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On Muskat Problems

Lishang Jiang, Youshan Tao and Fahuai Yi

Department of Mathematics, Suzhou University, Suzhou 215006, China

Abstract: In this general report, we give a description of Muskat
problem an put forward Muskat problem with surface tension in the
physical fact. The weak formulation for Muskat problem is given out
and a relationship between Muskat problem and quasilinear hyperbolic
equation is established. For Muskat problem and Muskat problem with
surface tension, we prove the existence of classiéal solution local in time
by the theory of pseudo-differential operator. Moreover, we conclude}
that interface stability highly depends on the mobility ration M = %
for Muskat problem. However, Muskat problem with surface tension is
well-posed without any condition imposed on the mobility ratio M, which

corresponds to the physical fact.

Part I Muskat problem

1.1 Model

When two fluids in motion occupy a porous medium, we consider a simultaneous
flow of two immiscible fluids or phases in the pore space.
In general, an abrupt interface between two immiscible fluids in the macroscopic

sense can’t exist, i.e., there is not a continuous surface completely separating the two
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fluids. But the displacement of immiscible fluids is almost paratically complete. So for
all practical purpose a fictitious abrupt interface may be assumed to separate the two
fluids and on the each side of the surface there only exists a single phase (fluid). In oil
literature, the displacement is usually called piston-like.

It is a free boundary problem, we call Muskat problem, which was proposed by
Muskat in 1934 [1].

From the Law of conservation of mass and Darcy’s Law, the problem (for incom-

pressible fluids) is formulated as follows:

-V (I‘%VP‘”) =0 in @, (water region)
-V (%V”) =0 in @Qo(oil region)
pu—po=0 on I'(interface)

~fVps-n=—EVp n=¢u onl,
where k is the permeability, po and u, are viscosities of oil and water respectively. ¢
is the porosity, n is the normal of 'y = I'N {t} and v, is the velocity of advance in the
normal direction of T';.
Muskat problem is a time-dependent elliptic diffraction problem with a free bound-

ary.

Remark Muskat problem is a a.pproximaté model of an immiscible displacement.
It has been assumed that an abrupt interface between two immiscible fluids is a regular
surface, i.e., it has been assumed that the displacement of two fluids 1s stable. The
correctness of this approximation strongly depends on the stability.

In physical fact (see [2]), interface stability depends on the mobility ratio M =

Ko
[T

For a problem modelling the extraction of oil from the ground by water, then

if M > 1, Instability phenomenon (fingering phenomenon) always occurs and the
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displacement is instability, and if M < 1, the displacement is stable. M < 1 means
Pw > o, 1.e., for the displacement of oil by viscositied water the interface is stable.
In this paper, we explain that the physical fact is highly important to the well-

posedness of Muskat problem.

water oil water oil
™ Front |~ | Front ™ Front | Front
at t at t + At at t at t + At
dx dz
Stable displacement Model of finger

1.2  Weak formulation

To our knowledge, there were no essential advances yet about Muskat problem. One
of the reason is that we do not know how to give its weak formulation (see [3], p.181).

Few years ago Jiang and Chen [4] found a physical fact: for a model which is
displacement of oil by viscositied water (M < 1) and the capillary force is neglected
which results in diagonal relative permeability curves, the displacement must be
piston-like, i.e., in the above mentioned case, the Muskat problem is not only an
approximate model but also an accurate model.

According to ‘this idea, we introduce a new function s which is a saturation of water,
0< s<1, and 1 — s is a saturation of oil. Then we consider a couple system

V. k(s)Vp=20 in Q,

(%)
$Os —V - k(s)f(s)Vp=0 inQ,

where Q = Q, UT UQo, M = ﬁ%) k(s)=[1+(M —1)s] and f(s) = ﬁ_(—ﬁg—s"_l);

The couple system (*) comes from equations of motion of immiscible fluids, and the

second equation in system (*) is a quasilinear hyperbolic equation.



In paper [4], Jiang and Chen have proved the following

Theorem Muskat problem and system (x) 1s equwalent, t.e., if {pu,po,T'} s a
solution of Muskat problem, and Qu, Qo are regions of water and osl respectively, we
suppose

1 in Qw Pw n Qw
s(z,t) = and p(z,t)=

0 Qo po Qo
Then {p, s} is a physically relevant weak solution of system (*). Conversely, if {p,s} 15 a
weak solution of system (*), and s(z,t) only take two values 1 and 0, T is a discontinuous
surface of s, which divides Q into two parts Qu and Qo and 3'0," =1, slqo =0, then

{plg.:Plg, T} is a solution of Muskat problem.

The relationship between Muskat problem and the theory of quasilinear hyperbolic

equation is as follows:

Muskat problem Equations of motion of immiscible flnids

Free boundary T’ Shock wave of

quasiliner hyperbolic equation

Free boundary condition Rankine-Hugoniot condition

pv, = —FEVp, n given on shock wave

M<1 entropy condition

Remark System (*) is a weak formulation of Muskat problem, because in () the
free boundary does not appear explicitly and they are therefore referred to as a “fixed
domain” formulation.

A numerical method has been used to solve the system (*). The numerical results

shows that it describes clearly the process of advance of the F.B. between oil and water.

Conclusion Only M < 1, i.e,, for the displacement of oil by viscositied water, we

can get the weak formulation for Muskat problem.

31
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1.3 Existence of classical solution local in time

Consider a model of extraction of oil from the ground by water as follows:

A

oil well

Introduce w to be the local coordinates of points on the surface T'y. We also use
z = Xo(w) to denote the points on I'g in JR?. Let no(w) be the unit normal to I’y which
1s outer with respect to £2,(0). Let p(w,t) be a function of class C2Y(Ty x [0, T]) such
that p(w,0) = 0.

Let T > 0 be small and let

Iy = {z = Xo(w) + p(w, t)ne(w), t €[0,T]}

denote the free bouﬁdary.

Straighten the free boundary (see [5]):

transformation
T 1 PO
transformation
Uai(®) - Q=00 x[0,T) (i=1, 2)
transformation

Pw('t’t); Po(-’”:t) v, = v,'(y,t) (izl, 2)



The Muskat problem becomes
s
Loy, t)=0 in@; (#=1,2)

’Ul—'v-z=0 OHF=F0X[O,T]

Bp = —k18,0,v1 + k1 K, 0,11

®) N
= —kgS,,Gnvg + szpaw’Uz onT = Fo X [O,T]
v = qi(y, t) on Iy x [0, 7]
vz = ga(y, 1) on I'; x [0,T]
\
where

k k Lo k1>
k=“‘—,k=— M:-—-——:—’
YTt T Mo ( o k2
2

, 2
_ 7 32 :
Ly = z a7 8,y + Z @50y,
=1

3,7=1
a}f = atj(p7 8wp)) a'tp = a'(p, 8’-“p’ ajp)’

S, =a%(p,8up), K,= K(p,0up).

Let G C R" (n = 1,2) be a bounded open domain. Define function spaces

Ck(G) = C([0, T}, C***(G)),0 < a< 1, k=1,2, -

Erok-(G) = {v]v € CEY(G), 8w € CE (G} (2141, 121)

Ek+a,k-l+a(-§) = {'ul'v € Ek+a’k—l+a(a—)> ”L_o = a‘”'t—o = 0}
E = =

el prtar-ita = ullrsa + O0]lgr-isa
Suppose
(I) Ty, T, T2 € C*, 0<ax<]l,

(I1) gi(z, 1) € BF+o3+, gy(z,1) € B33+,

(III) '”ﬂl g > 0, Le., the initial velocity of free boundary is positive in outer normal

direction with respect to water region (2,(0).
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= o _k
(IV) M—-#w -—E;~<1.
Define
F(p) =] pr + le,,(w, t)anvl - le,,(w, t)&,vl,

where v;, v is a solution of diffraction problem for given p. So the solvability of free

boundary problem (P1) is equivalent to existence of a solution of the equation

F(p) =0.

Theorem Under the assumptéons (I)-(IV), there exists To > 0, such that the

equation F(p) = 0 has a unique solution p € B>t (VT < Ty).

Outline of proof

Construct an initial approximate function pg(w,t) such that py € C*+o2+e/XT)
(here poLzo, a’p"L:o are given).
Define the Fréchet-derivative F'(po) of nonlinear operator F(p) :
F'(po): £j2+cr.l+a - Co’}“‘ for Vép € {):72+°'v1+°’
1F(p0 + é0) — F(po) = F'(po)bpllczrs = O([|8pl|F2+1144).

It is easy to see F'(pg)ép = 8,(6p) + f1(ép, u(ép), dv1, Bn(bv1), 8. (6v1)) and bvq, v,

satisfy a diffraction problem as follows:
4

L,o(60,) = —(6L ) in Qi (i =1,2)
Sy = bvy on T,
. F1(60, 8,(6p), 6u1, On(6v1), Bu(6v1))

) = £2(8p, u(8p), 62, On(6v1), Bu(6v3)) on T

6'1}1 =0 ; on Pl

\ O:(6v2) =0 on I'y,
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where 8L, is the variation of the operator L, at p = pq.
The crucial step in our proof is to prove the invertibility of F'(pg). It is equivalent

to prove the following:
Lemma For any G € 2’:}“, the equation
F'(po)bp =G
and problem (P2) has a unique solution (ép, (5@1, $vy) sﬁch that
[80l55+eite < CliGlloy

where C depends on [ju;||ca+«, [[viflc2+e and T

From the lemma the existence theorem is proved by a standard way.
How to prove the lemma?
Step 1 Instead of the hyperbolic equation F'(pg)ép = G on a closed manifold, we

consider an approximate parabolic equation
F'(po)6p— e82(6p) = G

with periodic boundary condition ép(w,t) = dp(w + Lo, t) (here w is the arc-length
parameter and Lg is the arc-length of T, 59!1:0 = 0).

Step 2 Using a fine “partition of unity” and freezing the coeflicient at ¢t = 0 and
neglecting the lower order terms in each small domain.

Introducing a local coordinate we only need to consider a simplest model problem

as follows:

’

Pw; + 2w; =0 in R, x Bf x[0,T] and R, x R; x [0,T]
wi—wy=cdp (¢1>0) onn=0

kla,,’LU1 - k28,,'w2 = Cgaw(ép) onn= 0

\ 8i(8p) — €32(6p) + k18yun + ¢c30,(6p) =G  onn=0
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here transformation év; — w; such that the equations are homogeneous.
Step 3 Taking the Fourier transformation with respect to w and solving the re-

sulting equations on a half line, we get
bp =
- kik ~
[ e =o€+ el + e - 22l 6] - 1)} e i

1+
where 67) and G are, respectively, the Fourier transform §p and G.

Step 4 By the theory of pseudo-differential operator (see [6]) we get the estimate
6ol g24.14« < CllGll e ry,

where C does not depend on ¢.

Conclusion Under the assumptions (III) and (IV), we have

1 1
1 = (-—-an'l}]_ + ang_)L:o = ¢(-I;-; — E)vn > 0.

So we see that only for the displacement of oil by viscositied water we may get the

solvability of Muskat problem.

Part II  Muskat problem with surface tension

2.1  Model

When two immiscible fluids are in contact in the interstices of a porous medium,
a discontinuity in pressure exists across the interface separating them. Its magnitude
depends on the interface mean curvature at the point. The difference in pressure is

called Capillary pressure p. (see [2]):

Prnw — Puw = P,

where pnu, pu are the pressure in nonwetting and wetting phase respectively. And from
Laplace equation for capillary pressure p. = ¢ K, where o is the surface tension and K

is the mean curvature.
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In the piston-like displacement two immiscible fluids are in contact only at the
interface which separate two fluids into two parts.

Thus Muskat problem with surface tension is formulated as follows
B Y Pu v
—v-(ivp)-o in Q
\Bo PO — 0
onl

—kgp, 7= ——-l%Vpo 7 =¢v, onl.
In the physical fact the capillary force may affect the stability of the front (see
[2]). For the stability of the interface it is a good term, it always tend to stabilize the

displacement front.

So we expéct that the above Muskat problem with surface tension is well-posed

without any condition imposed on the mobility ratio M.

2.2 Existence of classical solution local in time

As done in Part I, the problem can be reformulated as follows

4

Lywi(y,t)=0 in @ (: =1,2)
U — U = U-R’(p) 8«/9: 8u2#p) | on F)

Op= -kISP(Pa awp)an'vl + k2k’p(ﬁ: 30/9)8‘4”1

(P3) <
= —k15,(p, 8up)Onvs + k3K (p, 8up)8sv2  on T
N = gl(y,t) on I x [O,T]
Inv2 = g2y, t) : on I'; x [0,T]
\

Theorem Assume [y € C® T, € C™* (§j = 1,2), ¢ € E™*4(T}) (§ =
1,2), then there exists To > 0, such that the problem (P3) has a solution p,vi,v2 €
BHatta(Ty) x CFF((0)) x Crr*(Q:(0)) (for T < To).
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The main i1dea of the proof is to claim that the Fréchet derivative of the nonlinear

operator
F(p) = 0ip + k15,(p, 8up)Onv1 — k1 K (p, Oup)Oumr

1s invertibility.

For this problem
F'(po): Etteita(To) — CFr*(To).
Thus we have to solve the equation
F'(po)op = G,
and get an estimate
lopllssense < CliGlicase.

To do this we consider a simplest model problem as follows:

,

BPw, + Bw; =0 in R, x R} x[0,T] and R}, x R; x [0,T]

{ wi—wy=—c82p onn=0 (co>0)

—klanwl = -kgéi’,,wz on 7= 43
\

and
3(8p) + k18,un + €0(6p) =G onn=0
Taking Fourier transformation with respect to w, we get

1
570_—_.-/ e(dfl**-blfla)(f-f)@(g’ r)dr
0

where b=kazf-‘}c—2—>0, Co~ 0.

By the theory of pseudo-differential operator, we get the required estimate.

Conclusion In the above model problem ¢y828p (co > 0), which corresponds to

capillary pressure p, = 0K (o > 0), is a good term. For the Muskat problem with
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surface tension we don’t need to impose any additional conditions on mobility ratio
%‘2-, the problem always has a solution, i.e., Muskat problem with surface tension is

well-posed.
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