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Abstract
This paper introduces NVNF-sequentiality which is an extension of NV-sequentiality

defined by Oyamaguchi. It is shown that the class of NVNF-sequential systems prop-
erly includes the class of $\mathrm{N}\mathrm{V}$-sequential systems, and the indices with respect to NVNF-
sequentiality are computed for a given term when a term rewriting system is NVNF-
sequential. NVNF-sequentiality is decidable, and the index reduction is normalizing strat-
egy for NVNF-sequential orthogonal term rewriting systems.

1 Introduction

Term rewriting systems can be regarded as a model for computation in which terms are re-
duced using a set of directed equations, called rewrite rules. Term rewriting systems play an
important role in various fields of computer science such as abstract data type specifications,
implementations of functional programming languages and automated deduction.

In a non-terminating term rewriting system, there are possibilities that a term having nor-
mal forms has infinite reduction sequences starting with it. We require some strategies telling
us which redex should be contracted in order to get the desired result. Therefore, it is im-
portant to have a normalizing strategy which guarantees to find the normal form of terms
whenever their normal forms exist. Huet and L\’evy [3] showed that the needed reduction strat-
egy is normalizing for every orthogonal (i.e., left-linear and non-overlapping) term rewriting
system. The needed reduction strategy always rewrites one of needed redexes which have to be
rewritten in order to reach a normal form. Unfortunately, it is undecidable in general whether
a redex is needed or not. However, they showed that for strong sequential orthogonal term
rewriting systems, at least one of the needed redexes in a term not in normal form can be
efficiently computed. The work of Huet and L\’evy was extended to several kinds of systems.
Toyama [9] extended the notion of strong sequentiality to left-linear term rewriting systems.
Decidability of strong sequentiality was showed for left-linear systems by Jouannaud and Sadfi
[4]. Oyamaguchi [7] introduced $\mathrm{N}\mathrm{V}$-sequentiality which is also decidable.

In this paper, we introduce an extension of $\mathrm{N}\mathrm{V}$-sequentiality. This sequentiality is called
NVNF-sequentiality [6]. Like $\mathrm{N}\mathrm{V}$-sequentiality, NVNF-sequentiality is based on the analysis of
left-hand sides and the non-variable parts of the right-hand side of rewrite rules. However, the
reachability to the normal form is considered in NVNF-sequentiality. We first show that the
class of NVNF-sequential systems properly includes the class of $\mathrm{N}\mathrm{V}$-sequential systems. Next
we prove that, for a given term $t$ , it is decidable whether an occurrence $u$ in $t$ is an index with
respect to NVNF-sequentiality. NVNF-sequentiality is decidable, and the index reduction is
normalizing strategy for NVNF-sequential orthogonal term rewriting systems.
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2 Definition

We mainly follow the notation of $[3, 5]$ . Let $F$ be a finite set of function symbols and let $\mathcal{V}$ be
a countably infinite set of variables where $F\cap \mathcal{V}=\phi$. The set of all terms built from $\mathcal{F}$ and
$\mathcal{V}$ is denoted by $\mathcal{T}(\mathcal{F}, \mathcal{V})$ . The set $\mathcal{T}(\mathcal{F},\mathcal{V})$ is sometimes denoted by $\mathcal{T}$ . Terms not containing
variables are called ground terms. Identity of terms is denoted by $\equiv$ .

The set of occurrences in a term $t$ is denoted by $O(t)$ . $t/u$ is the subterm of $t$ at $u$ . $t[uarrow s]$

is the term obtained by replacing $t/u$ with $s$ in $t$ . If $s$ is a subterm of $t$ then we write $s\subseteq t$ .
Occurrences are partially ordered by the prefix ordering $\leq$ , i.e. $u\leq v$ if there exists $w$ such
that $u.w=v$ . In this case we define $v/u$ as $w$ . If $u\not\leq v$ and $v\not\leq u$ then we say that $u$ and $v$

are disjoint, and write $u\perp v$ . If $u_{1},$ $\ldots$ , $u_{n}$ are pairwise disjoint, we use $t[u_{i}arrow s_{i}|1\leq i\leq n]$

to denote $t[u_{1}arrow s_{1}]\cdots[u_{n}arrow s_{n}]$ .
A substitution $\theta$ is a mapping from $\mathcal{V}$ into $T(\mathcal{F}, \mathcal{V})$ . Substitutions are extended into homo-

morphisms from $\mathcal{T}(F, \mathcal{V})$ into $\mathcal{T}(F, \mathcal{V})$ . We write $t\theta$ instead of $\theta(t)$ .
A term rewriting system is a pair $(\mathcal{F},\mathcal{R})$ consisting of a set $\mathcal{F}$ of function symbols and a

finite set $\mathcal{R}$ of rewrite rules. A rewrite rule is a pair $\langle l,r\rangle$ of terms such that $l\not\in \mathcal{V}$ and any
variable in $r$ also occurs in $l$ . We write $larrow r$ for $\langle l,r\rangle$ . An instance of the left-hand side of a
rewrite rule is a redex. The rewrite rules of a term rewriting system $(\mathcal{F},\mathcal{R})$ define a reduction
relation\rightarrow n on $\mathcal{T}(F,\mathcal{V})$ as follows: $t-R^{S}$ if there exists a rewrite rule $larrow r\in \mathcal{R}$ , a occurrence
$u\in O(t)$ and a substitution $\theta$ such that $t/u\equiv l\theta$ and $s\equiv t[uarrow r\theta]$ . When we want to specify
the redex occurrence $u$ of $t$ in this reduction, we write $tarrow us$ . The transitive-reflexive closure
$\mathrm{o}\mathrm{f}arrow R$ is denoted $\mathrm{b}\mathrm{y}-_{\mathcal{R}}^{*}$ . $arrow R+$ is the transitive closure $\mathrm{o}\mathrm{f}arrow_{\mathcal{R}}\mathrm{a}\mathrm{n}\mathrm{d}arrow^{--}$ is$\overline{n}$ the reflexive closure
$\mathrm{o}\mathrm{f}-R$ . A normal form is a term without redexes. We say $t$ has a normal form if $t-_{R}^{*}s$ for
some normal form $s$ . $\mathrm{N}\mathrm{F}_{R}$ is the set of normal forms of a term rewriting system $\mathcal{R}$ . When
no confusion can arise, we omit the subscript $\prime \mathcal{R}$ . A term rewriting system 72 is left-linear
if for any $larrow r\in \mathcal{R}$ , every variable in $l$ occurs only once. 7? is non-overlapping if for any
$larrow r,$ $l’arrow r’\in \mathcal{R}$ and $u\in O(l)$ such that $l/u\not\in \mathcal{V}$ , there are no substitutions $\theta,$

$\theta^{/}$ such that
$(l/u)\theta\equiv l^{/}\theta’$ , except in the case where $larrow r,$ $l’arrow r^{/}$ are the same rewrite rule and $u=\epsilon$ . $\mathcal{R}$

is orthogonal if $\mathcal{R}$ is left-linear and non-overlapping. In this paper we restrict ourselves to the
class of left-linear term rewriting systems.

3 NVNF-sequentiality

In this section we will explain NVNF-sequentiality. In order to define this concept, we need
some preliminaries.

Let $\Omega$ be a new constant symbol representing an unknown part of a term. The set $\mathcal{T}(\mathcal{F}\cup$

$\{\Omega\},$ $\mathcal{V})$ is abbreviated to $\mathcal{T}_{\Omega}$ . Elements of $\mathcal{T}_{\Omega}$ are called $\Omega$-terms. An $\Omega$-normal form is an
$\Omega$-term without redexes, and the set of all $\Omega$-normal forms is denoted by $\mathrm{N}\mathrm{F}_{\Omega}$ . Only terms
containing neither redexs nor $\Omega’ \mathrm{s}$ are called normal forms. $t_{\Omega}$ denotes the $\Omega$-term obtained from
$t$ by replacing all variables in $t$ by $\Omega$ , and $t_{x}$ denotes the term obtained from $t$ by replacing all
$\Omega$ by $x$ . $O_{\Omega}(t)$ denotes the set of $\Omega$-occurrences of $t$ , i.e., $O_{\Omega}(t)=\{u\in O(t)|t/u\equiv\Omega\}$ . The
prefix ordering $\leq \mathrm{o}\mathrm{n}\mathcal{T}_{\Omega}$ is defined as follows:

(i) $\Omega\leq t$ for all $t\in \mathcal{T}_{\Omega}$ ,
(ii) $f(s_{1}, \ldots, s_{n})\leq f(t_{1}, \ldots,t_{n})$ if $si\leq t_{i}(1\leq i\leq n)$ .

Two $\Omega$-terms $t$ and $s$ are compatible, written $t\uparrow s$ , if there exists an $\Omega$-term $r$ such that
$t\leq r$ and $s\leq r$ . In this case the least upper bound of $t$ and $s$ is denoted by $t\mathrm{u}s$ .
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Definition 3.1 ([3]) Let $P$ be a predicate on $\mathcal{T}_{\Omega}$ . An $\Omega$ -occurrence $u$ of $t$ is an index with
respect to $P$ if for all $\Omega$ -term $s,$ $s\geq t$ and $P(s)$ imply $s/u\not\equiv\Omega$ .

The set of indices of $t$ with respect to $P$ is denoted by $I_{P}(t)$ .

Definition 3.2 ([7])

(1) The reduction $relati_{\mathit{0}}narrow_{nv}$ on $\mathcal{T}_{\Omega}$ is defined as follows: $tarrow_{nv}s$ iff there exists $larrow r\in$

$\mathcal{R},$ $u\in O(t)$ such that $t/u\geq l_{\Omega}$ and $s\equiv t[uarrow s’]$ for some $s’\geq r_{\Omega}$ .
(2) The predicate nvnf on $\mathcal{T}_{\Omega}$ is de.fi$ned$ as follows: nvnf $(t)$ holds iff $t-_{nv}^{*}s$ for some $s$

in normal form.

Definition 3.3 A lefl-linear term $rew7’ iting$ system is NVNF-sequential if every $\Omega$ -normal
form containing at least one occurrence of $\Omega$ has an index with respect to nvnf.

Oyamaguchi [7] introduced $\mathrm{N}\mathrm{V}$-sequentiality, by using the predicate term: term$(t)$ holds
iff $t-_{nv}^{*}s$ for some $s\in \mathcal{T}$ . Note that $s$ may be not in normal form.

Example 3.4 Let

$\mathcal{R}=\{$

$f(a, b, x)arrow a$

$f(b, x, a)arrow b$

$carrow Cf(X,a.’ b)arrow c$

Consider the $\Omega$-term $t\equiv f(\Omega, \Omega, \Omega)$ . $I_{nvnf}(t)=\{1\}$ because there does not exist an $\Omega-$

term $s$ such that $s\geq t,$ $s/1\equiv\Omega$ and $s-_{nv}^{*}s’$ for some normal form $s’$ . Note that $\mathcal{R}$ is not
$\mathrm{N}\mathrm{V}$-sequential since $f(\Omega, \Omega, \Omega)$ has no indices with respect to the predicate term.

We now show that $\mathcal{R}$ in Example 3.4 is NVNF-sequential system. For this purpose we need
the following lemma.

Lemma 3.5 Let $t\in \mathcal{T}_{\Omega}$ . If $u\in I_{nvnf}(t),$ $t\leq s$ and $s/u\equiv\Omega$ then $u\in I_{nvnf^{()}}s$ .

Proof. If $u\not\in I_{nvn\overline{f}^{()}}s$ then there exists $s’\geq s$ such that $s’/u\equiv\Omega$ and nvnf $(s’)$ is true.
Since $s’\geq t,$ $u\not\in I_{nvnf}(t)$ . $\square$

Lemma 3.6 72 of Example 3.4 is NVNF-sequential system.

Proof. We first prove the following claim: If $u\in I_{nvnf}(t)$ and $v\in I_{nvnf}(s)$ then $u.v\in$

$I_{nvnf}(t[uarrow s])$ .
Proof of the claim. Suppose $u.v\not\in I_{nvnf^{(}}t[uarrow s])$ . Then there exists $t’\geq t[uarrow s]$ such

that $t^{/}/u.v\equiv\Omega$ and nvnf $(t^{/})$ is true. Hence there exists a reduction

$t’ \equiv t0-_{n}u_{0}tv1\frac{u_{\mathrm{t}}}{}.nv$ . .... $u_{n-1}-_{nv}t_{n}\in \mathrm{N}\mathrm{F}$ .
We distinguish two case:

(1) $u_{i}\neq u$ for all $i(0\leq i\leq n-1)$ . Because there exists no $u_{i}$ such that $u_{i}<u$ , we have
$t’/uarrow_{nv}^{*}t_{n}/u\in \mathrm{N}\mathrm{F}$ . Hence nvnf$(t’/u)$ is true. Clearly $t^{/}/u\geq s$ and $(t^{/}/u)/v\equiv\Omega$. This
contradicts the assumption $v\in I_{nvnf}(S)$ .
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(2) $u_{i}<u$ for some $i$ . Let $j$ be the smallest number $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi^{\mathrm{i}}\mathrm{n}\mathrm{g}u_{j}<v$ . Note that $t’/uarrow_{nv}^{*}$

$t_{j}/u$ . $t_{j}/u_{j}$ is a redex but $t_{j}/u_{j}\not\equiv c$. Moreover $t_{j}\not\equiv a$ and $t_{j}\not\equiv b$ because $t^{/}/u\geq s$ ,
$t’/u.v\equiv\Omega$ and $v\in I_{nvnf}(S)$ . Thus $t_{j}[uarrow\Omega]-_{nv}u_{j}t_{j+1}$ . We can obtain the following
reduction: $t’[uarrow\Omega]arrow_{nv}^{*}tj[uarrow\Omega]arrow_{nv}tj+1arrow nvn*t$ . Hence $t’[uarrow\Omega]\geq t,$ $nvnf(t’[uarrow$

$\Omega])$ is true. But this is contradictory to $u\in I_{nvnf}(t)$ .
Therefore the claim follows.

Let $t$ be an $\Omega$-normal form containing at least one occurrence of $\Omega$ . We prove, by induction
on the size of $t$ , that $t$ has an index with respect to nvnf. When $t\equiv\Omega$ , it is clear that $t$ has
an index. Induction step:

(1) $t\equiv f(t_{1},t_{2,3}t)$ . If $t_{1}$ contains $\Omega$ then by induction hypothesis, $t_{1}$ has an index. By
$1\in I_{nvnf}(f(\Omega, \Omega, \Omega))$ and Lemma 3.5, $1\in I_{nvnf}(f(\Omega,t_{2},t_{3}))$ . Therefore, from the claim
it follows that $t$ has an index. Otherwise we distinguish three cases:

(1-1) $t_{1}\equiv a$ . If $t_{2}$ contains $\Omega$ then by induction hypothesis, $t_{2}$ has an index. By
$2\in I_{nvnf}(f(a, \Omega, \Omega))$ and Lemma 3.5, $2\in I_{nvnf}(f(a, \Omega,t3))$ . From the claim, $t$ has
an index. Otherwise $t_{3}$ contains $\Omega$ . By induction hypothesis, $t_{3}$ has an index. We
can obtain $3\in I_{nvn}f(f(a,t_{2}, \Omega))$ . Therefor by the claim, $t$ has an index.

(1-2) $t_{1}\equiv b$ . Similar to (1-1).

(1-3) Otherwise we have $I_{nvnv}(f(t_{1}, \Omega, \Omega))=\{2,3\}$ . By induction hypothesis, $t_{2}$ or
$t_{3}$ has an index. By Lemma 3.5 and the claim, $t$ has an index.

(2) $t\equiv g(t_{1}, \cdots,t_{n})(g\neq f)$ . Suppose $t_{i}$ contains $\Omega$ . Then by induction hypothesis, $t_{i}$

has an index. Because $i\in I_{nvnf^{(}}g(t_{1}, \cdots,t_{i-}1, \Omega,ti+1, \cdots , t_{n}))$ , $t$ has an index from the
claim. $\square$

By Example 3.4 and Lemma 3.6 we have the following theorem.

Theorem 3.7 The class of NVNF-sequential term rewriting $sy\mathit{8}temS$ properly includes the
class of $NV$-sequential systems.

Proof. $\mathrm{N}\mathrm{V}$-sequential system is NVNF-sequential because an index with respect to term
is also an index with respect to nvnf. $\mathcal{R}$ of Example 3.4 is NVNF-sequential but not NV-
sequential. Therefore the inclusion is proper. $\square$

$tarrow su$ is the index reduction if $u\in I_{nvnf^{(}}t[uarrow\Omega])$ . Let 72 be NVNF-sequential orthogonal
term rewriting system. Then we can apply the index reduction to a term which is not a normal
form. It is clear that if $u$ is a redex occurrence of $t$ and $u\in I_{nvnf^{(}}t[uarrow\Omega])$ then $t/u$ is a
needed redex. Huet and L\’evy [3] proved that repeated contraction of needed redexes leads to
the normal form, if it exists. Thus we have the following theorem.

Theorem 3.8 The index reduction is normalizing strategy for NVNF-sequential orthogonal
systems.

The decidability of NVNF-sequentiality was proven by Comon.

Theorem 3.9 ([1]) NVNF-sequentiality of left-linear term rewriting systems (which may
have overlapping rules) is decidable.
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4 Indices with respect to NVNF-sequentiality

In this section we show that for a given $t\in \mathcal{T}_{\Omega}$ , it is decidable whether $u\in O_{\Omega}(t)$ is an index
with respect to nvnf in $t$ . We introduce the $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\sim_{v}$

‘ which is given in [7].

Definition 4.1 ( $[7]\rangle$ The reduction $relation\sim_{\omega}$ is defined as follow8: $t\sim_{v}‘ s$ iff there exists
$larrow r\in \mathcal{R},$ $u\in O(t)$ such that $t/u\uparrow l_{\Omega},$ $t/u\not\equiv\Omega$ and $s\equiv t[uarrow r_{\Omega}]$ .

We explain a relationship between this $\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{t}\mathrm{i}_{0}\mathrm{n}-_{\omega}\mathrm{a}\mathrm{n}\mathrm{d}\sim_{nv}$ , and show the condition for
ensuring that $\Omega$-occurrence in a term is an index with respect to nvnf.
Lemma 4.2

(1) If $t-_{nv}^{*}S$ and $t^{/}\leq t$ then $t’-_{\omega}^{*}s^{/}f_{or}$ some $s^{/}\leq s$ .
(2) If $t-_{\omega}^{*}s$ then $t’-_{nv}^{*}s$ for some $t’\geq t$ .

Proof.
(1) We prove that if $tarrow_{nv}s$ and $t’\leq t$ then $t’arrow^{\equiv}s’\mathrm{f}_{\mathrm{o}\mathrm{r}}(v$ some $s’\leq s$ . If $t\sim_{nv}s$ then there

exist $larrow r\in \mathcal{R},$ $u\in O(t)$ such that $t/u\geq l_{\Omega}$ and $s\equiv t[uarrow s_{1}]$ for some $s_{1}\geq r_{\Omega}$ . If
$u\in O(t’),$ $t’/u\not\equiv\Omega$ then $t’/u\uparrow l_{\Omega}$ . Hence $t’arrow_{\omega}t’[uarrow r_{\Omega}]$ and $t’[uarrow r_{\Omega}]\leq s$ . Otherwise
it is clear that $t^{/}\leq s$ . Using this fact, we can prove (1) by induction on the length of
$tarrow^{*}nv^{S}$ .

(2) This is proved by induction on the length of $t-_{\omega}^{*}s$ . The case of zero is trivial. Assume
that $t-_{\omega}s_{1}-_{\omega}^{*}s$ where $t/u\uparrow l_{\Omega},$ $t/u\not\equiv\Omega$ and $s_{1}\equiv t[uarrow r_{\Omega}]$ for some $larrow r\in \mathcal{R}$

and $u\in O(t)$ . From induction hypothesis, for some $s_{2}\geq s_{1},$ $s_{2}\sim snv*$ . Let $t_{1}\equiv t/u\mathrm{u}l_{\Omega}$

and $t’\equiv s_{2}[uarrow t_{1}]$ . Because $s_{2}\geq s_{1}\equiv t[uarrow r_{\Omega}],$ $t’\equiv s_{2}[uarrow t_{1}]\geq t$ . We have
$t^{/}-_{nv^{S}2,\square }$

by $s_{2}/u\geq r_{\Omega}$ . Therefore $t’\sim_{nv}^{*}s$ .
Lemma 4.3 Let $t\in T_{\Omega}$ and $u\in O_{\Omega}(t)$ . Let $\bullet$ be a fresh constant symbol. Then $u\not\in I_{nvnf}(t)$

iff there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that $t[uarrow\bullet]-_{\omega}^{*}s$ and $\bullet\Subset s$ .
Proof. only-if part. If $u\not\in I_{nvnf(t)}$ then there exists $t’\geq t$ such that $t’/u\equiv\Omega$ and nvnf $(t’)$

is true. Thus $t^{/}\sim_{nv}^{*}s^{/}\mathrm{f}_{\mathrm{o}\mathrm{r}}$ some normal from $s^{/}$ . From $\Omega\not\subset s’$ and left-linearity, we can obtain
$t’[uarrow\bullet]-_{nv}^{*}s’$ and $\bullet\not\subset s’$ . Using Lemma 4.2 (1), we obtain $s\leq s’$ such that $t[uarrow\bullet]-_{\omega}^{*}s$ .
Because $s’$ is a normal form, $s$ is an $\Omega$-normal form and $\bullet\not\subset s$ .

if part. $\mathrm{N}t[uarrow.]-_{\omega}^{*}s\in \mathrm{N}\mathrm{F}_{\Omega}$ and $\cdot\not\subset s$ , then there exists $t^{/}\geq t[uarrow \bullet]$ such that
$t’-_{nv}^{*}s$ by Lemma 4.2 (2). Let $t”\equiv t_{x}’[uarrow\Omega],$ $s’\equiv s_{x}$ . We can transform the reduction
$t’\sim_{nv}^{*}s$ into $t^{\prime/}arrow^{*}Snv/$ . Because $s$ is an $\Omega$-normal from, $s’$ is a normal form and hence nvnf $(t”)$

is true. Clearly $t^{\prime/}\geq t$ and $t^{\prime/}/u\equiv\Omega$ . Therefore $u\not\in I_{nvnf}(t)$ . $\square$

We next show that for any $t\in \mathcal{T}_{\Omega}$ , there exists an upper bound of the least hight of $\Omega$-normal
form obtained from $t\mathrm{b}\mathrm{y}-_{\omega}$ when it exists.

For given a term rewriting system $\mathcal{R},$ $Rh_{R}$ is defined with $Rh_{R}=\{r_{\Omega}|larrow r\in \mathcal{R}\}$ , and
$Rhn_{R}$ is the smallest set such that $Rh_{R}\subseteq Rhn_{\mathcal{R}}$’ and if $t\in Rhn_{R},$ $u\in O(t)$ and $r\in Rh_{R}$

then $t[uarrow r]\in Rhn_{\mathcal{R}}$ . It is clear that if $r\in Rh_{\mathcal{R}}$ and $rarrow^{*}t\omega$ then $t\in Rhn_{R}$ . In the sequel
we often omit the subscript $\prime \mathcal{R}$ .
Lemma 4.4 If $tarrow^{+}\omega s$ then there exist $u_{1},$ $\ldots$ , $u_{n}\in O(t)$ which are pairwise disjoint, and
the following conditions hold.

(i) $s\equiv t[u_{i}arrow s/u_{i}|1\leq i\leq n]$ ,
(ii) $t/u_{i}arrow r_{i^{arrow}}s+*\omega\omega/u_{i}$ for some $r_{i}\in Rh_{R},$ $1\leq i\leq n$ .
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Proof. By $t-_{\omega}+s$ , there exists a reduction
$t \equiv t_{0}\underline{u_{\mathrm{Q}}},\omega t_{1}\frac{u_{1}}{}.\omega\ldots..arrow\tau\iota_{n-}1\omega tn\equiv s(n>0)$ .

Let $\{u_{i_{1}}, \ldots , u_{i_{k}}\}$ be the set of minimal redex occurrences of $\{u0, \cdots,un-1\}$ . Then $u_{i_{1}},$ $\ldots$ , $u_{i_{k}}\in$

$O(t)$ are pairwise disjoint. By minimality of $u_{i_{1}},$ $\ldots,$ $u_{i_{k}},$
$(\mathrm{i}),$ $(\mathrm{i}\mathrm{i})$ hold. $\square$

We use $|u|$ for the length of a word $u$ . The height $|t|$ of an $\Omega$-term $t$ is defined by
$|t|= \max\{|u||u\in O(t)\}$ . The maximum hight of the left-hand sides and right-hand sides of
a given $\mathcal{R}$ is denoted by $p_{R}$ . We write $\rho$ when confusion does not occur. $(t)_{p}$ is a prefix term
of $t$ whose hight is $\rho$ , i.e., $(t)_{\rho}\equiv t$ [ $uarrow\Omega|u\in O(t)$ A $|u|=\rho$ ].

Lemma 4.5 Let $r\in Rh_{R},$ $r-_{\omega}^{*}s$ where $|s|>\rho\cross n(n>0)$ . Then there exists $\epsilon<u_{0}<$

$...<u_{n-1}\in O(s)$ and for any $i(0\leq i\leq n-1)$ , the following condition holds: $r\sim_{\omega}^{*}s[u_{i}arrow r_{i}]$

and $r_{i}\sim_{\omega}^{*}s/u_{i}$ for some $r_{i}\in Rh_{\mathcal{R}},$ .

Proof. The proof is by induction on $n$ . By $rarrow^{*}s\omega$
’ there exists a reduction

$r\equiv t_{0}arrow_{\omega}t_{1}v_{0}arrowarrow-1t\equiv v_{1}\ldots..v_{m}\omega\omega ms$ .
Because $|s|>\rho\cross n(n>0)$ , we can obtain $j<m$ such that $t_{j}\in Rh_{R}$ and $v_{i}\neq\epsilon$ for all
$i(j\leq i\leq m-1)$ . When $n=1$ , using Lemma 4.4, we can easily show that there exists
$u\in O(s)$ such that $u\neq\epsilon$ and $t_{j}-_{\omega}^{*}s[uarrow r^{/}],$ $r’-_{\omega}^{*}s/u$ for some $r’\in Rh_{\mathcal{R}}$ . By $rarrow^{*}t_{j}$ ,
we have $r-_{\omega}^{*}s[uarrow r’]$ . Suppose $n>1$ . Using Lemma 4.4, we can obtain $u\neq\epsilon$ such
that $t_{j}-_{\omega}^{*}s[uarrow r’],$ $r’-_{\omega}^{*}s/u$ and $|s/u|>\rho\cross(n-1)$ for some $r’\in Rh_{R}$ . By induction
hypothesis, there exist $\xi<u_{1}^{/}<\cdots<u_{n-1}’\in O(s)$ , and for any $i(1\leq i\leq n-1)$ the following
conditions hold: $r’arrow_{\omega}^{*}(s/u)[u_{i}’arrow r_{i}]\equiv s[u.u_{i}’arrow r_{i}]/u$ and $r_{i}arrow_{\omega}^{*}(s/u)/u_{i}’\equiv s/u.u_{i}’$ for some
$r_{i}\in Rh_{R}$ . Let $u_{0}=u,$ $u_{i}=u.u_{i}’(1\leq i\leq n-1)$ . Clearly $\epsilon<u_{0}<\cdots<u_{n-1}\in O(s)$ and
$rarrow_{\omega}^{*}s[uarrow r’],$ $r’arrow_{\omega}^{*}s/u$ . For all $i(1\leq i\leq n-1)$ , we have $t_{j}arrow_{\omega}^{*}s[uarrow r’]arrow_{\omega}^{*}s[uarrow$

$s[u.u_{i}’arrow r_{i}]/u]\equiv s[u_{i}arrow r_{i}]$ and $r_{i}arrow^{*}\omega s/u_{i}$ . By $rarrow^{*}t_{j}\omega$
’ we have $r-_{\omega}^{*}s[u_{i}arrow r_{i}]$ . Therefore

the lemma holds. $\square$

Lemma 4.6 Let $t,$ $s\in \mathrm{N}\mathrm{F}_{\Omega}$ . If $(t/u)_{p}\equiv(s)_{\rho}$ then $t[uarrow s]\in \mathrm{N}\mathrm{F}_{\Omega}$ .

For given a term rewriting system $\mathcal{R}$ , let $\tau,$ $\sigma$ , and $k_{R}$ be constants defined as follows:
$\tau=||\{(t)_{\rho}|t\in Rhn_{R}\}||$ , $\sigma=||\mathcal{R}||$ and $k_{R}=\rho_{R}\cross(\tau\cross\sigma+1)$ , where $||A||$ is the cardinality
of a set $A$ .

Lemma 4.7 Let $t\in \mathcal{T}_{\Omega}$ and $u\in O_{\Omega}(t)$ . Let $\bullet$ be a fresh constant symbol. Then $u\not\in I_{nvnf}(t)$

iff there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that $|s|\leq|t|+k_{R},$ $t[uarrow\bullet]-_{\omega}^{*}s$ and $\bullet\not\subset s$ .

Proof. if part. By Lemma 4.3.
only-if part. If $u\not\in I_{nvnf}(t)$ then by Lemma 4.3 there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that $t[uarrow\bullet]arrow_{\omega}^{*}$

$s$ and $\bullet\Subset s$ . Let $s$ be an $\Omega$-normal form with the least size satisfying this condition. Suppose
$|s|>|t|+k_{R}$ . By Lemma 4.5 and the definition of $k_{R}$ , we can show that there exists $r\in Rh$ ,
$u_{1},$ $u_{2}\in O(s)(u_{1}<u_{2})$ such that $(s/u_{1})_{\rho}\equiv(s/u_{2})_{\rho},$ $t[uarrow\cdot]arrow_{\omega}^{*}s[uiarrow r]$ and $rarrow_{\omega}^{*}s/u_{i}$ for
$i=1,2$ . Let $s’\equiv s[u_{1}arrow s/u_{2}]$ . By Lemma 4.6, $s’\in \mathrm{N}\mathrm{F}_{\Omega}$ and $t[uarrow\bullet]-_{\omega}^{*/}s$ , $\bullet\not\subset s’$ . Because
the size of $s’$ is smaller than the size of $s$ , we obtain a contradiction. $\square$

By Lemma 4.7, in order to determine whether an $\Omega$-occurrence is an index w.r.t. nvnf, we
need to check the reachability to a finite number of $\Omega$-normal form. For a term rewriting system
$\mathcal{R}$ , we define $\mathcal{R}^{\Omega}$ as follows [7]: $\mathcal{R}^{\Omega}=\{larrow r_{\Omega}|larrow r\in \mathcal{R}\}\cup\{\Omegaarrow t|t\subseteq l_{\Omega}, larrow r\in \mathcal{R}\}$ .
We can prove that in the condition of Lemma $4.7,$ $arrow^{*}\omega \mathrm{c}\mathrm{a}\mathrm{n}$ be replaced $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-_{R^{\Omega}}^{*}$ .
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Lemma 4.8 ([7])

(1) If $t-_{\omega}^{*}s$ then $tarrow^{*}R^{\Omega}s$ .
(2) If $t-_{R^{\Omega}}^{*}s$ and $t’\leq t$ then $t^{/}arrow^{*/}\omega^{Sf}or$ some $s’\leq s$ .

Lemma 4.9 Let $t\in \mathcal{T}_{\Omega}$ and $u\in O_{\Omega}(t)$ . Then $u\not\in I_{nvnf}(t)$ iff there exists $s\in \mathrm{N}\mathrm{F}_{\Omega}$ such that
$|s|\leq|t|+k_{\mathcal{R}},,$ $t[uarrow\cdot]-_{R^{\Omega^{S}}}^{*}$ and $\cdot\not\subset s$ .

Proof. By Lemma 4.7 and Lemma 4.8. $\square$

We assume that $\mathcal{R}$ is left-linear, so $\mathcal{R}^{\Omega}$ is left-linear and right-ground (i.e. $r$ is ground term
for any $larrow r\in \mathcal{R}^{\Omega}$ ). It is show that the reachability problem is decidable for left-linear and
right-ground systems $[2, 8]$ . Thus we obtain the following theorem.

Theorem 4.10 It is decidable, for $t\in \mathcal{T}_{\Omega},$ $u\in O_{\Omega}(t)$ , whether $u$ is an index with respect to
nvnf in $t$ .
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