it looks for only the head. Operation Find then
returns the head. Operation Insert first finds the head
and inserts the caller as the predecessor of the head,
i.e., from the tail of the circular list Operation Delete is
exactly the salne as in Section 2. It passes the token to
the next node, and delete the previous head (the caller)
from C .

4 Concluding Remarks

In this paper, we proposed a simple scheme for keeping
a set U of nodes in a distributed manner, and for find-
ing a node in U by using at most $9+3\log_{2}(|V|-1)$

nlessages per operation in an amortized sense. The pro-
posed scheme can be applied to many important prob-
lems, which includes a load balancing problem, the mu-
tual exclusion problem, and a construction of distributed
FFOO queue.

An important future problenl is to apply the scheme
to distributed systems in which the communication cost
between two nodes is (

$‘ \mathrm{n}\mathrm{o}\mathrm{t}$
” unique; i.e., to consider the

problem of finding a “closest” node in U in such systems.
Another interesting $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\ln$ is to apply the scheme to
several practical problems such as load balancing prob-
lem described in Subsection 3.1, and evaluate the per-
formance experimentally. Also implelnenting other pro-
cessor structures such as a stack and a priority queue is
an interesting open question.

References

[1] B. Awerbuch. Optimal distributed algorithms for
minimal weight spanning tree, counting, leader elec-
tion and related problems. In Proc. 19th STOC,
pages 230-240. ACM, 1987.

[2] Jos\’e M. Bernab\’eu-Aub\’an and Mustaque Ahamad.
Applying a path-compression technique to obtain an
efficient distributed mutual exclusion algorithm. In
Proc. 3rd WDAG (LNCS 392), pages 33-44, 1989.

[3] F. Chin and H. F. Ting. An almost linear tinue
and $o(n\log n+e)$ messages distributed algorithm
for minimum-weight spanning trees. In Proc. 26th
FOCS, pages 257-266. IEEE, 1985.

[4] Robert Joseph Fowler. The complexity of using for-
warding addresses for decentralized object finding.
In Proc. 5th PODC, pages 108-120. ACM, 1986.

[5] R.G. Gallager, P.A. Humblet, and P.M. Spira. A
distributed algorithm for minimum-weight spanning
tree. In ACM Transactions on Programming Lan-
guages and Systems 5, 166-77, 1983.

[6] David Ginat, Daniel D. Sleator, and Robert E. Tar-
jan. A tight amortized bound for path traversal.
Information Processing Letters, 31:3-5, April 1989.

[7] Gurdip Singh and Arthur J. Bernstein. A highly
asynchronous minimum spanning tree protocol. Dis-
tributed Computing, 8:151-161, 1995.

[8] Robert E. Tarjan. Data Structures and Network Al-
gorithms. Society for Industrial and Applied Math-
ematics, 1983.

[9] Marvin M. Theimer and Keith A. Lantz. Finding idle
machines in a workstation-based distributed system.
In Proc. 8th ICDCS, pages 112-122, IEEE, 1988.

[10] Michel Rehel and Mohamed Naimi. A distributed
algorithm for mutual exclusion based on data struc-
tures and fault tolerance. In Proc. 6th Annual
Phoenix Conf. on Computers and Communications,
pages 35-39. IEEE, 1987.

[11] Tai-Kuo Woo. Huffman trees as a basis for a dy-
namic mutual exclusion $\mathrm{a}_{0}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{n}1$ for distributed
systems. In Proc. 12th IEEE Int. Conf. on Distr.
Comp. Sys., pages 126-133. IEEE, 1992.

112

