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Abstract: In this general report, we give a description of Muskat

problem an put forward Muskat problem with surface tension in the

physical fact. The weak formulation for Muskat problem is given out

and a relationship between Muskat problem and quasilinear hyperbolic

equation is established. For Muskat problem and Muskat problem with

surface tension, we prove the existence of classical solution local in time

by the theory of pseudo-differential operator. Moreover, we conclude

that interface stability highly depends on the mobility ration $M= \frac{\mu_{0}}{\mu_{\mathrm{u}}}$,

for Muskat problem. However, Muskat problem with surface tension is

well-posed without any condition irnposed on the mobility ratio $M$ , which

corresponds to the physical fact.

Part I Muskat problem

1.1 Model

When two fluids in motion occupy a porous medium, we consider a simultaneous

flow of two immiscible fluids or phases in the pore space.

In general, an abrupt interface between two immiscible fluids in the macroscopic

sense can’t exist, i.e., there is not a continuous surface completely separating the two

数理解析研究所講究録
951巻 1996年 28-39 28



fluids. But the displacement of immiscible fluids is almost paratically complete. So for

all practical purpose a fictitious abrupt interface may be assumed to separate the two

fluids and on the each side of the surface there only exists a single phase (fluid). In oil

literature, the displacement is usually called piston-like.

It is a free boundary problem, we call Muskat problem, which was proposed by

Muskat in 1934 [1].

From the Law of conservation of mass and Darcy’s Law, the problem (for incom-

pressible fluids) is formulated as follows:

$- \nabla\cdot(\frac{k}{\mu_{w}}\nabla p_{w})=0$ in $Q_{w}$ ( $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}$ region)

$- \nabla\cdot(\frac{k}{\mu_{0}}\nabla p\mathrm{o})=0$ in $Q_{0}$ ( $\mathrm{o}\mathrm{i}1$ region)

$p_{w}-p_{0}=0$ on $\Gamma(\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\{\mathrm{a}\mathrm{C}\mathrm{e})$

$- \frac{k}{\mu_{w}}\nabla p_{w}\cdot n=-\frac{k}{\mu_{0}}\nabla p_{0}\cdot n=\phi v_{n}$ on $\Gamma$ ,

where $k$ is the permeability, $\mu_{0}$ and $\mu_{w}$ are viscosities of oil and water respectively. $\phi$

is the porosity, $n$ is the normal of $\Gamma_{2}=\Gamma\cap\{t\}$ and $v_{n}$ is the velocity of advance in the

normal direction of $\Gamma_{\mathrm{t}}$ .

Muskat problem is a time-dependent elliptic diffraction problem with a free bound-

$\mathrm{a}\mathrm{r}\mathrm{y}$ .

Remark Muskat problem is a approximate model of an immiscible displacement.

It has been assumed that an abrupt interface between two immiscible fluids is a regular

surface, i.e., it has been assumed that the displacement of two fluids is stable. The

correctness of this approximation strongly depends on the stability.

In physical fact (see [2]), interface stability depends on the mobility ratio $M=$

$\frac{\mu_{0}}{\mu_{w}}$ .

For a problem modelling the extraction of oil from the ground by water, then

if $M>1$ , Instability phenomenon (fingering phenomenon) always occurs and the
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displacement is instability, and if $M\leq 1$ , the displacement is stable. $M\leq 1$ means

$\mu_{w}\geq\mu_{0}$ , i.e., for the displacement of oil by viscositied water the interface is stable.

In this paper, we explain that the physical fact is highly important to the well-

posedness of Muskat problem.

Stable displacement Model of finger

1.2 Weak formulation

To our knowledge, there were no essential advances yet about Muskat problem. One

of the reason is that we do not know how to give its weak formulation (see [3], p.181).

Few years ago Jiang and Chen [4] found a physical fact: for a model which is

displacement of oil by viscositied water $(M\leq 1)$ and the capillary force is neglected

which results in diagonal relative perneability curves, the displacement must be

piston-like, i.e., in the above mentioned $\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}_{\}$ the Muskat problem is not only an

approximate model but also an accurate model.

According to this idea, we introduce a new function $s$ which is a saturation of water,

$0\leq s\leq 1$ , and l–s is a saturation of oil. Then we consider a couple system

$(*)$

where $Q=Q_{w}\cup\Gamma\cup Q_{0},$ $M=\mathrm{A}\mu_{w}’ k(s)=[1+(M-1)\mathrm{s}]$ and $f(s)= \frac{Ms}{1+(M-1)s}$ .

The couple system $(*)$ comes from equations of motion of immiscible fluids, and the

second equation in system $(*)$ is a quasilinear hyperbolic equation.
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In paper [4], Jiang and Chen have proved the following

Theorem Muskat problem and system $(*)$ is equnvalent; $i.e.$ , if $\{p_{w},p_{0}, \Gamma\}\iota s$ a

solution of Muskat problem, and $Q_{w},$ $Q_{0}$ are regtons of water and oil respectrvely, $we$

suppose

$s(x, t)=\{01$ $inQ\mathrm{o}inQw$ and $p(x, t)=\{p_{w}p_{0}$ $;_{nQ\mathrm{o}}^{nQ}w$

.

Then $\{p, s\}$ ts a physically relevant weak solutaon of system $(*)$ . Conversely, if $\{p, s\}$ $s a

weak solution of system $(*)$ , and $s(x, t)$ only take two values 1 and $\mathit{0},$
$\Gamma$ is $a$ $di_{S}cont|nuouS$

surface of $s$ , which divides $Q$ anto two parts $Q_{w}$ and $Q_{0}$ and $s|_{Q_{v}}=1,$ $s|_{Q_{0}}=0$ , then

$\{p|_{Q}v’ P|_{Q}0’\Gamma\}\dot{\iota}s$ a solutton of Muskat problem.

The relationship between Muskat problem and the theory of quasilinear hyperbolic

equation is as follows:

Muskat problem Equations of motion of immiscible fluids

Ree boundary $\Gamma$ Shock wave of
quasiliner hyperbolic equation

Free boundary condition
$\phi v_{n}=-\frac{\mathrm{k}}{\mu_{\nu}}\nabla pu1^{\cdot}n$

Rankine-Hugoniot condition

given on shock wave

$M\leq 1$ entropy condition

Remark System $(*)$ is a weak formulation of Muskat problem, because in $(*)$ the

free $\mathrm{b}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{v}\vee$ does not appear explicitly and they are therefore referred to as a $‘(\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}$

domain” formulation.

A numerical method has been used to solve the system $(*)$ . The numerical results

shows that it describes clearly the process of advance of the $\mathrm{F}.\mathrm{B}$ . between oil and water.

Conclusion Only $M\leq 1$ , i.e., for the displacement of oil by viscositied water, we

can get the weak formulation for Muskat problem.
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1.3 Existence of classical solution local in time

Consider a model of extraction of oil from the ground by water as follows:

A
oil well

Introduce $\omega$ to be the local coordinates of points on the surface $\Gamma_{0}$ . We also use
$x=X_{0}(\mathrm{r}v)$ to denote the points on $\Gamma_{0}$ in $R^{2}$ . Let $n_{0}(\omega)$ be the unit normal to $\Gamma_{0}$ which

is outer with respect to $\Omega_{1}(0)$ . Let $\rho(\omega, t)$ be a function of class $C^{2,1}(\Gamma_{0}\mathrm{x}[0, T1)$ such

that $\rho(‘ v, 0)=0$ .

Let $T>0$ be small and let

$\Gamma_{t}=\{x=X_{0}(\omega)+\rho(\omega, i)n\mathrm{o}(\omega), t\in[0, T]\}$

denote the free boundary.

Straighten the free boundary (see [5]):

transformation
$\Gamma_{t}$ $\Gamma_{0}$

transfornation
$\bigcup_{t}\Omega_{i}(\iota)$ $Q_{\iota}=\Omega_{i}(0)\cross[0, T]$ $(\mathrm{i}=1,2)$

transformation
$\mathrm{p}_{w}(_{X}, t),$ $\mathrm{p}_{0}(x.t)$ $v_{i}=v_{i}(y, t)$ $(\mathrm{i}=1.2)$

32



The Muskat problem becomes

$(\mathrm{P}_{1})$

where

$k_{1}= \frac{k}{\phi\mu_{w}’}k_{2}=\frac{k}{\mu_{0}}$ $(M= \frac{\mu_{0}}{\mu_{w}}=\frac{k_{1}}{k\circ,\sim})$ ,

$L_{\rho}=, \sum_{\dot{l}J=1}a_{\rho}2i\mathrm{j}\partial_{y.yj}^{2}+\sum_{i=1}^{2}a^{\iota}\partial\rho y.$ ,

$a_{\rho}^{l\mathrm{j}}=a^{\iota_{f}}(\rho, \partial_{w}\rho)$, $a_{\rho}^{\}=a^{l}(\rho, \partial_{w}\rho, \partial_{w}^{2}\rho)$ ,

$S_{\rho}=a^{i_{J}}(\rho, \partial_{w}\rho)$ , $K_{\rho}=K(\rho, \partial_{w}\rho)$ .

Let $G\subset R^{n}(n=1,2)$ be a bounded open domain. Define function spaces

$C_{T^{+}}^{k\alpha}(\overline{G})=c(10, T];Ck+\alpha(\overline{G})),$ $0<\alpha<1,$ $k=1,2,$ $\cdots$

$E^{k+\alpha_{l}k-}l+\alpha(\overline{G})=\{v|v\in C_{\tau^{+}}k\alpha(\overline{G}))\mathrm{a}v\in C_{T}^{k-l+\mathrm{Q}}(\overline{G})\}(k\geq l+1, l\geq 1)$

$Ek+\alpha\}\mathrm{o}lk-+\alpha(\overline{G})=\{v|v\in Ek+\alpha,k-\mathit{1}+\alpha(\overline{c}))v|_{t=0}=\partial lv|_{\mathrm{t}0}==0\}$

$||v|\mathrm{I}B\mathrm{k}+\alpha,k-\mathit{1}+\alpha=||v||_{c_{\tau}^{k}}+\alpha+||\mathrm{d}v||C_{\tau^{-}}k\iota+q$ .

Suppose

(I) $\Gamma_{0},$ $\Gamma_{12},$$\Gamma\in C^{4+\alpha}$ , $0<\alpha<1$ ,

(II) $g_{1}(x, t)\in E^{\mathrm{s}}+\alpha,3+\alpha,$ $g_{2}(_{X,\iota})\in E3+\alpha,2+\alpha$ ,

(III) $v_{\mathrm{n}1_{t=0}}>0$ , i.e., the initial velocity of free boundary is positive in outer normal

direction with respect to water region $\Omega_{1}(0)$ .
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(IV) $M= \frac{\mu_{0}}{\mu_{w}}=k_{2}^{\iota_{<1}}k$ .

Define

$F(\rho)=\partial_{t}\rho+k_{1}S_{\rho}(\omega, t)\partial_{n}v_{1^{-}}k1K(\rho\omega, t)\partial_{\{t1}v$ ,

where $v_{1\}}v_{2}$ is a solution of diffraction problem for given $\rho$ . So the solvability of free

boundary problem (P1) is equivalent to existence of a solution of the equation

$F(\rho)=^{0}$ .

Theorem Under the assumptions $(I)-(IV)$, there exists $T_{0}>0$ , such that the

equatton $F(\rho)=0$ has a unzque solutzon $\rho\in E^{2+\alpha,1\alpha}+(\forall T<T_{0})$ .

Outline of proof

Construct an initial approximate function $\rho_{0}(\omega, i)$ such that $\rho_{0}\in C^{4+\alpha,2+\alpha}/2(\mathrm{r})$

(here $\rho_{0}|_{\{=0}$ , a $\rho_{0}|_{t=^{0}}$ are given).

Define the Fr\’echet-derivative $F’(\rho_{0})$ of nonlinear operator $F(\rho)$ :

$F’(\rho 0):E^{2+}\mathrm{O}\alpha,1+\alphaarrow c_{T}^{1+\alpha}\mathrm{O}$ for $\forall S\rho\in E^{2+\alpha,1+\alpha}\mathrm{o}$

$||F(p0+\delta p)-F(\rho 0)-F’(\rho 0)\delta\rho||C_{T}^{1+}\alpha=O(||\delta p||_{B^{2+}}^{2}\alpha.1+\infty)$ .

It is easy to see $F’(\rho_{0})\delta\rho=\mathrm{d}(\delta\rho)+f_{1}(\delta\rho, \partial ld(\delta\rho),$ $\delta v1,$ $\partial_{n}(sv\iota),$ $\partial_{\omega}(Sv1))$ and $\delta v_{1},$ $\delta v_{2}$

satisfy a diffraction problem as follows:

$(\mathrm{P}_{2})$

34



where $\delta L_{\rho_{0}}$ is the variation of the operator $L_{\rho}$ at $\rho=p_{0}$ .

The crucial step in our proof is to prove the invertibility of $F^{f}(\rho_{0})$ . It is equivalent

to prove the following:

Lemma For any $G\in C_{T}^{1\alpha}\mathrm{o}+$ , the equation

$F’(\rho 0)\delta\rho=G$

and problem (P2) has a unique solution $(\delta\rho, \delta v_{1}, \delta v_{2})$ such that

$||\delta\rho||B2+\alpha,1+a\leq C||G||c_{\mathrm{r}}1+a$

where $C$ depends on 11 $v_{t}||c^{\mathrm{s}}\mathrm{I}^{\backslash }+\alpha,$ $|1^{\partial_{l}v}‘||c_{T}2+\alpha$ and $T$ .

From the lemma the existence theorem is proved by a standard way.

How to prove the lemma?

Step 1 Instead of the hyperbolic equation $F’(\rho_{0})s\rho=G$ on a closed manifold, we

consider an approximate parabolic equation

$F’(\rho 0)\delta\rho-\epsilon\partial^{2}(\omega\rho)\delta=c$

with periodic boundary condition $\delta\rho(\omega, i)\equiv\delta\rho(\omega+L_{0}, t)$ (here $\omega$ is the arc-length

parameter and $L_{0}$ is the arc-length of $\Gamma_{0},$ $\delta\rho|r=0=0$).

Step 2 Using a fine (
$‘ \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of unity” and freezing the coefficient at $t=0$ and

neglecting the lower order terms in each small domain.

Introducing a local coordinate we only need to consider a simplest model problem

as follows:
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here transformation $\delta v_{:}arrow w_{\vee}$. such that the equations are homogeneous.

Step 3 Taking the Fourier transformation with respect to $\omega$ and solving the re-

sulting equations on a half line, we get

$\delta\rho=\wedge$

$\int_{0}^{\mathrm{t}}\exp\{[-\epsilon\zeta^{2}+c1\frac{k_{1}k_{2}}{k_{1}+k_{2}}|\xi|+(C3-\frac{c_{2}k_{1}}{k_{1}+k_{2}}|\xi|)\xi i](t-\mathcal{T})\}\hat{c}(\xi, \tau)d_{T}$

where $\delta\rho\wedge$ and $\hat{G}$ are, respectively, the Fourier transform $\delta\rho$ alld $G$ .

Step 4 By the theory of pseudo-differential operator (see [6]) we get the estimate

$||\delta p||_{B^{2}}+q,1+\alpha\leq C||c||_{C^{1}(\mathrm{r}}\tau+\alpha)$’

where $C$ does not depend on $\epsilon$ .

Conclusion Under the assumptions (III) and (IV), we have

$c_{1}=(- \partial_{n}v1+\partial_{n}v2)|_{t=0}=\phi(\frac{1}{k_{1}}-\frac{1}{k_{2}})v_{n}>0$.

So we see that only for the displacement of oil by viscositied water we may get the

solvability of Muskat problem.

Part II Muskat problem with surface tension

2.1 Model

When two immiscible fluids are in contact in the interstices of a porous medium,

a discontinuity in pressure exists across the interface separating them. Its magnitude

depends on the interface mean curvature at the point. The difference in pressure is

called Capillary pressure $p_{c}$ (see [2]):

$p_{\mathrm{n}w}-p_{w}=p_{C}$ ,

where $p_{nw},p_{w}$ are the pressure in nonwetting and wetting phase respectively. And from

Laplace equation for capillary pressure $p_{c}=\sigma K$, where $\sigma$ is the surface tension and $K$

is the mean curvature.
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In the piston-like displacement two immiscible fluids are in contact only at the

interface which separate two fluids into two parts.

Thus Muskat problem with surface tension is formulated as follows

$- \nabla\cdot(\frac{k}{\mu_{w}}\nabla p_{w})=0$ in $Q_{w}$

$- \nabla\cdot(\frac{k}{\mu_{0}}\nabla p0)=0$ in $Q_{0}$

$p_{w}-p_{0}=\sigma k=\sigma\nabla\cdot\tilde{n}$ on $\Gamma$

$- \frac{k}{\mu_{w}}\nabla p_{w}\cdot\tilde{n}=-\frac{k}{\mu_{0}}\nabla p_{0}\cdot\tilde{n}=\psi v_{n}$ on F.

In the physical fact the capillary force may affect the stability of the front (see

[2] $)$ . For the stability of the interface it is a good term, it always tend to stabilize the

displacement front.

So we expect that the above Muskat problem with surface tension is well-posed

without any condition imposed on the mobility ratio $M$.

2.2 Existence of classical solution local in time

As done in Part I, the problem can be reformulated as follows

$(\mathrm{P}_{3})$

Theorem Assume $\Gamma_{0}\in C^{8+\alpha},$ $\Gamma_{J}\in C^{7+\alpha}(j=1,2),$ $g_{i}\in E^{7+\alpha,4+}\alpha(\mathrm{r}_{f})(j=$

$\perp,$ $‘ 2)$ , then there exists $T_{()}>0$ , such that the problem (PS) has a solution $\rho,$ $v_{1},$ $v_{2}\in$

$E^{4+\alpha,1\alpha}+(\Gamma 0)\mathrm{x}C_{T^{+}}^{2\alpha}(\Omega 1(0))\mathrm{x}C_{\tau^{+\alpha}}^{2}(\Omega 2(0))$ (for $T<T_{0}$).
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The main idea of the proof is to claim that the Fr\’echet derivative of the nonlinear

operator

$F(\rho)=\partial_{t}\rho+k_{1}S_{\rho}(\rho, \partial\omega\rho)\partial nv1-k1K(\rho\rho, \partial_{y}\rho)\partial \mathrm{t}uv1$

is invertibility.

For this problem

$F’(\rho_{0}):E4+\alpha,1+\alpha(\mathrm{r}\mathrm{O}\mathrm{o})arrow C_{T^{+}}^{1\alpha}(\mathrm{r}_{0})$.

Thus we have to solve the equation

$F’(\rho_{0})\delta\rho=c$ ,

and get an estimate

$||\delta p|1B*+a,1+\alpha\leq C||c||_{c_{T}^{1}}+\alpha$ .

To do this we consider a simplest model problem as follows:

and

a $(\delta\rho)+k_{1}\partial_{\eta}w_{1}+\epsilon\partial_{\omega}4(\delta\rho)=c$ on $\eta=0$

Taking Fourier transformation with respect to $\omega$ , we get

$\delta\rho=I_{0}^{t}\wedge 3)(\mathrm{t}-\gamma\rangle\hat{G}e^{(|\xi 1^{4}|\epsilon}(\mathcal{E}+b|\xi, \tau)d\mathcal{T}$

where $b=m_{+}^{kc}12>0,$ $c_{0}\sim\sigma$ .

By the theory of pseudo-differential operator, we get the required estimate.

Conclusion In the above model problem $c0\partial_{(d}^{2}\delta\rho(c_{0}>0)$ , which corresponds to

capillary pressure $p_{\mathrm{C}}=\sigma K(\sigma>0)$ , is a good term. For the Muskat problem with
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surface tension we $\mathrm{d}\mathrm{o}\mathrm{n}^{\rangle}\mathrm{t}$ need to impose any additional conditions on mobility ratio

$\#_{2}^{k}$ , the problem always has a solution, i.e., Muskat problem with surface tension is

well-posed.
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