
Learnability of Subsequence Languages

松本哲志* 篠原歩\square 志

Satoshi MATSUMOTO Ayumi SHINOHARA

{matumoto, $\mathrm{a}\mathrm{y}\mathrm{u}\mathrm{m}\mathrm{i}$} $@\mathrm{r}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{s}.\mathrm{k}\mathrm{y}\mathrm{u}\mathrm{S}\mathrm{h}\mathrm{u}-\mathrm{u}.\mathrm{a}\mathrm{c}.\mathrm{j}_{\mathrm{P}}$

Research Institute of Fundamental Information Science,

Kyushu University 33, Fukuoka 812, JAPAN.

Abstract

For a string w , we define the subsequence language $L(w)$ by the set of all strings which contains w as
a subsequence. We denote the class of subsequence languages by S . Let S^{k} denote the class of unions of

at most k subsequence languages, and $S^{*}= \bigcup_{k\geq 0}s^{k}$. It it known that S is not polynomial-time PAC
learnable unless $\mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}$. One approach to overcome this computational hardness is to relax the problem

by allowing a learning algorithm to make membership queries and equivalence queries. We show that

the class S is exactly learnable using membership queries only. The class S^{*} is exactly learnable using
equivalence and membership queries. As negative results, we show that the class S^{k} is not polynomial-time

PAC learnable unless $\mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}$ and learning S^{*} is as hard as learning DNF.

1 Introduction

For a string w , we define the subsequence language $L(w)$ by the set of all strings which contains w as a
subsequence. We denote by S the class of all subsequence languages. For $k\geq 1$, let S^{k} denote the class of
unions of at most k subsequence languages, and $S^{*}= \bigcup_{k\geq 0}S^{k}$.

It is known that the consistency subsequence problem for S is an $\mathrm{N}\mathrm{P}$ -complete $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{m}[10]$. Therefore, the
class S is not polynomial-time learnable in the framework of PAC learning model [14] under the assumption
of $\mathrm{N}\mathrm{P}\neq \mathrm{R}\mathrm{P}[11]$.

One approach to overcome this computational hardness is to relax the problem by allowing a learning algo-
rithm to make membership queries and equivalence queries [2, 3, 5, 6]. By using membership and equivalence
queries, the learning algorithm can actively collect information on a target concept.

In Section 3, we develop learning algorithms for S and S^{*} using queries. At first, we show that the class S

is learnable by membership queries only. Our algorithm runs in $O(|s|^{2})$ time using $O(|S|)$ membership queries,
where s is the target string to be identified. Next, we show a learning algorithm for S^{*} using both membership
and equivalence queries. Its running time is $O(mn^{2}+m^{2}n)$, using $n+1$ equivalence queries and at most mn

membership queries, where n is the size of the target set to be identified and m is the length of the longest
counterexample seen so far.

In section 4, we show that learning S^{*} is as hard as learning general Boolean formulae in disjunctive normal
form (DNF), by showing a prediction preserving reduction [13] from DNF to S^{*} . The class of DNF is widely
believed not to be polynomial-time learnable [1, 4, 7] in PAC learning model. In this sense, the class S^{*} is
unlikely to be polynomial-time learnable in PAC learning model. We also prove that the consistency problem
for S^{k} is $\mathrm{N}\mathrm{P}$-complete for any fixed $k\geq 1$. Thus the class S^{k} is also not polynomial-time learnable in PAC
learning model under the assumption of $\mathrm{N}\mathrm{P}\neq \mathrm{R}\mathrm{P}$.

*This author is a Research Fellow of the Japan Society for the Promotion of Science (JSPS). The author’s research is partly

supported by Grants-in-Aid for JSPS research fellows from the Ministry of Education, Science and Culture, Japan.

数理解析研究所講究録
950巻 1996年 250-256 250

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ^{*} the set of all strings. The empty string is denoted by ϵ . For a
string $u\in\Sigma^{*}$, the length of u is denoted by $|u|$. Let $u[i]$ denote the i-th symbol of u , and $u[i]\sim$ the string which
is obtained by eliminating $u[i]$ from u . We say that a string w is a subsequence of u if w can be obtained from
u by deleting zero or more symbols from it. We write $w\leq u$ if w is a subsequence of u . We also say that u is
a supersequence of w , and write $u\geq w$. In particular, We write $w<u$ if $w\leq u$ and $w\neq u$. The subsequence
language of w , denoted by $L(w)$, is the set of all supersequences of w , that is, $L(w)=\{u\in\Sigma^{*}|u\geq w\}$.
We say that w is the base for $L(w)$. For a set H of strings , we define $L(H)= \bigcup_{w\in H}L(w)$, and $L(H)$ is
called the subsequence language defined by H . The size of H , denoted by $|H|$, is the number of strings in H .
We define $S=\{S\subseteq\Sigma^{*}||S|=1\}$. For $k\geq 1,$ $S^{k}=\{S\subseteq\Sigma^{*}||S|\leq k\}$ and $S^{*}= \bigcup_{k\geq 1}S^{k}$. Note that
$S^{1}=S\cup\{\phi\}$. When it is clear from the context, the notation S^{k} is abused to stand for the class of languages
$\{L(H)|H\in S^{k}\}$, and so are S^{*} and S .

In what follows, let $H_{*}\in S^{*}$ to be identified, and we say that the set H_{*} is a target. We assume that H_{*}

contains no redundant string, that is, $L(H_{*}-\{s\})\neq L(H_{*})$ for any $s\in H_{*}$. A string w is called a positive
example of $L(H_{*})$ if $w\in L(H_{*})$, and a negative example otherwise.

First we introduce exact learning model via queries due to Angluin [3]. In this model, learning algorithms
can access to oracles that will answer specific kinds of queries about the unknown set $L(H_{*})$. We consider the
following two oracles.

1. Membership oracle $Me\mathrm{m}_{H_{*}}:$ The input is a string w . The output is “yes” if $w\in L(H_{*})$ and “no” if
$w\not\in L(H_{*})$. The query is called a membership query.

2. Equivalence oracle $Eq\mathrm{u}i\mathrm{v}_{H_{*}}:$ The input is a finite set H of strings. If $L(H)=L(H_{*})$, the output is “yes”.
Otherwise, it returns a counterexample $w\in L(H)\cup L(H_{*})-L(H)\cap L(H_{*})$. The query is called an
equivalence query.

A learning algorithm A may collect information about H_{*} using membership and equivalence queries. The
goal of the learning algorithm A is exact identification in polynomial time, that is, A must halt and output a
set $H\in S^{*}$ such that $L(H)=L(H_{*})$, furthermore the running time of A is a polynomial in the size of H_{*} and
the length of counterexample returned by the equivalence oracle so far.

3 Learning algorithms using queries

In learning a subsequence language defined by H_{*} , a positive example $w\in L(H_{*})$ gives crucial information
to a learner A . Since the positive example w is a supersequence of some base $s\in H_{*}$, the learner A can identify
s by simply deleting redundant symbols from w with asking to the membership oracle for $L(H_{*})$.

The next Lemma 1 supports the correctness of the following idea to find a base in H_{*} from a positive example
$w\in L(H_{*})$.

while ($w[i]\sim\in L(H_{*})$ for some i) do
$/*\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}w[i]$ is redundant, delete it $*/$

$w:=w[^{\sim}i]$;

return w

Lemma 1. Let $H\in S^{*}$ and $w\in L(H)$. If $w[\overline{i}]\not\in L(H)$ for all i , then $w\in H$.

Proof Since $w\in L(H)$, there exists $s\in H$ such that $w\in L(s)$. Suppose $w\neq s$, that is, $s<w$. Then,
there exists i with $s\leq w[i]\sim$, which implies $w[i]\sim\in L(s)\subseteq L(H)$. This contradicts with the assumption that
$w[i]\sim\not\in L(H)$ for all i . Therefore, $w=s\in H.$ \square

Moreover, Lemma 2 guarantees that for each symbol $w[i\mathrm{i}$ in the given positive example w , it is enough to
check whether $w[i]$ is redundant or not only once.

251

Procedure: Shrin$k(w)$

Input: $w\in L(H_{*})$. $/*\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ example of $L(H_{*})*/$

Given: $Me\mathrm{m}_{H,}$.
Output: $v\in H_{*}$.
begin

$v:=w$;

for $i=|w|$ downto 1 do

if $Me\mathrm{m}_{H_{*}}(v[^{\sim}i])=$ “yes” then
$v:=v[^{\sim}i]$;

return v ;

end

Figure 1: procedure Shrink

Lemma 2. Let $H\in S^{*}$ and $x,$ $y\in\Sigma^{*}$. If $xy\not\in L(H)$, then $x’y’\not\in L(H)$ for any $x’\leq x$ and $y’\leq y$.

Proof Suppose that there exists strings $x’\leq x$ and $y’\leq y$ such that $x’y’\in L(H)$. Since $x’y’\leq xy$, we have
$xy\in L(H)$, which is a contradiction. \square

By these arguments, we can construct the procedure Shrink in Figure 1 which finds a base in H_{*} from a
positive example.

Theorem 1. If the algorithm Shrink gets a positive example $w\in L(H_{*})$ as an input, Shrink runs in $O(|w|^{2})$

time and outputs a base $v\in H_{*}$ using $|w|$ membership queries.

Proof The running time and the number of queries are obvious. According to the correctness of the algorithm,
by Lemma 2, we can show that $v[\tilde{j}]\not\in L(H_{*})$ for all j , which ensures that $v\in H_{*}$ by Lemma 1. \square

By Theorem 1, whenever a learning algorithm A succeeds to get a positive example $w\in L(H_{*}),$ A can
identify a base $s\in H_{*}$ by the procedure Shrin$k(w)$. Especially, if $H_{*}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{S}}\mathrm{t}_{\mathrm{S}}$ of only one string s , one positive
example is enough to identify H_{*} . In fact, as we will show, A can generate a positive example by using the
membership queries. The idea is based on the following simple observation.

Observation 1. For an alphabet $\Sigma=\{a_{1}, a_{2}, \cdots , a_{d}\}$, let $p\Sigma r$ be the string $(a_{1}a_{2}\cdots a_{d})r$, the r-times repeti-
tion of the string $a_{1}a_{2}\cdots a_{d}$. Then any string of length r is a subsequence of $p\Sigma^{r}$.

We show our learning algorithm $LEARN_{1}$ in Figure 2 which works when the target H_{*} is known to be a
singleton $\{s\}$.

Theorem 2. The learning algorithm $LEARN_{1}$ exactly identifies every set $\{s\}\in S$ in $O(l^{2})$ time using at most
$dl+l+1$ membership queries only, where $l=|s|$ and $d=|\Sigma|$.

Proof Since $s\leq p\Sigma^{i}$ for some $i\leq l,$ $LEARN_{1}$ can get a positive example $p\Sigma^{i}$ of $L(\{s\})$ using at most $l+1$

membership queries. Since $|p\Sigma^{i}|=di\leq dl$, the procedure Shrink$(p_{\Sigma})i$ asks at most dl membership queries.
The running time is obviously $O(l^{2})$. \square

Next, we show our learning algorithm $LEARN_{*}$ for general case $|H_{*}|\geq 0$ which uses both equivalence and
membership queries.

252

Procedure: $LEARN_{1}$

Given: $Me\mathrm{m}_{H_{*}}$.

Output: the base $v=s$.
begin

$i:=0$;

while $Me\mathrm{m}_{H_{*}}(p_{\Sigma^{i}})\neq$ “
yes

” do

$i:=i+1$;
$v:=Shri\mathrm{n}k(p\Sigma)i$;

output v ;

end

Figure 2: A learning algorithm using queries for the case $H_{*}=\{s\}$

Theorem 3. The algorithm $LEARN_{*}\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{l}\mathrm{y}$ identifies every set $H_{*}\in S^{*}$ in $O(mn^{2}+m^{2}n)$ time using $n+1$

equivalence queries and at most mn membership queries, where $n=|H_{*}|$ and m is the length of the longest
counterexample seen so far.

Proof By induction, we can show that the set H in the algorithm $LEARN_{*}$ is always a subset of H_{*} . Since
the counterexample p is in $L(H_{*})-L(H)$, the string Shrink(p) is in $H_{*}-H$ by Theorem 1. Thus, the while
loop is repeated n times and $LEARN_{*}\mathrm{o}\mathrm{u}\mathrm{t}_{\mathrm{P}^{\mathrm{u}}}\mathrm{t}\mathrm{S}H_{*}$. \square

4 Hardness Results on the PAC-Learnability

In the previous section, we have shown that the class S can be identified by membership queries only, and the
class S^{*} by membership and equivalence queries. In this section, we show that these classes are hard to learn
without membership queries. In the PAC-learning model [14].’ we will prove that the class S^{k} is not polynomial-
time learnable for any fixed $k\geq 1$ unless $\mathrm{N}\mathrm{P}=\mathrm{R}\mathrm{P}$. We also show that learning S^{*} is as hard as learning the
class of general DNF formulae, which has been believed not to be polynomial-time learnable [1, 4, 7].

Theorem 4. If the class S^{*} is polynomial-time learnable, so is the class of general DNF.

Proof We will show that the prediction preserve reduction [13] from the class of DNF to S^{*} .
Each DNF formula ψ corresponds to the set H_{ψ} of strings as follows: Without loss of generality, we can

assume that no term in ψ contains both positive literal x_{i} and negative literal $\neg x_{i}$ simultaneously. For each
term T in ψ , the set H_{ψ} contains the string $\pi_{T}=a_{1}\# a_{2}\neq\cdots\neq a_{n}$, where

$a_{i}=\{$

1 if x_{i} appears in T ,
0 if $\urcorner x_{i}$ appears in T ,
ϵ otherwise.

We define a mapping g which transforms a truth assignment $w=b_{1}b_{2}\cdots b_{n}\in\{0,1\}^{n}$ for ψ to the string
$g(w)\in\{0,1, \neq\}^{21}n-$ such that w satisfies ψ iff $g(w)$ is in $L(H_{\psi})$ as follows:

$g(b_{1}b_{2}\cdots b_{n})=b_{1}\# b_{2}\#\cdots\neq bn-1\# b_{n}$, $b_{i}\in\{0,1\}$.

Obviously, g can be computed in polynomial time.

253

Procedure: $LEARN_{*}$

Given: $Me\mathrm{m}_{H_{*}}$ and $Eq\mathrm{u}i\mathrm{v}_{H*}$.
Output: the target set $H=H_{*}$.
begin

$H:=\emptyset$;

while $Eq\mathrm{u}i\mathrm{V}_{H_{*}}(H)\neq$ “yes” do

begin

let p be the counterexample which $Eq\mathrm{u}i\mathrm{v}_{H*}(H)$ returns;

$s:=Shri\mathrm{n}k(p)$;

$H:=H\cup\{s\}$;

end

output H ;

end

Figure 3: A learning algorithm using queries for general case $|H_{*}|\geq 0$

First we show that if a truth assignment $w\in\{0,1\}^{n}$ satisfies ψ then $g(w)=b_{1}\# b_{2}\#\cdots\# b_{n}\in L(H_{\psi})$.
Since w satisfies ψ , there exists a term T in ψ which is satisfied by w . For the corresponding string $\pi_{T}=$

$a_{1}\# a_{2}\#\cdots\# a_{n}$, we prove that $a_{i}=\epsilon$ or a_{i}. $=b_{i}$ for each i , which implies that $g(w)$ is a supersequence of π_{T} .
We have only to consider the case $a_{i}\neq\epsilon$. If $a_{i}=1$, the positive literal x_{i} appears in T . Then $b_{i}=1$ since w

satisfies T . If $a_{i}=0$, the negative literal $\neg x_{i}$ appears in T . Then $b_{i}=0$ since w satisfies T . Thus $g(w)$ is a
supersequence of π_{T} . Therefore $g(w)\in L(\pi\tau)\subseteq L(H_{\psi})$.

We
$.$

show the converse. Assume that $g(w)=b_{1}\# b_{2}\#\cdots\# b_{n}\in L(H_{\psi})$. There exists a string $\pi_{T}=$

$a_{1}\# a_{2}\neq\cdots\neq a_{n}$ in H_{ψ} which is a subsequence of $g(w)$. Because of the delimiter symbol $\#$, if $a_{i}\neq\epsilon$ then
$a_{i}=b_{i}$. For a positive literal x_{i} in $T,$ $b_{i}=1$ since $a_{i}=1$. If the neg..ative literal $\neg x_{i}$ is in $T,$ $b_{i}=0$ since $a_{i}=0$.
Thus w satisfies T . Therefore ψ is satisfied by w . \square

Let Y and N be mutually disjoint nonempty finite sets of stings. A set H of strings is consistent with $\langle Y, N\rangle$

if $\mathrm{Y}\subseteq L(H)$ and $N\cap L(H)=\phi$. The consistency problem for S^{k} is a problem to decide whether there exists
a set $H\in S^{k}$ consistent with (Y, N) .

Theorem 5. The consistency problem for S^{k} is $\mathrm{N}\mathrm{P}$-complete for any $k\geq 1$.

Proof The case of $k=1$ is shown in [8, 9, 10]. Here we prove the $\mathrm{N}\mathrm{P}$ -completeness for $k\geq 2$. Obviously the
problem is in $\mathrm{N}\mathrm{P}$. We show the reduction from the consistency problem for k-term DNF, which is defined as
follows: Given a pair (Y, N) of sets of assignments, decide whether or not there exists a k-term DNF which
is satisfied by all assignments in Y but is not satisfied by any assignment in N . The problem is known to be
$\mathrm{N}\mathrm{P}$-complete [12]. The basic idea of the reduction is similar to the proof of Theorem 4. Let Y and N be
mutually disjoint sets of assignments over variables $\{x_{1,2n}X, \cdots, x\}$ in an arbitrary instance of the consistency
problem for k-term DNF. Using Y and N , we define $Y’$ and $N’$ as follows:

$\mathrm{Y}’$ $=$ $\{g(w)|w\in \mathrm{Y}\}$,
$N’$ $=$ $\{g(w)|w\in N\}\cup\{(0101\#)n-20101\}$,

where the mapping g is defined in Theorem4.

254

We can show that the existence of k-term DNF formula ψ consistent with (Y, N) implies the existence of a
set H of at most k strings consistent with \langle $Y’,$ $N’)$ in the same way to the proof of Theorem 4.

Now we show the converse. Let H be a set of at most k strings consistent with $(Y’, N’)$. Without loss of
generality, H contains no redundant strings, that is, for any $s\in H,$ $Y’\not\subset L(H-\{s\})$. Let s be a string in
H . The string s is a subsequence of some positive example $g(w)=b_{1}\# b_{2}\neq\cdots\neq b_{n}\in Y’$ since H contains no
redundant strings. If the number of $\#’ \mathrm{s}$ in s is less than $n-1$, the negative string $(0101\#)^{n-}20101$ becomes
a supersequence of s , which is a contradiction. Thus the string s must be of the form $a_{1}\# a_{2}\#\cdots\# a_{n}$, where
$a_{i}\in\{\mathrm{o}, 1, \epsilon\}$.

Now we define the k-term DNF formula ψ_{H} corresponding to the set H . For each string $s\in H$, the formula
ψ_{H} contains the term $T_{s}=l_{1}\cdots l_{n}$, where

$l_{i}=\{$

x_{i} if $a_{i}=1$,

$\neg x_{i}$ if $a_{i}=0$,

1 $a_{i}=\epsilon$.

We can show that w satisfies ψ_{H} if and only if $g(w)\in L(H)$ for any $w\in\{0,1\}^{n}$ in the same way in the proof
of Theorem 4. \square

We get the following corollary by the results due to Pitt and Valiant [12].

Corollary 1. The class S^{k} is not polynomial-time learnable for any $k\geq 1$ unless $\mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}$.

5 Conclusion

We have discussed the learnability of S^{*} in two learning models. The class S^{k} is not polynomial-time
learnable for any fixed $k\geq 1$ unless $\mathrm{R}\mathrm{P}=\mathrm{N}\mathrm{P}$ in PAC learning model. The class S^{*} is believed not to be
polynomial-time learnable since learning S^{*} is as hard as learning the class of DNF. We have also shown that
the class S^{*} is exactly learnable using membership and equivalence queries. In particular, the class S is exactly
learnable using membership queries only. We summarize these results in Figure 4.

As future works, we will study the learnabilities of intersection of subsequence languages. It may be interesting
question whether the class S^{*} can be identified by membership queries only.

Figure 4: Summary of the results in Section 3 and 4. In the table, l is the length of the string to be identified,
m is the length of the counterexample seen so far, n is the size of the target and $d=|\Sigma|$.

6 Acknowledgments

The authors wish to acknowledge Professor Takeshi Shinohara, Hiroki Ishizaka and Hiroki Arimura for their
helpful suggestions and encouragement.

References

[1] H. Aizenstein and L. Pitt. On the learnability of disjunctive normal from formulas. Machine Leaming,
19:183-208, 1995.

255

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation,

75:87-106, 1987.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319-342, 1988.

[4] D. Angluin and M. Kharitonov. When won’t membership queries help. Journal of Computer and System

Sciences, 50:336-355, 1995.

[5] H. Arimura, H. Ishizaka and T. Shinohara. Learning unions of tree patterns using queries. In Proceedings

of 6th Workshop on Algorithmic Leaming Theory, pages 66-79, 1995.

[6] H. Ishizaka, H. Arimura and T. Shinohara. Finding tree patterns consistent with positive and negative

examples using queries. In Proceedings of 5th Workshop on Algorithmic Learning Theory, pages 317-332,

1994.

[7] M. J. Kearns and L. G. Valiant. Cryptographic limitations on learning boolean formulae and finite

automata. Journal of the ACM, 41:67-95, 1994.

[8] M. Middendorf. The shortest common nonsubsequence problem is $\mathrm{N}\mathrm{P}$-complete. Theoretical Computer

Science, 108:365-369, 1993.

[9] M. Middendorf. On finding minimal, maximal and consistent sequences over a binary alphabet. Theoretical
Computer Science, 145:317-327, 1995.

[10] S. Miyano, A. Shinohara and T. Shinohara. Which classes of elementary formal systems are polynomial-

time learnable? In Proceedings of the Workshop on Algorithmic Learning Theory, pages 139-150, 1991.

[11] B. K. Natarajan. Machine Learning a theoretical approach. Morgan Kaufmann, 1991.

[12] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Joumal of the ACM,

35:965-984, 1988.

[13] L. Pitt and M. K. Warmuth. Prediction-preserving reducibility. Journal of Computer and System Sciences,

41:430-467, 1990.

[14] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.

256

