oooooooogon
950 0 1996 O 160-166

Modular Confluence of
Conditional Term Rewriting Systems
with Extra Variables in Right-Hand Sides

Satoshi Hattori*, Kozo Okano, Teruo Higashino and Kenichi Taniguchi
(AREB &, M %=, R #EX, &0 &)
Department of Information and Computer Sciences,
Faculty of Engineering Science, Osaka University,
Toyonaka, Osaka 560, Japan
*Corresponding author’s e-mail address: hattori@ics.es.osaka-u.ac.jp

Abstract

Middeldorp has proved that confluence is a modular property for conditional term
rewriting systems with extra variables in the conditions of the rewrite rules. In this
paper, we try to show that confluence is also modular for conditional term rewriting
systems with extra variables in the right-hand sides of the rewrite rules.

1 Introduction

Term rewriting systems (TRSs, for short) have been studied as a theoretical foundation
of algebraic specifications and functional programs. Conditional term rewriting systems
(CTRSs) have been proposed as an extension of TRSs. CTRSs have great importance for
integrating functional and logic programming paradigms. Extensive surveys for TRSs and
CTRSs can be found in [DJ90] and [K192].

For CTRSs, there are important properties, such as termination and confluence. Since
they are known to be undecidable properties, some sufficient conditions have been proposed.
However, if a complicated CTRS is given, then it may be difficult to show the validity of
a property by the known sufficient conditions.

So, it is desirable that the validity of a property of a CTRS can be shown by dividing the
CTRS into smaller systems. In this paper, we consider the case that the divided systems
have no function symbols in common. In this case, the union of CTRSs is called the disjoint
union of them. We say a property P of CTRSs is modular when every two CTRSs R, and
R, satisfy the following condition: Both R; and R, satisfy the property P if and only if
their disjoint union R; & R, satisfies P.

Concerning with the confluence property, at first, Toyama has proved the following

theorem To87, KMTV94]

o Confluence is modular for TRSs.
Next, Middeldorp has extended the above result for a class of CTRSs Mi®3l;

o Confluence is modular for CTRSs with extra variables in the conditions of the rewrite
rules (2-CTRSs).

160

161

In this paper, we try to extend the above Middeldorp’s theorem. We try to show the
modularity of confluence for CTRSs with extra variables in the right-hand sides of the
rewrite rules (3-CTRSs). The class of 3-CTRSs includes the class of 2-CTRSs.

In concluding remarks of [Mi93], Middeldorp has remarked that it is worthwhile to con-
sider whether the results of [Mi93] can be extended to the following subclass of 3-CTRSs.

e Suppose R belongs to the class. The class is characterized by the phrase “if s =gt
then s — t is a legal unconditional rewrite rule. ”

s — t is said to be a legal unconditional rewrite rule, if every variable which appears in ¢
also appears in s. Let us call such 3-CTRSs as legal 3-CTRSs. Here, we show a 3-CTRS
which is not legal. Suppose a CTRS contains two rules A — B(z) <« C(z) = D and
C(z) — D. Then the first rule can be considered as the rule A — B(z).

3-CTRSs which are not legal yield some problems. The following is one of them: in the
proof for 2-CTRSs, given two CTRSs are transformed into two TRSs and the Toyama'’s
theorem for modular confluence of TRSs is applied to the two TRSs. However, in the case
of 3-CTRSs which are not legal, CTRSs are transformed to rewrite systems containing rules
such as A — B(z). We call such systems ’term arbitrary rewriting systems (TARSs)’, and
try to prove that confluence is modular for TARSs.

The proof is based on the following idea. Assume a TARS contains the rule A — B(z)
and this TARS is confluent. Then, the rewrite B(z) = z is impossible. If this is possible,
then we have both A — B(z) = z and A — B(y) = y, and this fact contradicts to the
confluence of the TARS.

In this paper, notions and notations for TRSs and CTRSs are based on [Mi93]. For the
space limitation, we cannot show them here, except modulaity (Section 2). We try to prove
the modularity of confluence for TARSs in Section 3. However, after the talk at RIMS, it
has been revealed that the proof contains several mistakes. See Section 4.

2 Modularity

Suppose that two CTRSs (Fi, Ry) and (Fy, Ry) are given. If F; N F; = () then we say
R, and R; are disjoint. In this case, the union (F} U F3, Ry U Ry) is called the disjoint
unton of RB; and Ry;. And we denote the union as R, @ R;. A property P for CTRSs is
modular if the following statement is hold for every two disjoint CTRSs R, and R;. “Both

R, and R, satisfy P if and only if R; @ R, satisfies P”. For TRSs, the following theorem
is known[To87 KMTVo4]

Theorem 2.1 Confluence is modular for TRSs. O
For CTRSs, the following two theorems hold!™i®3],

Theorem 2.2 Confluence is modular for join 2-CTRSs. O
Theorem 2.3 Confluence is modular for semi-equational 2-CTRSs. O

In the rest of this subsection, we explain some notions and some usual manners for proofs
of the modularity. Consider two disjoint CTRSs (F, R;) and (F3, R;). Here, we assume

that the elements of F} are denoted by capital letters and the elements of F; are denoted
by small letters. Furthermore, we give the colors to the function symbols. For the elements
of Fy, we give “black”, and for those of Fy, we give “white”. A black(white) term is a
term consists of elements of Fj(F;) and variables. We sometimes remark only the black
case since such notions are defined similarly for the white case. A top black term is a term
whose root symbol is black.

We use the following notations: Ty = T(F,,V), T, = T(F3, V), Fg = F{ U F; and Ty =
(Fg,V). We often use the symbol —, instead of — g, gr,.

For a disjoint union of TRSs, the following proposition is obvious.

Proposition 2.1 —pg,gr,=—r, U —R, on Tg. O

Suppose t = C[t1,---,t,] and C[,---,] # O. In the following definition, suppose that
the pair of indices (a, b) has the value (1,2) or (2,1). If C[,---,] € T(F, U {O},V) and the
root symbols of ¢;,---,t, are in F,, then we denote ¢t = C[t;,---,¢,]. In this case we say
ty,- -, t, are the principal subterms of t. We define the rank of a term ¢ € Ty, as follows.

roy={ 1 Afte LU,
PO = 1 4+ maz{rank(t)|(1 <i<n)} Lift=Clty,- -,).

The special subterms of t € Tg are the elements of the multiset defined as follows.

Si(t) =1[t],
Siaa(t) = [] JAf rank(t) =1,
Ak Si(t)U---US;i(ts) ,if t=Cltr,*,ta],
S(E) =UixS;i().
In the preceding, we have defined the notation C[,---,]. Now we define some other no-
tations for contexts. C(,---,) is a context containing at least zero hole. C{,---,} is a
context containing at least zero hole, which is not a hole itself. If t = C{t1,---,t.} €

Tg and t,---,t, are the principal subterms of ¢, then we denote t = C{{t1,---, ¢, }}.
t C(t1, - -,ts) € Tg and if one of the following conditions holds, then we denote
t

= C{(ts, -+~ tu))-
e C{,---,) is not a hole and #1,- - -,t, are the principal subterms of ¢.
e C(,---,)isaholeand t € {t1,---,t.}.
For 2-CTRSs R, and R,, the following proposition holdsMi®],
Proposition 2.2 If s =g gg, t, then rank(s) > rank(t). : 0

An inner reduction s —' t is a reduction which rewrites a subterm of a principal subterm
of t. An outer reduction s —° t is a reduction which is not a inner one.

We inductively define a destructive reduction as follows. s — t is destructive at level 1
if the root symbols of s and ¢ have the different colors. s — ¢ is destructive at level n + 1
if s = Cls1,-++,85,--,8a] = C[s1,--+,t;,+++,8,] =t and s; — t; is destructive at level
n. t is root preserved if the root symbols of ¢ and s have the same color for all s such that
t 5 5. tis preserved if t is root preserved and all principal subterms of ¢ are preserved. ¢
is inner preserved if all principal subterms of ¢ are preserved. We say a conditional rewrite
rule | — r < C is a collapsing rule if r € V. We write s —. ¢ , if the followings hold:

162

163

o s =([s'] and t = C[t'] by a context C[],

*
o s’ St

e root symbols of s’ and ¢’ have the different colors.

This relation —. is called collapsing reduction. In the above case, we call s’ a collapsing
redez.

3 Confluence is modular for TARSs

We use two join 3-CTRSs whose names are R; and R,.
Here, we define legality of a 3-CTRS.

Definition 3.1 Suppose a 3-CTRS R is given. R is legal if Var(s) 2 Var(t) for every
rewrite s —p t. O

R’ in the next example is confluent and not legal.
Example 3.1
R={ A-D@) «B@)lC,

B(z) — C,
D(z) - E }

O

We regard that R’ essentially contains a rewrite rule A — D(z). The term A can rewrite
to every instance of D(z). In spite of this fact, the rule D(z) — E ensures the confluence

of R'.

Now, we define (unconditional) rewrite systems containing rules such as A — D(z).

Definition 3.2 | — r(l,r € T) is called an arbitrary rewrite rule (A-rule) if | ¢ V and
Var(l) 2 Var(r). A set of rewrite rules and A-rules is called a term arbitrary rewriting
system (TARS). We call an element of Var(r)—Var(l) as an arbitrary variable (A-variable)
of the A-rule Il — r. ‘ m

We define the relation —; and —, which are restricted relations of —g, and —p,,
respectively.

Definition 3.3 We write s —; ¢ if one of the following conditions holds.

e s = (C[lo],t = C[ro] by an unconditional rewrite rule | — r € Ry, a substitution o,
and a context C|[].

¢ s = C[lo],t = C[ro] and s;o [] t;o for each i(1 < i < n) by a conditional rewrite
rule] = r <5, | £y, +,8, | t, € Ry, a substitution ¢, and a context C|].

—5 is defined similarly. O

The following TARS R7* serves the rewrite relation equivalent to —; .

Definition 3.4 The following TARS R} defined by the CTRS R, is called the monochrome
TARS of R;.
R = {s — t|s,t € T1,s — t}

O

If R, is a 2-CTRS, then R}* is a TRS. Also, if R; is a legal 3-CTRS, then R* is a TRS
. This is because —; C—p,. However, if Ry is a 3-CTRS which is not legal, then R is
not a TRS. In the proof of the theorem for 2-CTRSs (Theorem 2.2), the confluence of the
union R @ RY is proved by using the Toyama’s theorem for modular confluence of TRSs
(Theorem 2.1). In the case of 3-CTRSs, we cannot show the confluence of R* & R3* unless
we extend the Toyama’s theorem to the theorem for TARSs.

In [KMTV94], induction on the rank of a term is used to prove the Toyama’s theorem.
For TRSs, this way is available since the rank of a term does not increase (Proposition 2.2).
However, in the case of TARSs, the rank of a term can increase. To conquer this problem,
we modify the notion of rank.

The new rank for a term is given in the reduction sequence which the term belongs to.
An intuitive explanation of the new rank is as follows: in the rewrite step by an A-rule,
every subterm at the A-variable position of the rewritten term has rank 0, and such a
subterm (and its all subterms) remains to have rank 0 in the reduction sequence.

To explain the formal definition of new rank, we define some notions here. The confluence
of a TARS (T, R) is shown by the confluence of every term ¢ in 7. We call the term ¢,
which should be shown its confluence, as the primary term. We give it the ordinary rank
which has already defined. Contrary, we give the new rank to a term which appears in
the diagram of the confluence proof of t. We call the diagram as the proof diagram of a
primary term ¢ and call the terms in the proof diagram, except ¢, as the secondary terms.
By these words, we define the notion of embedded subterms.

Definition 3.5 Suppose a primary term s is given. We define the embedded subterms of
a secondary term t € T, s.t. s — u — ¢, as follows. We call a subterm of ¢ as a embedded
subterm of t, if one of the following conditions holds. ‘

e A subterm at the position of an A-variable of r, if u — ? is done by an A-rule [— r.

e A subterm of a embedded subterm of u.

O

Here, we give the new definitions of principal subterms and rank.
Definition 8.6 Consider a top black term t = C[ty, - -, t,], where ¢;’s are the maximal top
white subterms of t. Suppose t;,,--,t;. ({¢1,"*,%m} € {1,:-+,n}) are not the embedded
subterms of ¢ and the others are the embedded ones. In this case we say t;,,---,t;, are the
principal subterms of ¢ and write t = C'[t;,,--+,t;,]. Note that the context C’'[] contains
the top white and embedded subterms of s. O

Definition 3.7 The rank of a secondary term ¢ € Ty is defined as follows. We give the
rank 0 to every embedded subterm of ¢. The total rank of the term ¢ is given by the same
way as a primary term. O

164

165

By these new definitions, we can prove that rank of a term cannot increase. Furthermore,
the modifications are harmless to the other propositions which are used in the proof for
TRSs. This fact is due to Proposition 3.2 which we show afterward. For the proof of
Proposition 3.2, we explore a property of confluent TARSs by observing the following
examples. For the confluence of a TARS, it must contain no A-rule which is also a collapsing
one. See R".

R'={A—z,--}

In R”, the term A can rewrite to two different variables z and y. So R” is not confluent
while it contains any other rules. The situation is similar in the case such as the following

R
R"={A— B(z),B(z) - z, -}

Definition 3.8 Suppose a term s = C[s'], where C[] # O. If s = &', then we say a
subterm s’ of s is ezposed. o

By the above examples, we obtain the following proposition.

Proposition 3.1 If a TARS R is confluent, R satisfies the followings.

1. Every A-rule is not a collapsing one.

2. If a term has embedded subterms, then they are not exposed.
O

Note that 1. of this proposition ensures the termination of collapsing reduction for
TARSs. By 2. of this proposition, we can prove the following Proposition 3.2.

Proposition 3.2 Suppose a top black term ¢t = C[ty,- - -,t,] is given. Then the top black
context C[,---,] is confluent with respect to — g, gr,. 0

(Proof) The top black context C[,---,] may contain top white subterms, but they are
the embedded subterms of ¢. Using 2. of Proposition 3.1, every embedded subterm s of ¢
cannot be exposed. So, we may regard s as a variable, even if s is top white. Thus, the
confluence of C[,---,] is proved by the confluence of R;. 0

This is an extension of a proposition for TRSs, which is stated as “monochrome outer
reduction is confluent”. Using this, we have the following theorem.

Theorem 3.1 Confluence is modular for TARSs. O

This is proved by the following modification of the proof for TRSs. We write the propo-
sitions, the lemma and the theorem in [KMTV94] by the italic letters.

o use 1. of Proposition 3.1 to show the termination of collapsing reduction (Proposition

2.5),
e replace Proposition 3.1 to our Proposition 3.2,

e use our Proposition 3.2 in the base steps of induction of Lemma 3.4 and Theorem

Note that our Proposition 3.2 is also used in the inductive step of Lemma 3.4, by the
replacement.

4 Conclusion

In this paper, we have tried to prove the modularity of confluence for TARSs, in order to
prove that for 3-CTRSs.

However, after the talk at RIMS, it has been revealed that the proof of this paper contains
several mistakes (by reviewers of the conference RTA96).

The following is one of them: R = {4 — B(y),B(y) — C,B(C) — C} is a confluent
TARS. However, in the reduction B(C) — C, the embedded subterm C of B(C') is exposed.
This is contradict to 2. of Proposition 3.1.
 Reviewers have also remarked that the definitions of some notions are imprecise.

Now, we are considering the modification of the proof.

References

[DJ90]

K192]

[KMTV94]

[Mi93]

[To87]

Dershowitz, N. and Jouannaud, J.-P.: “Rewrite Systems”, Handbook of The-
oretical Computer Science B: Formal Methods and Semantics (van Leuwene,

J., ed.), North-Holland, pp.243-320 (1990).

Klop, JW.: “Term Rewriting Systems”, Handbook of Logic in Computer
Science, Vol.Il (Abramsky, S., Gabbay, D. and Maibaum, T., eds.), Oxford
University Press, pp.1-116 (1992).

Klop, J.W., Middeldorp, A., Toyama, Y. and de Vrijer, R.: “Modularity
of Confluence: A Simplified Proof”, Information Processing Letters, Vol.49,
pp-101-109 (1994).

Middeldorp, A.: “Modular Properties of Conditional Term Rewriting Systems
* Information and Computation, Vol.104, No.1, pp.110-158 (1993).

Toyama, Y.: “On the Church-Rosser Property for the Direct Sum of Term
Rewriting Systems”, Journal of Association for Computing Machinery, Vol.34,
No.1, pp.128-143 (1987).

166

