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On Tractable Slices of Some NP-Complete Functions
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Abstract

. In this paper, we show a number of tractable slices of graph-theoretic NP-complete functions, such

as MAXIMUM CLIQUE SIZE, INDEPENDENT SET, CHROMATIC NUMBER, HAMILTONIAN
CIRCUIT, and BANDWIDTH. Here, the word tractable means that the slice functions can be com-
puted by some polynomial size circuits. In order to show these results, we consider the recognition
problems of several specific graphs, such as Turéan graphs.
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1 Introduction

A combinational circuit is a circuit which consists of AND, OR, and NOT gates, and a monotone circuit
is a one which consists of AND and OR gates. Despite some considerable effort, it is not known that
some explicitly defined family of Boolean functions has superlinear combinational circuit complexity.
On the other hand, for monotone circuit model, Razborov gave superpolynomial lower bounds for clique
functions [13]. Subsequently, Alon and Boppana improved Razborov’s result to exponential [2]. But,
Tardos showed that there exist exponential gaps between monotone and combinational complexity [14].
So, in general, we cannot derive strong lower bounds for the combinational circuit complexity using
those bounds for the monotone circuit complexity.
Let X, = {#1,%2,...,Zn}, f(X») be a Boolean function with n variables, and k be any integer such
that 1 < k < n. In [3], Berkowitz introduced the k-slice function of f, denoted k-si( f), which is defined
as follows :
B-sl(F)(Xn) = (f(Xa) A TE(Xn)) V TEF(X,,).

Here T%(X,,) is the k-th threshold function. Note that k-sl(f) is a monotone Boolean function from the
definition. Also note that k-sl(f) is 0 (resp. 1) for assignments to X, in which fewer (resp. more) than
k variables are set to 1, and is equal to f for assignments to X,, in which exactly k variables are set to
1.

Berkowitz also showed that, for any slice function k-sl(f) of f, the combinational circuit complexity
C(k-sl(f)) and the monotone circuit complexity C™(k-sl(f)) are polynomially related. Therefore, if we

*Dept. of Math., Tokai University (JR¥XK - 2 - 8%) , sei-ichi@sm.u-tokai.ac.jp
'Dept. of Computer Sci. & Inform. Math., The University of Electro-Communications (E&EEX - BHRTE),
yamazaki@cs.uec.ac.jp
{Dept. of Communications & Syst. Eng., The University of Electro-Communications (B&EE K - EFHW),

nishino@sw.cas.uec.ac.jp



can show a superpolynomial lower bound for C™(k-sl( f)) for some NP-complete Boolean function f,
this would imply P # NP. Thus, it is very important to study the circuit complexity of slice functions
of NP-complete Boolean functions.

In order to give some insight into this line of research, we show several slices of graph-theoretic NP-
complete functions that have polynomial circuit complexity. For some monotone NP-complete Boolean
functions, such as CLIQUE, HAMILTONIAN CIRCUIT, it is known that their canonical slice functions
have polynomial circuit complexity [7]. In this paper, we show a number of slices of monotone and non-
monotone NP-complete Boolean functions, which have polynomial circuit complexity. In other words,
we show several tractable instances of graph-theoretic NP-complete problems.

In order to show these results, we consider the recognition problems for some specific graphs. We first
show that any Turén graph is recognizable within O(n?) time, where n is the number of vertices in G
and k is the number of maximal independent sets in G. Then, using this fact, we show that the ¢-th
slice of MAXIMUM CLIQUE SIZE (MAXCLIQUE for short) has polynomial circuit complexity, where

=(5)-(03) - (3) e

is the number of edges included in the Turdn graph with n vertices and k classes such that n = gk +r,0 <
r<k-1.

We also show that the (e — t)-th slice functions of INDEPENDENT SET, and t-th slice functions of
CHROMATIC NUMBER, have polynomial circuit complexity by using the above fact on the recognition

of Turdn graphs, where e = n(n — 1)/2. Furthermore, we present tractable slices of HAMILTONIAN
PATH and HAMILTONIAN CIRCUIT based on some observation on extremal problems for Hamiltonian
path.

A graph P¥ = (V,E) is a one such that V = {1,2,...,n} and E = {(uv,v) |u € Vv € {u+1,u +
2,...,u+k}NV}. It is easy to show that any Pk is linear-time recognizable. Then, using this fact, we
show that the I-th slice of BANDWIDTH has polynomial circuit complexity, where

I = nk — k(k+1)/2

is the number of edges included in PF.

The remainder of this paper is organized as follows. Section 2 gives basic definitions and notations.
Then, we show tractable slices of MAXCLIQUE and other NP-complete problems in Section 3. We also
give a tractable slice of HAMILTONIAN CIRCUIT in Section 4, and a tractable slice of BANDWIDTH
in Section 5.

2 Preliminaries

Let X,, = {z1,%2,...,Zys}, i.e. the set of n Boolean variables. Let f : {0,1}" — {0,1} be a Boolean
function. The circuit complezity of f, denoted C(f), is the number of gates in the smallest circuit
computing f, which consists of AND, OR, and NOT gates. On the other hand, the monotone circuit

complezity of f, denoted C™(f), is the number of gates in the smallest monotone circuit computing f,
which consists of AND and OR gates.

Let f(X,) be a Boolean function with n variables and k£ be any integer such that 1 < k < n. The
k-slice function of f, denoted k-sl(f), is the monotone Boolean function

k-sl(f)(Xn) = (f(Xn) ATE(X,)) vV TF(X,),

where T¥(X,,) is the k-th threshold function.
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Proposition 2.1 ([3]) Let f be an arbitrary Boolean function with n variables. Then, for an arbitrary
integer k such that 1 < k < n, C(k — sl(f)) and C™(k — sl(f)) are polynomially related.

Graph-theoretic problems are normally encoded using an adjacency matrix to represent an n-vertex
graph. Let XV = {z;; | 1 < i < j < n}, where each z;; is a Boolean variable. Then, an assignment to
the variables in XU represents an undirected graph G in the followmg way : G contains an edge {i,5}
iff z;; in XU is 1. Let e(n) = | XY| = n(n — 1)/2.

On the relationship between the circuit complexity and the time complexity on Turing machines, the
following proposition is known.

Proposition 2.2 ([8]) Let f : {0,1}" — {0,1} be a Boolean function. If f is computable within
O(T(n)) time on a deterministic Turing machine, then C(f) = O(T(n)logT(n)).

For details of the circuit complexity theory, see [7], and for elementary concepts from graph theory, see

[10].

3 The Recognition of Turdn Graphs and Its Applications

In this section, we first show an efficient algorithm for the recognition of Turdn Graph. Thus by using
this result, we show that tractable slices of MAXCLIQUE and other NP-complete functions.
3.1 The Recognition of Turidn Graphs

By Tk(n), we denote the Turdn graph, which is the complete k-partite graph with n vertices such that
each class of it has exactly |n/k] or [n/k] vertices (see Figure 1). Let tx(n) be the number of edges

Figure 1: The Turan Graph T5(8)

included in Tk(n). Note that

w=(3)-("31)r- () e-n

where n = gk + 7,0 < r < k — 1. The Turan’s theorem is as in follows:

Theorem 3.1 ([4]) Let G be a simple graph with n vertices and ty(n) edges. G has no (k+1)-clique iff
G is isomorphic to Ti(n).

Using this fact, we show that the recognition problem of Turdn graphs can be solved in O(n?) time.

Theorem 3.2 Given any graph G with n vertices and k be an integer such that 1 < k < n. Then, it
is decidable whether G is isomorphic to Ty(n) within O(n?) time.
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Proof. Let G = (V, E) be an input graph. Note that G is isomorphic to Tx(n) iff G consits of k complete
graphs with sizes [n/k] or [n/k]. So, we check whether G consits of k complete graphs with sizes [n/k]
or |n/k].

First, construct G in O(n?) time. Then, decompose G into the connected components of it. It is
known that we can find a list of vertices of each connected component of any input graph H = (V', E’)
in O(max{|V’|,|E’|}) [1]. In this case, the number of edges is O(n?). So, we can find a list of vertices
of each connected component of G in O(n?). For each component of G, check whether the cardinality
of it is [n/k] or |n/k]. If some components do not satisfy this condition, G is not a Turdn graph. This
check can be solved in O(kn) time. o
Let TUX(XY) be an e(n)-variable Boolean function whose value is 1 iff XU represents a graph G which
is isomorphic to Ti(n). By Proposition 2.2, we obtain the following corollary.

Corollary 8.3 C(TUF) = O(n?logn).

3.2 A Tractable Slices of MAXCLIQUE

The well known NP-complete problem MAXIMUM CLIQUE SIZE (MAXCLIQUE for short) is as follows
[9]:

INSTANCE: A graph G and a positive integer k.

QUESTION: Does the largest complete subgraph in G contain exactly k vertices ?

It is known that the central slice (i.e. e(n)/2-slice) of the clique function is NP-complete [7]. Let

crL 2(X,€J ) be the e(n)-variable Boolean function whose value is 1 iff XU represents a graph contains’
n/2-clique. And let e = e(n). The following property is known.

Proposition 3.4 ([7]) e/2-sl(CLZ/2) is NP-complete.

We can prove a similar theorem in the case of MAXCLIQUE. Let MC/ %(XU) be the e(n)-variable
Boolean function whose value is 1 iff XY represents a graph such that the size of maximum clique of it
is exactly n/2.

Theorem 3.5 ¢/2-sl(MC'?) is NP-complete.
Here, we show a tractable slice of MAXCLIQUE using Corollary 3.3.
Theorem 3.6 t-sl(MC¥) has polynomial circuit complezity.

Proof. Let G be an arbitrary graph with n vertices and ¢ edges. Then the size of maximum clique of
G is k iff G is isomorphic to Ti(n). Thus, we can use a circuit Cy for TUF to decide whether the size
of maximum clique of G is k by combining the outputs of C; and a circuit C; which checks that the
number of edges in G is exactly ¢ using an AND gate (see Figure 2). Since the function computed by

the circuit Cy is T¥ A T+, we can construct the combinational circuit C; using O(n) gates and then
the theorem follows. o

By Proposition 2.1, we obtain the following corollary.

Corollary 3.7 MC!, has polynomial monotone circuit complezity.
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Figure 2: A circuit for t-si(MCF)

3.3 Tractable Slices of NP-Complete Functions

First, we show a tractable slice of CHROMATIC NUMBER. Let C N}(XY) be the e(n)-variable Boolean
function whose value is 1 iff XV represents a graph whose chromatic number is exactly .

Theorem 3.8
(i) C(t-sl(CNIMH1)) = C(t-s(TUL)).
(i) C™(t-sl(CNIM¥Y) = C(t-si(TUL)).

Proof. Let G be an arbitrary graph with n vertices and ¢t edges. Then the chromatic number of G is
[n/1] iff G is isomorphic to Ti(n). a

Corollary 3.9
(1) t-sl(CN,[n/ H) has polynomial circuit complezity.
(ii) t-sl(CN,["/ k]) has polynomial monotone circuit complezity.

Here we consider a tractable slice of MAXIMUM INDEPENDENT SET. Let MIS%(XU) be the e(n)-
variable Boolean function whose value is 1 iff XU represents a graph such that the size of maximum
independent set of it is exactly k.

Theorem 3.10 Let k be an integer such that 1 < k < n. Andlet e = e(n) and t = tx(n). C((e -
1)-si( MISI¥ 1Y) = C(t-sl(TUL)) + O(e(n)).
Proof. Let G be an arbitrary graph with n vertices and (e — t) edges. Then the size of maximum

independent set of G is [n/k] iff G is isomorphic to Tx(n). Thus, we can use the circuit for t-sl(TU})
by inverting all the inputs. In order to do this, we need e(n) NOT gates. o

Corollary 3.11
(i) (e—=t)-sl(MI st/ k]) has polynomial circuit complezity.
(ii) (e — t)-sl(M1I s k]) has polynomial monotone circuit complezity.
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Figure 3: The graph P3.

4 A Tractable Slice of HAMILTONIAN CIRCUIT

In this section, we present tractable slices of HAMILTONIAN PATH and HAMILTONIAN CIRCUIT
using the extremal problems for HAMILTONIAN PATH and HAMILTONIAN CIRCUIT. Let H P5(XV)
(HC%(XY) resp.) be the e(n)-variable Boolean function whose value is 1 iff XU represents a graph which
has Hamiltoian path (Hamiltonian circuit resp.).

Let K, be the complete graph with size k and E! be the empty graph with only one vertex. The
following proposition is known.

Proposition 4.1 ([4]) (i)Let G be a simple graph with n vertices and p = e(n) — (n — 3). G has no
Hamiltonian path iff G is isomorphic to K*~1 U E1,

(ii)Let H be a simple graph with n vertices and ¢ = e(n) — (n —2). H has no Hamiltonian cycle iff G
isomorphic to a graph which is obtained by adding an edge to K1 U E1,

Theorem 4.2 (i) p-si(H P,) has polynomial circuit complezity, where p = e(n) — (n — 3).
(ii) c-sl(HCy) has polynomial circuit complezity, where ¢ = e(n) — (n — 2).

Proof. Omitted.

5 A Tractable Slice of BANDWIDTH

The well known NP-complete problem BANDWIDTH is as follows [9]:

INSTANCE: A graph G = (V, E) and a positive integer k < |V|.
QUESTION: Is there a one-to-one function f : V — {1,2,...,|V|} such that, for all {u,v} €
E,|f(w)- f(v)I<k?

A graph P¥ = (V,E) is a one such that V = {1,2,...,n} and E = {(u,v) |lueV,ve {u+1,u+
2,...,u+k}NV}. For example, the graph PJ is shown in Figure 3. It is known that an arbitrary graph
G with n vertices has bandwidth k iff G is a subgraph of P* [6].

Proposition 5.1 Let k and n be integers such that 1 < k < n. Then, the graph PF is recognizable in
O(n + €) time, where n is the number of vertices and e is the number of edges.

Proof. 1t is known that interval graphs can be recognized in O(n + €) time [5] and the isomorphism
problem for interval graphs can be solved in O(n + €) time [12]. For given positive integer n and k, we
can construct PF in O(n + e) time. Clearly, Pk is a interval graph, thus, PF is recognizable in O(n+e)
time. u]

Let PRE(XY) be an e(n)-variable Boolean function whose value is 1 iff XU represents the graph G
which is isomorphic to P¥. From Proposition 2.2, we obtain the following,.
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Proposition 5.2 C(PRE) = O((n + e)logn).

Let | = nk — k(k + 1)/2 be the number of edges in P¥, and BW*(XY) be an e(n)-variable Boolean
function whose value is 1 iff XU represents the graph G has bandwidth k. We obtain the following
theorem.

Theorem 5.3
(i) C(1-si(BW¥)) = C(I-sl(PRF)).
(i) C™(1-sl(BW})) = C™(I-sI(PREF)).

Proof. Let G be an arbitrary graph with n vertices and ! edges. Then G has bandwidth & iff G is
isomorphic to P¥. Thus, we can use a circuit for PRX to decide whether G has bandwidth . o

Corollary 5.4
(i) I-sl(BWY) has polynomial circuit complezity.
(i) I-sl(BW}) has polynomial monotone circuit complezity.
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