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Abstract

In this paper, we show a number of tractable slices of graph-theoretic $\mathrm{N}\mathrm{P}$ -complete functions, such
as MAXIMUM CLIQUE SIZE, INDEPENDENT SET, CHROMATIC NUMBER, HAMILTONIAN
CIRCUIT, and BANDWIDTH. Here, the word tractable means that the slice functions can be com-
puted by some polynomial size circuits. In order to show these results, we consider the recognition
problems of several specific graphs, such as Tur\’an graphs.

本論文では、MAXIMUM CLIQUE SIZE, INDEPENDENT SET, CHROMATIC NUMBER, HAMIL-
TONIAN CIRCUIT, BANDWIDTH などのグラフの性質に関する $\mathrm{N}\mathrm{P}$ 完全関数のスライス関数で、多
項式サイズ回路で計算できるものをいくつか示す。これらの結果を得るために、Tur\’an グラフなどの特
定のグラフの認識問題を考察する。

1 Introduction

A combinational circuit is a circuit which consists of AND, OR, and NOT gates, and a monotone circuit
is a one which consists of AND and OR gates. Despite some considerable effort, it is not known that
some explicitly defined family of Boolean functions has superlinear combinational circuit complexity.
On the other hand, for monotone circuit model, Razborov gave superpolynomial lower bounds for clique
functions, [13]. Subsequently, Alon and Boppana improved Razborov’s result to exponential [2]. But,
Tardos showed that there exist exponential gaps between monotone and combinational complexity [14].
So, in general, we cannot derive strong lower bounds for the combinational circuit complexity using
those bounds for the monotone circuit complexity.

Let $X_{n}=\{x_{1}, X_{2}, \ldots,X_{n}\},$ $f(Xn)$ be a Boolean function with $n$ variables, and $k$ be any integer such
that $1\leq k\leq n$ . In [3], Berkowitz introduced the $k$-slice function of $f$ , denoted $k_{-}sl(f)$ , which is defined
as follows :

k-sl$(f)(x_{n})=$ ( $f(X_{n})$ A $T_{n}^{k}(X_{n})$ ) $\tau_{n}^{k+1}(X_{n})$ .
Here $T_{n}^{k}(X_{n})$ is the k-th threshold function. Note that $k_{-}sl(f)$ is a monotone Boolean function from the
definition. Also note that $k_{-S}l(f)$ is $0$ (resp. 1) for assignments to $X_{n}$ in which fewer (resp. more) than
$k$ variables are set to 1, and is equal to $f$ for assignments to $X_{n}$ in which exactly $k$ variables are set to
1.

Berkowitz also showed that, for any slice function k-sl$(f)$ of $f$ , the combinational circuit complexity
$c(k_{-\mathit{8}}l(f))$ and the monotone circuit complexity $c^{m}(k_{-s}l(f))$ are polynomially related. Therefore, if we
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can show a superpolynomial lower bound for $C^{m}(k-sl(f))$ for some $\mathrm{N}\mathrm{P}$-complete Boolean function $f$ ,
this would imply $\mathrm{P}\neq \mathrm{N}\mathrm{P}$ . Thus, it is very important to study the circuit complexity of slice functions
of $\mathrm{N}\mathrm{P}$ -complete Boolean functions.

In order to give some insight into this line of research, we show several slices of graph-theoretic NP-
complete functions that have polynomial circuit complexity. For some monotone $\mathrm{N}\mathrm{P}$-complete Boolean
functions, such as CLIQUE, HAMILTONIAN CIRCUIT, it is known that their canonical slice functions
have polynomial circuit complexity [7]. In this paper, we show a number of slices of monotone and non-
monotone $\mathrm{N}\mathrm{P}$-complete Boolean functions, which have polynomial circuit complexity. In other words,
we show several tractable instances of graph-theoretic $\mathrm{N}\mathrm{P}$ -complete problems.

In order to show these results, we consider the recognition problems for some specific graphs. We first
show that any Tur\’an graph is recognizable within $O(n^{2})$ time, where $n$ is the number of vertices in $G$

and $k$ is the number of maximal independent sets in $G$ . Then, using this fact, we show that the t-th
slice of MAXIMUM CLIQUE SIZE (MAXCLIQUE for short) has polynomial circuit complexity, where

$t=-r-(k-r)$
is the number of edges included in the Tur\’an graph with $n$ vertices and $k$ classes such that $n=qk+r,0\leq$
$r\leq k-1$ .

We also show that the $(e-t)$-th slice functions of INDEPENDENT SET, and t-th slice functions of
CHROMATIC NUMBER have polynomial circuit complexity by using the above fact on the recognition
of Tur\’an graphs, where $e=n(n-1)/2$ . Furthermore, we present tractable slices of HAMILTONIAN
PATH and HAMILTONIAN CIRCUIT based on some observation on extremal problems for Hamiltonian
path.

A graph $P_{n}^{k}=(V,E)$ is a one such that $V=\{1,2, \ldots, n\}$ and $E=\{(u, v)|u\in V,$ $v\in\{u+1,u+$
$2,\ldots,u+k\}\cap V\}$ . It is easy to show that any $P_{n}^{k}$ is linear-time recognizable. Then, using this fact, we
show that the l-th slice of BANDWIDTH has polynomial circuit complexity, where

$l=nk-k(k+1)/2$

is the number of edges included in $P_{n}^{k}$ .
The remainder of this paper is organized as follows. Section 2 gives basic definitions and notations.

Then, we show tractable slices of MAXCLIQUE and other $\mathrm{N}\mathrm{P}$ -complete problems in Section 3. We also
give a tractable slice of HAMILTONIAN CIRCUIT in Section 4, and a tractable slice of BANDWIDTH
in Section 5.

2 Preliminaries

Let $X_{n}=\{x_{12,\ldots,n}, Xx\}$ , i.e. the set of $n$ Boolean variables. Let $f$ : $\{0,1\}^{n}arrow\{0,1\}$ be a Boolean
function. The circuit complexity of $f$ , denoted $C(f)$ , is the number of gates in the smallest circuit
computing $f$ , which consists of AND, OR, and NOT gates. On the other hand, the monotone circuit
complexity of $f$ , denoted $C^{m}(f)$ , is the number of gates in the smallest monotone circuit computing $f$ ,
which consists of AND and OR gates.

Let $f(X_{n})$ be a Boolean function with $n$ variables and $k$ be any integer such that $1\leq k\leq n$ . The
$k$-slice function of $f$ , denoted $k_{-\mathit{8}}l(f)$ , is the monotone Boolean function

k-sl$(f)(x_{n})=$ ( $f(X_{n})$ A $T_{n}^{k}(X_{n})$ ) $\tau_{n}^{k+1}(X_{n})$ ,

where $T_{n}^{k}(X_{n})$ is the k-th threshold function.
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Proposition 2.1 ([3]) Let $f$ be an arbitrary Boolean function with $n$ variables. Then, for an arbitrary
integer $k$ such that $1\leq k\leq n,$ $C(k-Sl(f))$ and $C^{m}(k-\mathit{8}l(f))$ are polynomially related.

Graph-theoretic problems are normally encoded using an adjacency matrix to represent an n-vertex
graph. Let $X_{n}^{U}=\{x_{1j}|1\leq i<j\leq n\}$ , where each $x_{1j}$ is a Boolean variable. Then, an assignment to
the variables in $X_{n}^{U}$ represents an undirected graph $G$ in the following way: $G$ contains an edge $\{i,j\}$

iff $x_{1j}$ in $X_{n}^{U}$ is 1. Let $e(n)=|X_{n}^{U}|=n(n-1)/2$ .
On the relationship between the circuit complexity and the time complexity on Turing machines, the

following proposition is known.

Proposition 2.2 ([8]) Let $f$ : $\{0,1\}^{n}arrow\{0,1\}$ be a Boolean function. If $f$ is computable within
$O(T(n))$ time on a deterministic Turing machine, then $C(f)=O(T(n)\log T(n))$ .
For details of the circuit complexity theory, see [7], and for elementary concepts from graph theory, see
[10].

3 The Recognition of Tur\’an Graphs and Its Applications

In this section, we first show an efficient algorithm for the recognition of Tur\’an Graph. Thus by using
this result, we show that tractable slices of MAXCLIQUE and other $\mathrm{N}\mathrm{P}$-complete functions.

3.1 The Recognition of Tur\’an Graphs

By $T_{k}(n)$ , we denote the Tur\’an graph, which is the complete $k$-partite graph with $n$ vertices such that
each class of it has exactly $\lfloor n/k\rfloor$ or $\lceil n/k\rceil$ vertices (see Figure 1). Let $t_{k}(n)$ be the number of edges

Figure 1: The Tur\’an Graph $T_{3}(8)$

included in $T_{k}(n)$ . Note that

$t_{k}(n)=-r-(k-r)$
where $n=qk+r,0\leq r\leq k-1$ . The Tur\’an’s theorem is as in follows:

Theorem 3.1 ([4]) Let $G$ be a simple graph with $n$ vertices and $t_{k}(n)$ edges. $G$ has no $(k+l)$-clique iff
$G$ is isomorphic to $T_{k}(n)$ .
Using this fact, we show that the recognition problem of Tur\’an graphs can be solved in $O(n^{2})$ time.

Theorem 3.2 Given any graph $G$ with $n$ vertices and $k$ be an integer such that $1\leq k\leq n$ . Then, $it$

is decidable whether $G$ is isomorphic to $T_{k}(n)$ within $O(n^{2})$ time.
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Proof. Let $G=(V, E)$ be an input graph. Note that $G$ is isomorphic to $T_{k}(n)\mathrm{i}\mathrm{f}\mathrm{f}\overline{c}$ consits of $k$ complete
graphs with sizes $\lceil n/k\rceil$ or $\lfloor n/k\rfloor$ . So, we check whether $\sigma$ consits of $k$ complete graphs with sizes $\lceil n/k\rceil$

or $\lfloor n/k\rfloor$ .
First, construct $\overline{G}$ in $O(n^{2})$ time. Then, $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{o}\mathrm{s}\mathrm{e}\overline{c}$ into the connected components of it. It is

known that we can find a list of vertices of each connected component of any input graph $H=(V’,E’)$
in $O( \max\{|V’|, |E’|\})[1]$ . In this case, the number of edges is $O(n^{2})$ . So, we can find a list of vertices
of each connected component $\mathrm{o}f\overline{G}$ in $O(n^{2})$ . For each component $\mathrm{o}\mathrm{f}\overline{G}$, check whether the cardinality
of it is $\lceil n/k\rceil$ or $\lfloor n/k\rfloor$ . If some components do not satisfy this condition, $G$ is not a Tur\’an graph. This
check can be solved in $O(kn)$ time. $\square$

Let $TU_{n}^{k}(X_{n}^{U})$ be an $e(n)$-variable Boolean function whose value is 1 iff $X_{n}^{U}$ represents a graph $G$ which
is isomorphic to $T_{k}(n)$ . By Proposition 2.2, we obtain the following corollary.

Corollary 3.3 $C(TU_{n}k)=O(n^{2}\log n)$ .

3.2 A Tractable Slices of MAXCLIQUE

The well known $\mathrm{N}\mathrm{P}$ -complete problem MAXIMUM CLIQ UE SIZE (MAXCLIQ UE for short) is as follows
[9]:

INSTANCE: A graph $G$ and a positive integer $k$ .
QUESTION: Does the largest complete subgraph in $G$ contain exactly $k$ vertices ?

It is known that the central slice (i.e. $e(n)/2$-slice) of the clique function is $\mathrm{N}\mathrm{P}$ -complete [7]. Let
$CL_{n}^{n/2}(x^{U})n$ be the $e(n)$-variable Boolean function whose value is 1 iff $X_{n}^{U}$ represents a graph contains
$n/2$-clique. And let $e=e(n)$ . The following property is known.

Proposition 3.4 ([7]) e/2-sl$(CL^{n/}n)2$ is NP-complete.

We can prove a similar theorem in the case of MAXCLIQUE. Let $MC_{n}^{n/U}2(X_{n})$ be the $e(n)$-variable
Boolean function whose value is 1 iff $X_{n}^{U}$ represents a graph such that the size of maximum clique of it
is exactly $n/2$ .

Theorem 3.5 e/2-sl $(Mc_{n}^{n})/2$ is NP-complete.

Here, we show a tractable slice of MAXCLIQUE using Corollary 3.3.

Theorem 3.6 t-sl $(Mc_{n}^{k})$ has polynomial circuit complexity.

Proof. Let $G$ be an arbitrary graph with $n$ vertices and $t$ edges. Then the size of maximum clique of
$G$ is $k$ iff $G$ is isomorphic to $T_{k}(n)$ . Thus, we can use a circuit $C_{1}$ for $TU_{n}^{k}$ to decide whether the size
of maximum clique of $G$ is $k$ by combining the outputs of $C_{1}$ and a circuit $C_{2}$ which checks that the
number of edges in $G$ is exactly $t$ using an AND gate (see Figure 2). Since the function computed by
the circuit $C_{2}$ is $T_{n}^{k}\wedge\overline{T_{n}^{k+1}}$, we can construct the combinational circuit $C_{2}$ using $o(n)$ gates and then
the theorem follows. $\square$

By Proposition 2.1, we obtain the following corollary.

Corollary 3.7 $MC_{n}^{t}$ has polynomial monotone circuit complexity.
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Figure 2: A circuit for t-sl $(Mc_{n}^{k})$

3.3 Tractable Slices of NP-Complete Functions

First, we show a tractable slice of CHROMA TIC NUMBER. Let $CN_{n}^{k}(X_{n}^{U})$ be the $e(n)$-variable Boolean
function whose value is 1 iff $X_{n}^{U}$ represents a graph whose chromatic number is exactly $k$ .

Theorem 3.8
(i) $C(t- sl(cN^{\lceil}n)n/k\rceil)=C(t- sl(\tau U_{n}t))$ .
(ii) $C^{m}(t- Sl(CN_{n}\lceil n/k\rceil))=C(t- Sl(\tau Ul)n)$ .

Proof. Let $G$ be an arbitrary graph with $n$ vertices and $t$ edges. Then the chromatic number of $G$ is
$\lceil n/l\rceil$ iff $G$ is isomorphic to $T_{k}(n)$ . $\square$

Corollary 3.9
(i) t-sl $(CN^{\lceil n}n)/k1$ has polynomial circuit complexity.
(\"u) t-8l$(CNn)\mathrm{r}n/k1$ has polynomial monotone circuit complexity.

Here we consider a tractable slice of MAXIMUM INDEPENDENT SET. Let $MIS_{n}^{k}(X_{n}^{U})$ be the $e(n)-$

variable Boolean function whose value is 1 iff $X_{n}^{U}$ represents a graph such that the size of maximum
independent set of it is exactly $k$ .

Theorem 3.10 Let $k$ be an integer such that $1\leq k\leq n$ . And let $e=e(n)$ and $t=t_{k}(n)$ . $C((e-$
$t)- Sl(MIS_{n}^{\lceil}n/k\rceil))=C(t- Sl(\tau Ul)n)+O(e(n))$ .

Pmof. Let $G$ be an arbitrary graph with $n$ vertices and $(e-t)$ edges. Then the size of maximum
independent set of $G$ is $\lceil n/k\rceil$ iff $\overline{G}$ is isomorphic to $T_{k}(n)$ . Thus, we can use the circuit for t-sl

$(TU^{k})n_{\square }$

by inverting all the inputs. In order to do this, we need $e(n)$ NOT gates.

Corollary 3.11
(i) $(e-t)- Sl(MIs_{n}^{\mathrm{r}}n/k\rceil)$ has polynomial circuit complexity.
(ii) $(e-t)-sl(MIs_{n}\mathrm{r}n/k1_{)}$ has polynomial monotone circuit complexity.
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Figure 3: The graph $P_{8}^{3}$ .

4 A Tractable Slice of HAMILTONIAN CIRCUIT
In this section, we present tractable slices of HAMILTONIAN PATH and HAMILTONIAN CIRCUIT
using the extremal problems for HAMILTONIAN PATH and HAMILTONIAN CIRCUIT. Let $HP_{n}^{k}(X_{n}^{U})$

( $HC_{n}^{k}(x_{n}^{U})$ resp.) be the $e(n)$-variable Boolean function whose value is 1 iff $X_{n}^{U}$ represents a graph which
has Hamiltoian path (Hamiltonian circuit resp.).

Let $I\mathrm{f}_{n}$ be the complete graph with size $k$ and $E^{1}$ be the empty graph with only one vertex. The
following proposition is known.

Proposition 4.1 ([4]) $(\mathrm{i})LetG$ be a simple graph with $n$ vertices and $p=e(n)-(n-3)$ . $G$ has no
Hamiltonian path iff $G$ is isomorphic to $I\zeta^{n-1}\cup E^{1}$ .
$(\mathrm{i}\mathrm{i})LetH$ be a simple graph with $n$ vertices and $c=e(n)-(n-2)$ . $H$ has no Hamiltonian cycle iff $G$

isomorphic to a graph which is obtained by adding an edge to $K^{n-1}\cup E^{1}$ .
Theorem 4.2 (i) p-sl$(HP)n$ has polynomial circuit complexity, where $p=e(n)-(n-3)$ .
(ii) c-sl$(HCn)$ has polynomial circuit complexity, where $c=e(n)-(n-2)$ .

Proof. Omitted.

5 A Ractable Slice of BANDWIDTH
The well known $\mathrm{N}\mathrm{P}$ -complete problem BANDWIDTH is as follows [9]:

INSTANCE: A graph $G=(V, E)$ and a positive integer $k\leq|V|$ .
QUESTION: Is there a $\mathrm{o}\mathrm{n}\mathrm{e}-\mathrm{t}_{0}$ function $f$ : $Varrow\{1,2, \ldots, |V|\}$ such that, for all $\{u, v\}\in$

$E,$ $|f(u)-f(v)|\leq k$ ?

A graph $P_{n}^{k}=(V,E)$ is a one such that $V=\{1,2, \ldots, n\}$ and $E=\{(u, v)|u\in V,$ $v\in\{u+1,u+$
$2,\ldots,$ $u+k\}\cap V\}$ . For example, the graph $P_{8}^{3}$ is shown in Figure 3. It is known that an arbitrary graph
$G$ with $n$ vertices has bandwidth $k$ iff $G$ is a subgraph of $P_{n}^{k}[6]$ .
Proposition 5.1 Let $k$ and $n$ be integers such that $1\leq k\leq n$ . Then, the graph $P_{n}^{k}$ is recognizable in
$O(n+e)$ time, where $n$ is the number of vertices and $e$ is the number of edges.

Proof. It is known that interval graphs can be recognized in $O(n+e)$ time [5] and the isomorphism
problem for interval graphs can be solved in $O(n+e)$ time [12]. For given positive integer $n$ and $k$ , we
$\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{c}.\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}P_{n}^{k}$

in $O(n+e)$ time. Clearly, $P_{n}^{k}$ is $\mathrm{a}$ interval graph, thus, $P_{n}^{k}$ is recognizable in
$O(n+e)\square$

Let $PR_{n}^{k}(X^{U})n$ be an $e(n)$-variable Boolean function whose value is 1 iff $X_{n}^{U}$ represents the graph $G$

which is isomorphic to $P_{n}^{k}$ . From Proposition 2.2, we obtain the following.
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Proposition 5.2 $C(PR_{n}k)=O((n+e)\log n)$ .
Let $l=nk-k(k+1)/2$ be the number of edges in $P_{n}^{k}$ , and $BW_{n}^{k}(X_{n}^{U})$ be an $e(n)$-variable Boolean
function whose value is 1 iff $X_{n}^{U}$ represents the graph $G$ has bandwidth $k$ . We obtain the following
theorem.

Theorem 5.3
(i) $C(l- \mathit{8}l(BW_{n}k))=C(l- sl(PR_{n}k))$ .
(ii) $C^{m}(l- Sl(BW_{n}k))=C^{m}(l_{-}sl(PR_{n}k))$ .
$Pf\mathfrak{v}of$. Let $G$ be an arbitrary graph with $n$ vertices and $l$ edges. Then $G$ has bandwidth $k$ iff $G$ is
isomorphic to $P_{n}^{k}$ . Thus, we can use a circuit for $PR_{n}^{k}$ to decide whether $G$ has bandwidth $k$ . $\square$

Corollary 5.4
(i) l-sl $(BW_{n}^{k})$ has polynomial circuit complexity.
(\"u) l-sl$(BW_{n}k)$ has polynomial monotone circuit complexity.
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