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1 Introduction

We wish to consider the regularity of maps $u:M\supset\Omegaarrow N$ between Riemannian manifolds
which are energy minimizing amongst maps satisfying a partially free boundary condition
$u(\Sigma_{1})\subset\Gamma$ and a fixed (Dirichlet) boundary condition $u|_{\Sigma_{2}}=\gamma$ . Here $M$ is a Riemannian
manifold (without boundary) of dimension $m\geq 3,$ $\Omega$ is a connected open subset of $M$

with boundary $\partial\Omega$ , and $\Sigma_{1}$ and $\Sigma_{2}$ are disjoint, non-empty, relatively open subsets of $\partial\Omega$

-termed the free boundary and the fixed $boundary-\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}\partial\Omega\cap\Sigma_{1}$ and $\partial\Omega\cap\Sigma_{2}$ of class
$C^{2}$ , and such that each point $x_{0}\in\overline{\Sigma}_{1}\cap\overline{\Sigma}_{2}$ admits an open neighbourhood $Y$ such that

$\overline{\Sigma}_{1}\cap Y$ and $\overline{\Sigma}_{2}\cap \mathrm{Y}$ are $C^{2}$ manifolds with the common boundary $\overline{\Sigma}_{1^{\cap}}\overline{\Sigma}2^{\cap Y}$. Further, $N$

is a compact Riemannian manifold of dimension $n$ which is isometrically embedded in
$1\mathrm{R}^{n+k}$ for some $k\geq 0$ , and $\Gamma$ is a closed submanifold (possibly with boundary) of $1\mathrm{R}^{n+k}$

of dimension $d,$ $0\leq d\leq n$ , with $\Gamma\subset N$ . The submanifold $\Gamma$ is termed the supporting
manifold of the free boundary.

In this setting we can define the energy

$E(u)= \frac{1}{2}\int_{\Omega}|\nabla u|^{2}$ dvol ,

where $|\nabla u|^{2}:=\Sigma_{i=1}^{n+k}|\nabla u^{i}|^{2}$ , for any map $u$ in the class $H^{1,2}(\Omega, N)$ , where $H^{1,2}(\Omega, N)$ $:=$

$H^{1,2}(\Omega, \mathrm{R}n+k)\cap$ {$u:u(X)\in N$ for almost all $x$ }. In this context the boundary condition
$u(\Sigma_{1})\subset\Gamma$ is to be understood in the trace sense. We consider boundary values $\gamma\in$

$C^{0,1}(\overline{\Sigma}_{2}, N)$ which $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}.\mathrm{y}$ the compatibility condition $\gamma(\overline{\Sigma}_{1}\cap\overline{\Sigma}2)\subset\Gamma$.
A map $u\in H^{1,2}(\Omega, N)$ is locally energy minimizing with respect to the free boundary

condition $u(\Sigma_{1})\subset\Gamma$ and the fixed boundary condition $u|_{\Sigma_{2}}=\gamma$ if there exists an open
covering $C\mathrm{o}\mathrm{f}\overline{\Omega}$ such that $E(u)\leq E(v)$ for every $v\in H^{1,2}(\Omega, N)$ which satisfies $v(\Sigma_{1})\subset\Gamma$

and $v|_{\Sigma_{2}}=\gamma$ , and which coincides with $u$ outside $X$ , for some $X\in C$ .
In general such energy minimizing maps need not be continuous; for example by ele-

mentary degree theory any map $u\in H^{1,2}(B^{m}, S^{m-1}),$ $m\geq 2$ satisfying the fixed boundary
condition $u|_{\partial B^{m}}=\gamma$ , with $\gamma$ smooth and of non-zero degree, cannot be continuous: in
particular the energy minimizer among all such maps is discontinuous. (Note that the
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class of $H^{1,2}$ maps satisfying the above boundary condition is always non-empty: con-
sider $u(x)= \gamma(\frac{x}{|x|}).)$ In order to discuss the regularity of such energy minimizing maps,
therefore, we consider the notion of partial regularity. We define $x\in\overline{\Omega}$ to be a regular
point of $u$ , i.e. $x\in \mathrm{R}\mathrm{e}\mathrm{g}(u)$ , if $u$ is continuous in some (relative) neighbourhood of $x$ . The
singular set of $u,$ $\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(u)$ , is then defined to be the complement of $\mathrm{R}\mathrm{e}\mathrm{g}(u)$ (in $\overline{\Omega}$). The
aim of partial regularity theory for harmonic maps is to obtain optimal estimates on the
Hausdorff dimension $(\mathcal{H}-\dim)$ of this singular set.

The first result bounding the size of the singular set of an energy minimizing map $u$

was an interior partial regularity result: Schoen and Uhlenbeck [SU1] showed
$\mathcal{H}-\dim(\Omega\cap \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(u))\leq m-3$ , and Sing $(u)$ is discrete in $\Omega$ if $m=3$ .

Well-known examples of singular energy minimizing maps demonstrate the optimality of
this result.

Schoen and Uhlenbeck [SU2] also proved complete regularity at the fixed boundary
for sufficiently regular Dirichlet boundary data. In terms of the current problem setting,
this says:

$\Sigma_{2}\cap \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(u)=\emptyset$ .
Regularity at the free boundary for the case $\partial\Gamma=\emptyset$ was considered independently by

Duzaar and Steffen [DS1, 2] and Hardt and Lin [HL2]. The authors demonstrated that,
for $u$ locally energy minimizing with respect to the free boundary condition $u(\Sigma_{1})\subset\Gamma$ ,

$\mathcal{H}-\dim(\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(u)\cap\Sigma_{1})\leq m-3$ , and Sing $(u)\cap\Sigma_{1}$ is discrete (in $\Sigma_{1}$ ) if $m=3$ .
Again, examples (see [DS1], [HL2]) show that this estimate is optimal. We also

mention earlier works on regularity of harmonic maps at a free boundary, all of which
assume that the image of $u$ is bounded away from the focal set of $\Gamma$ in $N$ ; the reader
should consult the work of Gulliver and Jost $[\mathrm{G}\mathrm{u}\mathrm{J}]$ (note that these authors only require
that $u$ be stationary for the energy functional), and earlier treatments of special cases by
Wood [ $\mathrm{E}\mathrm{L}$ , section 3.19], Hamilton [H] and Baldes [B].

In the remainder of this paper, we describe two extensions of these results due to
Frank Duzaar and the author ([DG1, 2]), and give an example of a particular singular
harmonic map whose existence is confirmed by the results of [DG2].

2 Supporting manifold with boundary

We firstly wish to consider the extension of the results of the previous section to the
case where $\partial\Gamma$ is non-empty. Our smoothness assumptions on the target manifold, $N$ ,
and the supporting manifold for the free boundary values, $\Gamma$ , are that $N$ is a compact
$C^{2}$-submanifold of $1\mathrm{R}^{n+k}$ , and that $\Gamma\subset N$ is a closed $C^{2}$-submanifold with boundary of
$\mathrm{I}\mathrm{R}^{n+k}$ . We assume that the domain $\Omega\subset M$ is a connected open subset of a Riemannian
manifold without boundary of dimension $m\geq 3$ , and that $\Sigma_{1}$ is a non-empty, relatively
open subset of $\partial\Omega$ . One can then show (see [DG1, Theorem]):
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2.1 Theorem. If $u\in H^{1,2}(\Omega, N)$ is locally energy minimizing on $\Omega\cup\Sigma_{1}$ with respect
to the free boundary condition $u(\Sigma_{1})\subset\Gamma$ , and $\partial\Gamma\neq\emptyset$ , then

$\mathcal{H}-\dim(\Sigma_{1}\cap \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(u))\leq m-3$ ,

and
$\Sigma_{1}\cap \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(u)$ is discrete in $\Omega\cup\Sigma_{1}$ if $m=3$ .

Note that regularity at the free boundary is well understood for classical minimal
surfaces (i.e. the case $m=2$); see the works of Hildebrandt and Nitsche [HN1, 2], and
also the monograph of Dierkes, Hildebrandt, K\"uster and Wohlrab [DHKW, Section 7.7].

We wish to comment briefly on the proof of Theorem 2.1. One cannot simply gen-
eralize the methods of [DS1, 2] and [HL2] to the current situation: the fact that $\partial\Gamma$ is
non-empty makes it impossible to apply their reflection arguments. This is $\mathrm{b}\mathrm{e}\mathrm{c}_{i}\mathrm{a}\mathrm{u}\mathrm{S}\mathrm{e}$ the
natural $\mathrm{b}\mathrm{o}\mathrm{u}.\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}$ c

$\backslash$

ond.i.tiO,$\mathrm{n}$

$\partial_{\nu}u(X)\perp \mathrm{T}\mathrm{a}\mathrm{n}\mathrm{r}v(x)$

(where here $\nu$ is the exterior unit normal $\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\backslash$ field) is in $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}$ . not satisfied, $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\sim$ in
a weak sense, in the current situation.

The proof in [DG1] follows the scheme of the proof of partial regularity (in the interior
case) of Luckhaus, [L]. In our situation the main difficulty arises in the construction of
suitable comparison mappings satisfying the free boundary condition. Having done this,
we can obtain a compactness theorem for energy minimizing maps, which in turn can be
applied to obtain a small energy-regularity (so-called $\epsilon$-regularity) theorem. This theorem
states, roughly, that if

$\lim_{\rho\searrow}\inf_{0}\rho^{2m}-\int B_{\rho(0}x)|\nabla u|^{2}dx=^{0}$

then $u$ is H\"older continuous near $x_{0}\in\Sigma_{1}$ ; here $B_{\rho}(X_{0})$ is a metric ball in $\Omega\cup\Sigma_{1}$ . The
previous results, in particular the $\epsilon$-regularity theorem, are then used to deduce an initial
estimate on the size of the singular set; this is improved to the optimal estimate by the
process of dimension-reduction. In these discussions we follow the reasoning applied in
the interior situation by Simon [S]: as well as leading to the optimal dimension estimate,
this approach yields more information on the make-up of the singular set (see $|\mathrm{D}\mathrm{G}1$ ,
Theorem 4.8]). .

3 A mixed boundary value problem

In [DG2] we consider regularity at the interface of the fixed and free boundary. In
addition to the assumptions of section 2, we assume that $\Sigma_{2}$ is a non-empty, relatively
open subset of $\partial\Omega$ disjoint from $\Sigma_{1}$ , and that $\Sigma_{1}\cap\partial\Omega$ and $\Sigma_{2}\cap\partial\Omega$ are hypersurfaces of
class $C^{2}$ . Our domain is further assumed to be an edged domain, i.e. we assume that
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given $x_{0}\in\overline{\Sigma}_{1}\cap\overline{\Sigma}_{2}$ , there exists an open neighbourhood $Y$ of $x_{0}$ in $M$ such that $\overline{\Sigma}_{1}\cap Y$

and $\overline{\Sigma}_{2^{\cap}}\mathrm{Y}$ are hypersurfaces of class $C^{2}$ with the common boundary $\overline{\Sigma}_{1^{\cap}}\overline{\Sigma}2^{\cap Y}$ , and that
$\overline{\Sigma}_{1}\cap Y$ and $\overline{\Sigma}_{2}\cap Y$ intersect perpendicularly along this $(m-2)$-dimensional edge. Finally,
we assume that $\gamma\in C^{0,1}(\overline{\Sigma}_{2}, N)$ , with $\gamma(\overline{\Sigma}_{1}\cap\overline{\Sigma}_{2})\subset$ F. We can now state the main result
of [DG2] ( $[\mathrm{D}\mathrm{G}2$ , Theorem 1.1]):

3.1 Theorem. Let $M,$ $\Omega,$ $\Sigma_{1},$ $\Sigma_{2},$ $N$ and $\gamma$ fulfill the above assumptions, and let
$u\in H^{1,2}(\Omega, N)$ be locally energy minimizing with respect to the free boundary condition
$u(\Sigma_{1})\subset\Gamma$ and the fixed boundary condition $u|_{\Sigma_{2}}=\gamma$ . Then

$\overline{\Sigma}_{1}\cap\overline{\Sigma}_{2}\subset \mathrm{R}\mathrm{e}\mathrm{g}(u)$ .

As in section 2, the case of regularity at corners for classical minimal surfaces (i.e.
the case $m=2$) is well understood; see Gr\"uter [ $\mathrm{G}$ , Section 3], Gr\"uter, Hildebrandt and
Nitsche [GHN], and Hildebrandt and Nitsche [HN3].

There are several examples of situations in which a harmonic map is required to
have a singularity at the free boundary; see $[\mathrm{G}\mathrm{u}\mathrm{J}],$ $[\mathrm{D}\mathrm{S}1]$ and [HL2]. In some of these
examples where the target manifold $N$ was a non-euclidean space, it was further shown
that singularities in fact had to occur in the (relative) interior of the free boundary.
However it was not known whether this phenomenon could occur for harmonic maps into
Euclidean space. Theorem 3.1 allows us to conclude that this is indeed the case in one
of the settings proposed by Duzaar and Steffen: denoting

$B:=\{x\in \mathrm{R}^{m} : |x|<1\}$ ; $B^{+}:=\{x\in B : x_{m}>0\}$ ;
$S:=\partial B$ ; and $S^{+}:=\{x\in S:x_{m}>0\}$ ,

we have

3.2 Example. ([DS1, Example 2]) Consider $\Omega=B^{+},$ $\Sigma_{1}=\{x\in B:x_{m}=0\},$ $\Sigma 2=s+$ ,
$\gamma=id,$ $N=\mathrm{R}^{m}$ , and $\Gamma=S^{m-2}\cross\{0\}\subset S\subset 1\mathrm{R}^{m}$ .

As discussed in [DS1], there exists $u\in H^{1,2}(B^{+}, 1\mathrm{R}^{m})$ which is energy minimizing with
respect to the conditions $u(\Sigma_{1})\subset\Gamma$ and $u|_{\Sigma_{2}}=\gamma$ ; such a $u$ is regular on $B^{+}\cup S^{+}$ , but for
topological reasons cannot be continuous on all of $\overline{\Sigma}_{1}$ . Theorem 3.1 thus shows that $u$ is
regular on $\partial\Sigma_{1}$ (as was conjectured in this instance in [DS1]), and so $u$ has the desired
behaviour: precisely, we have

3.3 Corollary. For $u$ as in Example 3.2, we have: Sing $(u)\cap\Sigma_{1}\neq\emptyset$ . $\square$
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