
An Optimal Algorithm for the Angle-Restricted All Nearest Neighbor
Problem on the Reconfigurable Mesh \dagger

Koji $\mathrm{N}\mathrm{a}\mathrm{k}\mathrm{a}\mathrm{n}\mathrm{o}\iota$ Stephan Olariu
Department of Electrical and Computer Engineering Department of Computer Science

Nagoya Institute of Technology Old Dominion University
Showa-ku, Nagoya 466, Japan Norfolk, Virginia 23529, USA

Abstract

Given a set S of n points in the plane and two directions r_{1} and r_{2} , the Angle-Restricted All Nearest
Neighbor problem (ARANN, for short) asks to compute for every point p in S the nearest point in S lying
in the planar region bounded by two rays in the directions r_{1} and r_{2} emanating from p . The ARANN
problem generalizes the well-known ANN problem and finds applications to pattern recognition, image
processing, and computational morphology. Our main contribution is to present an algorithm that
solves an arbitrary instance of size n of the ARANN problem in $O(1)$ time on a reconfigurable mesh
of size $n\cross n$. Our algorithm is optimal in the sense that $\Omega(n^{2})$ processors are necessary to solve the
ARANN problem in $O(1)$ time.

1 Introduction

A reconfigurable mesh [4] (RMESH, for short) of
size $m\cross n$ consists of nm identical SIMD pro-
cessors positioned on a rectangular array with m

rows and n columns. Each processor is connected
to its four neighbors, provided they exist, and has
4 ports denoted by $\mathrm{N},$ $\mathrm{S},$

E , and W. Local con-
nections between these ports can be established,
under program control, creating a powerful bus
system that changes dynamically to accommodate
various computational needs. We assume that
communications along buses take $\mathrm{O}(1)$ time. The
results in this paper assume a model that allows
at most two connections to be set in each pro-
cessor at any one time. Furthermore, these two
connections must involve disjoint pairs of ports.

The All-Nearest Neighbor problem (ANN, for
short) involves computing for every point in a
given set S , a point that is closest to it. Recently,
Jang and Prasanna [1] provided an $\mathrm{O}(1)$ time al-
gorithm for solving the ANN problem for n points
in the plane on a RMESH of size $n\cross n$. In this pa-
per we address a generalization of the ANN prob-

\ddagger 中野浩嗣, 名古屋工業大学電気情報工学科
\dagger Work supported in part by NSF grant CCR-9407180

and by ONR grant N00014-95-1-o779

$\mathrm{l}\mathrm{e}\mathrm{m}$, namely the the Angle-Restricted All Near-
est Neighbor problem (ARANN, for short). Just
as the ANN problem, the ARANN problem has
wide-ranging applications in pattern recognition
and image processing.

For points p and q in the plane, we let $d(p, q)$

stand for the Euclidean distance between p and q .
Further, we say that q is (r_{1}, r_{2}) -dominated by p if
q lies inside of the closed planar region determined
by two rays in directions r_{1} and r_{2} emanating from
p . In this terminology, a point q in S is said to
be the (r_{1}, r_{2})-nearest neighbor of p if q is (r_{1}, r_{2}) -

dominated by p and $d(p, q)= \min\{d(p, q’)|q’\in$

S and $q’$ is (r_{1}, r_{2}) -dominated by p}.
The ARANN problem involves determining the
(r_{1}, r_{2})-nearest neighbor of every point in S . Refer
to Figure 1 for an illustration. Here, p_{2} is $(0, \pi/3)-$

dominated by p_{1} , but is not $(0, \pi/3)$-dominated by
p_{4} . The $(0, \pi/3)$ -nearest neighbor of p_{1} is p_{2} .

Given set S of n points in the plane and two di-
rections r_{1} and r_{2} , the Angle-Restricted All Near-
est Neighbor graph of S , denoted ARANN(S) is
the directed graph whose vertices are the points
in S ; the points p and q are linked by a directed
edge from p to q whenever q is the (r_{1}, r_{2}) -nearest
neighbor of p . The reader will not fail to note
that the problem of computing the (r_{1}, r_{2}) -closest

数理解析研究所講究録
950巻 1996年 120-125 120

Figure 1: Illustrating $(0, \frac{\pi}{3})$ -domination and the
corresponding ARANN graph

neighbor of each point in S and the problem of
computing the graph ARANN(S) of S are inti-
mately related, in the sense that the solution to
either of them immediately yields a solution to the
other. For this reason in the remaining part of this
work we shall focus on the problem of computing
the graph ARANN(S) and we shall refer to this
task, informally, as solving the ARANN problem.

The main contribution of this work is to present
an algorithm to solve the ARANN problem of n

points in $O(1)$ time on a RMESH of size $n\cross n$.
We also show that our algorithm is optimal in the
sense that n^{2} processors are necessary to solve the
ARANN of n points in $O(1)$ time. Clearly, the
ARANN problem is at least as hard as ANN: the
ANN corresponds to the solution of ARANN for
the particular directions 0 and 2π . It is worth not-
ing that the ANN algorithm of Jang and Prasanna
[1] cannot be used for solving the ARANN prob-
lem. We will develop new tools for dealing with
the ARANN problem. These tools are interest-
ing in their own right and may be of import in
the resolution of other related problems. We omit
the details but mention that our ARANN algo-
rithm allows us to solve the problems of comput-
ing the Geographic Neighborhood Graph and the
Relative Neighborhood Graph in $O(1)$ time on an
$n\cross n$ RMESH and that of the Euclidean Mini-
mum Spanning Tree [7] in $O(1)$ time on an $n\cross n^{2}$

RMESH. We will show algorithms for these prob-
lems in the full version of this paper.

2 Lower Bound

Let us consider the ARANN problem for the di-
rections $-\pi/2$ and $\pi/2$. Consider a set $S=$
$\{(a_{1},0), (a_{2},0), \ldots, (a_{n}, 0)\}$ of points on the x-axis
such that point $(a_{i},0),$ $(1\leq i\leq n)$, is assigned to

the i-th column of an RMESH of size $m\cross n$. Af-
ter solving the ARANN problem, the processors
of the i-th column know the $(-\pi/2, \pi/2)$-nearest
neighbor of $(a_{i}, 0)$. Assume that $a_{1}<a_{n/2}<$

$a_{2}<a_{n/2+1}<a_{3}<a_{n/2+2}\ldots<a_{n/2-1}<a_{n}$.
Then, for each point $(a_{i}, 0),$ ($1\leq i\leq n/2$ -

1), its $(-\pi/2, \pi/2)$-nearest neighbor is the point
$(a_{i+n/2},0)$. Therefore, information about $n/2$

points $(a_{n/2}, \mathrm{o}),$ $(a_{n/2+1},0),$ $\ldots,$
$(a_{n-1},0)$ must be

transferred through the m links that connect the
$(n/2-1)$-th column and the $n/2$-th column of the
RMESH. Hence, $\Omega(n/m)$ time is required to solve
the ARANN problem. We proved the following
result.

Theorem 2.1 $\Omega(n^{2})$ processors are necessary to
solve an instance of size n of the ARANN problem
on the RMESH in $O(1)$ time. \square

3 An Optimal Algorithm

Consider a collection S of n points in the plane.
By rotating the input about the origin, if neces-
sary, we can assume that two directions are 0 and
r with $0\leq r<2\pi$. The main goal of this sec-
tion is to present an optimal $O(1)$-time algorithm
for solving the ARANN problem. We begin by
showing an efficient algorithm for computing the
prefix-minima.

By comparing all pairs of n numbers, their
minimum can be computed in $O(1)$ time on an
$n\cross n$ RMESH. Hence, the prefix-minima of n num-
bers can be computed in $O(1)$ time on an $n\cross n^{2}$

RMESH. We will show the size of the RMESH
can be reduced to $n\cross n^{\epsilon}$ for every fixed $\epsilon>0$.
Partition the sequence $A=\{a_{1}, a_{2}, \ldots , a_{n}\}$ of
n numbers into $n^{\epsilon/2}$ sequences $A_{1},$ $A_{2},$

$\ldots,$
$A_{n^{\epsilon/2}}$

each of which contains $n^{1-\epsilon/2}$ numbers. Next,
compute the (local) prefix-minima of each A_{i}

$(1\leq i\leq n^{\epsilon/2})$ on an $n^{1-\epsilon/2}\cross n^{\epsilon}$ submesh recur-
sively. Let $\max(A_{i})$ be the minimum within A_{i} .
Further, compute the (global) prefix-minima of
a sequence $\{\min(A_{1}),\min(A_{2}), \ldots,\min(A\epsilon/2)n\}$.
This can be done in $O(1)$ time by the $\mathrm{O}(1)$ time
algorithm discussed above. Finally, for each num-
ber $a_{j}(\in A_{i})$, compute the minimum of its lo-
cal prefix-minima and the global prefix-minima
$\min\{A_{1}, A_{2}, \ldots, A_{i-}1\}$ that corresponds to the
prefix-minima of a_{j} . Since the depth of the recur-
sion is $O(1/\epsilon)$, the prefix-minima can be computed
in $O(1)$ time. Thus, we have

121

Lemma 3.1 Given n numbers on an $n\cross n^{\epsilon}$

RMESH, their prefix-minima can be computed in
$O(1)$ time for every fixed $\epsilon>0$. \square

From Lemma 3.1 we can get a trivial subopti-
mal solution to the problem at hand.

Lemma 3.2 For every fixed $\epsilon>0$, an arbitrary
instance of size n of the ARANN problem can be
solved in $O(1)$ time on a RMESH of size $n\cross n^{1+\epsilon}$.

\square

In the remainder of this section we will show
how to improve this naive algorithm to run in
$O(1)$ -time on a RMESH of size $n\cross n$. First, as-
sume that the given directions are 0 and r , with
$0<r<\pi/2$, that is, the angle of the closed re-
gion is acute. Consider a set $S=\{p_{1},p_{2}, \ldots,p_{n}\}$

of points in the plane stored one per processor in
the first row of a RMESH of size $n\cross n$. The details
of our algorithm follow.

Step 1. Sort the points in S by y-coordinate
and partition them into $n^{1/3}$ subsets
$\mathrm{Y}_{1},$ $\mathrm{Y}_{2},$ $\ldots \mathrm{Y}_{n^{1}}/3$ of $n^{2/3}$ points each, such that
the y-coordinate of all points in Y_{i} is smaller
than the y-coordinate of all points in $\mathrm{Y}_{i+1;}$

Step 2. For each point p in S compute $x’(p)=$

$x(p)-y(p)/\tan(r)$ and sort the points by $x’$,
where $x(p)$ and $y(p)$ are x- and y-coordinate
of p. Next, partition the points into subsets
$x_{1},$ $x_{2},$

$\ldots,$
$xn^{1}/3$ of $n^{2/3}$ points each, such

that for every choice of points p in X_{i} and q

in $X_{i+1},$ $x(\prime p)<x^{;}(q)$;

Step 3. For each point p in $X_{i},$ $(1\leq i\leq n^{1/3})$,
find its $(0, r)$-nearest neighbor $X(p)$ in $X_{i;}$

Step 4. For each point p in $\mathrm{Y}_{i},$ $(1\leq i\leq n^{1/3})$,
find its $(0, r)$-nearest neighbor $\mathrm{Y}(p)$ in $\mathrm{Y}_{i;}$

Step 5. For each i and $j,$ $(1\leq i,j\leq n^{1/3}-1)$, let
$Z_{i,j}= \bigcup_{i^{l}}>i,j^{J}>j(X_{i’}\cap \mathrm{Y}_{j’})$. For each point p

in $X_{i}\cap \mathrm{Y}_{j}$ compute its $(0, r)$-nearest neighbor
$Z(p)$ over all points in $Z_{i,j;}$

By using the sorting algorithm of [2,3,5], Steps
1 and 2 can be completed in $O(1)$ time on a
RMESH of size $n\cross n$. In Step 3, a submesh of

$\bullet\backslash \bullet_{\backslash }\backslash ’\wedge^{\backslash }’\bullet\sim_{;}^{\mathrm{M}\mathrm{i}\mathrm{i}(P}\bullet\bullet\bullet\sim \mathrm{n}\mathrm{m}\mathrm{a})$

$\mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(P)$! \bullet

$L_{0}^{\pi/3}$ $.\backslash \backslash \sim---arrow-------$

Figure 2: Illustrating Maxima(S) and Minima(S)

for directions 0 and $\pi/3$

size $n\cross n^{2/3}$ can be assigned to each X_{i} . Conse-
quently, Step 3 can be completed in $O(1)$ time by
the naive algorithm of Lemma 3.2. In the same
way, Step 4 can be implemented to run in $O(1)$

time. Step 6 involves only local computation and
can be performed, in the obvious way, in $O(1)$

time.
The remainder of this section is devoted to

showing that with a careful implementation Step 5
will run in 0(1) time. We shall begin by present-
ing a few technical results that are key in under-
standing why our implementation works.

Consider, as before, a set $S=\{p_{1},p2, \ldots,pn\}$

of points. A point p_{i} in S is a $(0, r)$ -maximal (resp.
minimal) point of S if p_{i} is not $(0, r)$-dominated by
(resp. does not $(0,$ $r)$ -dominate) any other point in
S . We shall use Maxima(S) (resp. Minima(S)) to
denote the chain of all maximal points in S speci-
fied in counter-clockwise order (resp. all minimal
points in clockwise order). These concepts are il-
lustrated in Figure 2 for the directions 0 and $\pi/3$.

Next, we propose to show that only points in
Maxima$(Xi\cap \mathrm{Y}_{j})$ may have their $(0, r)$ -nearest
neighbor in $Z_{i,j}$. Moreover, if the $(0, r)$-nearest
neighbor of a point in Maxima$(X_{i}\cap \mathrm{Y}_{j})$ lies in
$Z_{i,j}$, then it can only be in Minima$(Z_{i,j})$.

For later reference, we take note of the following
technical lemmas.

Lemma 3.3 For three points p_{1},p_{2},p_{3} and a di-
rection $r(0<r<\pi/2)$, if $p_{1}(0, r)$ -dominates

p_{2} and if $p_{2}(0, r)$ -dominates p_{3} , then $d(p_{1},p_{2})<$

$d(p_{1},p_{3})$. \square

Lemma 3.4 $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{\mathrm{r}}(P, Q)$ is planar if r \leq

$\pi/2$.
Consider two sets of points P and Q such that

all points in $P(0, r)$-dominate all the points in Q .

122

Let $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P, Q)$ be a set of edges (p, q) such
that p belongs to $P,$ q belongs to Q , and q is the
$(0, r)$-nearest neighbor of p .
Lemma 3.5 If $(p, q)\in \mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P, Q)$, then $p\in$

$\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P)$ and $q\in \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q)$.
Proof. If p does not belong to Minima(P) , then
there exists a point $p’$ in Minima(P) that domi-
nates q . But now, Lemma 3.3 guarantees that
$d(p,p’)<d(p, q)$, a contradiction. In case q does
not belong to Maxima(Q) we can show a contra-
diction in an essentially similar fashion. \square

Lemma 3.5 has the following important conse-
quence.

Corollary 3.6
$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P), \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$ $=$

$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{\mathrm{r}}(P, Q)$. \square

Corollary 3.6 guarantees that in order to com-
pute $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P, Q)$ examining all the pairs
of points p in P and q in Q is not nec-
essary: all that is needed is to compute
$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P), \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$.

To pursue this idea
further, write Minima$(P)=\{p_{1},p_{2}, \ldots,pm\}$ and
Maxima$(Q)=\{q_{1}, q_{2}, \ldots, q_{n}\}$ and assume that for
some fixed $\epsilon,$ $(0<\epsilon\leq 1),$ $m=n^{\epsilon}$. Corollary
3.6 motivates the following approach to compute
$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}$(Minima$(P)$, Maxima(Q)).

Let us partition Minima(P) into $n^{\epsilon/2}$ chains
$P_{1},$ $P_{2},$

\ldots , $P_{n^{\epsilon/2}}$ in such a way that. $P_{1}=\{p_{1},p_{2}, \ldots,p_{n}\epsilon/2\}$ and. $P_{k}=\{p_{(k-1)}n+1’ p(k-1)n^{\epsilon/}+21’\ldots,pkn^{\epsilon}/2\}\epsilon/2$,
for every $k,$ $2\leq k\leq n^{\epsilon/2}$.

Refer to Figure 3 for an illustration. For each k

$(1\leq k\leq n^{\epsilon/2})$, let $q_{j_{k}}(\in Q)$ be the $(0, r)$-nearest
neighbor of $p_{kn^{\epsilon/2}}$ over all Q .

Observe that the points $q_{j_{k}}$ thus defined in-
duce a partition of the set Q into $n^{\epsilon/2}$ chains
$Q_{1},$ $Q_{2},$

$\ldots,$
$Qn^{\epsilon}/2$ such that. $Q_{1}=\{q_{1}, q_{2}, \ldots, qj1\}$ and. $Q_{k}=\{q_{j_{k-1}}, qjk-1+1, \ldots, q_{j}k\}$, for every k ,

$2\leq k\leq n^{\epsilon/2}$.
We note that $q_{j_{k}}$ $\in Q_{k}\cap Q_{k+1}$. Lemma 3.4
guarantees that in order to compute the $(0, r)-$

nearest neighbor of a point p in P_{k} with re-
spect to Maxima(Q) , we can restrict ourselves

Figure 3: Partitioning Minima(P) and
Maxima(Q)

to computing the (O, r)-nearest neighbor of p

over Q_{k} . In other words, $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P_{k}, Qk)=$

$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P_{k}, \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$. Thus, comput-
ing $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P), \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$ reduces
to computing $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P_{k}, Qk)$ for all k .

The sampling strategy outlined above leads to
the following $O(1)$-time algorithm for computing
$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P), \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$ on a RMESH
of size $n\cross n^{\epsilon}$, for some fixed $0<\epsilon\leq 1$. We assume
that each point in Minima(P) has been assigned
to one column and each point in Maxima(Q) has
been assigned to one row of the RMESH.

Step 1 Partition columnwise the original
RMESH of size $n\cross n^{\epsilon}$ into $n^{\epsilon/2}$ submeshes
of size $n\cross n^{\epsilon/2}$ each. In the k-th such sub-
mesh, $1\leq k\leq n^{\epsilon/2}$, compute $d(p_{kn^{\epsilon}}/2, q)$ for
all points q in Maxima(Q) ;

Step 2 For every $k,$ $(1\leq k\leq n^{\epsilon/2})$, use the k-th
submesh to compute. the $(0, r)$-nearest neighbor $q_{j_{k}}$ of $p_{kn^{\epsilon/2}}$

by finding the smallest of the distances
$d(p_{kn^{\epsilon/,q}}2)$ computed above;. using the point $q_{j_{k}}$ determine Q_{k} .

$\mathrm{I}\mathrm{f}|Q_{k}|=1$, then the $(0, r)$-nearest neighbor of
every point p in P_{k} is precisely $q_{j_{k}}$, and thus
$(p, q_{j_{k}})\in \mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P_{k},\mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$. We

123

shall, therefore, assume that $|Q_{k}|\geq 2$ for all
k ;

Step 3 Partition the given RMESH of size $n\cross n^{\epsilon}$

rowwise into $n^{\epsilon/2}$ submeshes as follows. For
each $k,$ $(1\leq k\leq n^{\epsilon/2})$, the k-th submesh has
size $(|Q_{k}|-1)\cross n^{\epsilon}$ and involves rows $j_{k-1^{-}}$

1 through j_{k} of the original mesh. In the
k-th submesh compute $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(P_{k}, Qk)$ as
follows:

Step 3.1 Partition the k-th submesh of size
$(|Q_{k}|-1)\cross n^{\epsilon}$ into $n^{\epsilon/2}$ submeshes each
of size $(|Q_{k}|-1)\cross n^{\epsilon/2}$. Assign each
point p in P_{k} to each such submesh, and
compute $d(p, q)$ for each point q in Q_{k} .

Step 3.2
By using the algorithm of Lemma 3.1,
compute the minimum of all $d(p, q)$ over
$\mathrm{a}\mathrm{U}q$ in Q_{k} in each submesh assigned to
p and retum the $(0, r)$-nearest neighbor
of p.

The reader should have no difficulty to confirm
that Steps 1 and 2 can be performed in constant
time from Lemma 3.1. By using the prefix-sums
algorithm of [6], the partitioning in Step 3 can be
performed in constant time. Steps 3.1 and 3.2 can
also be implemented to run in constant time. To
summarize, we have proved the following result.

Lemma 3.7 If Minima(P) and Maxima(Q) have
been assigned to the columns and the rows, re-
spectively, of a RMESH of size $n\cross n^{\epsilon}$, then
$\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(P), \mathrm{M}\mathrm{a}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}(Q))$ can be com-
puted in $O(1)$ time for every fixed $0<\epsilon\leq 1$.
\square

We now discuss an $\mathrm{O}(1)$ time implementation
of Step 5 that computes $Z(p)$ for all p . First, we
assume a RMESH with $n\cross 2n$ processors.

Step 5.1 Partition the $n\cross 2n$ RMESH colum-
nwise into $n^{2/3}$ submeshes. For $i,$ $j,$ $(1\leq$

$i,j\leq n^{1/3}-1)$ let submesh $\mathrm{R}(i,j)$ be of size
$n\mathrm{X}(|X_{i}\mathrm{n}\mathrm{Y}_{j}|+n^{1/3})$;

Step 5.2 Compute Minima$(X_{i}\cap \mathrm{Y}_{j})$ in each
$\mathrm{R}(i,j)$;

Step 5.3 Compute Maxima$(z_{i,j})$ in each $\mathrm{R}(i,j)$;

Step 5.4
Compute the graph $\mathrm{A}\mathrm{R}\mathrm{A}\mathrm{N}\mathrm{N}_{r}(\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(X_{i}\cap$

$\mathrm{b}\mathrm{t}\mathrm{e}\mathrm{P}$ o.lls compllca\iota ie{l, Decause une numoer $\mathrm{o}\mathrm{I}$

columns of each submesh is different. The par-
titioning specified in Step 5.1 can be completed
in $O(1)$ time by using the sorting algorithm of
[2, 3, 5]: sort the n points in lexicographical or-
der of $(x’(p), y(p))$. Clearly, for each i and j , all
points in $X_{i}\cap Y_{j}$ are consecutive in the sorted
points. If the smallest point in $X_{i}\cap \mathrm{Y}_{j}$ and the
largest one are s-th and t-th in the sorted or-
der, then the submesh $\mathrm{R}(i,j)$ is assigned columns
$s+(i\cdot n^{1/3}+j)\cdot n^{1/3}$ to $t+(\dot{i}\cdot n^{1/3}+j+$

$1)\cdot n^{1/3}$. Hence, Step 5.1 can be completed in
$O(1)$ time. Steps 5.2 can be completed as follows:
Let $X_{i}\cap \mathrm{Y}_{i}=\{p_{1},p_{2},p_{3}, \ldots\}$, where $x’(p_{k})\leq$

$X’(p_{k}+1)$ for all k . Compute the suffix-maxima
of $\{y(p_{1}), y(p_{2}), y(p_{3}), \ldots\}$, by the algorithm of
Lemma 3.1. Then, $p_{k}\in \mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}(X_{i}\cap Y_{j})$ if
and only if $\max\{y(pk+1),y(pk+2), y(pk+3), \ldots\}>$

$y(p_{k})$. Therefore, Minima$(X_{i}\cap \mathrm{Y}_{j})$ can be com-
puted in $O(1)$ time. Step 5.3 can be completed
in the same way. To apply the algorithm of
Lemma 3.7 to Step 5.4, a serial number must be
assigned to the points in Minima$(X_{i}\cap \mathrm{Y}_{j})$ and
those in Minima$(z_{i,j})$. These numbering can be
obtained in the obvious way by using the prefix-
sum algorithm of [6]. Then, by executing the algo-
rithm of Lemma 3.7, Step 5.4, can be completed
in $O(1)$ time. Therefore, the ARANN problem
can be solved in $O(1)$ time on an $n\cross 2n$ RMESH.

Since the algorithm above that uses $n\cross 2n$ pro-
cessors, can be implemented on an $n\cross n$ RMESH
by a simple scheduling technique, the ARANN
problem can also be solved in $O(1)$ time on an
$n\cross n$ RMESH. Furthermore, the ARANN prob-
lem for the obtuse angle can be computed easily
by partitioning the angle into several acute angles,
solving the ARANN for each angle. Thus, we have
proved the following result.

Theorem 3.8 Given an arbitrary set of n points
in the plane and a direction $r,$ $(0<r\leq 2\pi)$,
the corresponding instance of the ARANN prob-
lem can be solved in $O(1)$ time on a reconfigurable
mesh of size $n\cross n$. \square

References
[1] J. Jang and V. K. Prasanna, Parallel geometric

124

problems on the reconfigurable mesh, Proc. of the
International Conference of Parallel Processing,
St. Charles, nlinois, III, 1992, 127-130.

[2] J. Jang and V. K. Prasanna, An optimal sorting
algorithm on reconfigurable meshes, Proc. Inter-
national Parallel Processing Symposium, 1992,
130-137.

[3] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang,
Sorting in $\mathrm{O}(1)$ time on a reconfigurable mesh
of size $N\cross N$, Parallel Computing: From The-
ory to Sound $Practice_{J}$ Proceedings of EWPC’92,
Plenary Address, IOS Press, Amsterdam, 1992,
16-27.

[4] R. Miller, V. K. P. Kumar, D. Reisis, and Q. F.
Stout, Parallel Computations on Reconfigurable
Meshes, IEEE Transactions on Computers, 42,
(1993), 678-692.

[5] M. Nigam and S. Sahni, Sorting n numbers on
n $\cross n$ reconfigurable mesh with buses, Proc.
7th International Parallel Processing Sympo-
sium, April 1993, 174-181.

[6] S. Olariu, J. L. Schwing, and J. Zhang, Fun-
damental Algorithms on Reconfigurable Meshes,
Proc. 29-th Annual Allerton Conf. on Communi-
cation, Control, and Computing, 1991, 811-820.

[7] F. P. Preparata and M. I. Shamos, Computa-
tional Geometry – An Introduction, Springer-
Verlag, Berlin, 1990.

125

