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1 Introduction
In many fields of science and engineering we are required to solve partial differential
equations. Typical examples are found in the problems of the structural dynamics, the
fluid dynamics, and the magnet electric dynamics. In these fields it is not sufficient to
give a qualitative analysis such as the existence, the uniqueness, or some properties of the
solution, but we need quantitative analysis, for example, to find drag coefficients of airfoils
and critical exterior forces which structures can support. Nowadays we have computers
and we can use them for the solution of these problems. The finite element method (FEM)
is one of the most powerful numerical techniques to solve partial differential equations
(PDEs).

The appearance of the first computer in the world ENIAC was in 1945 and the idea
of FEM is found in the paper of Courant [1] written in 1943. We can say that it is by the
combination of computers and FEM that PDEs have been solved in the practical sense.

Finite element schemes are not derived directly from PDEs. At first we derive varia-
tional formulations corresponding to PDEs. Discretizing them, we obtain finite element
schemes. It gives a clear contrast with the finite difference method (FDM) where schemes
are derived by approximating PDEs directly. One advantage of FEM is that the derivation
is natural from the mathematical view point, which allows us to use various mathemat-
ical tools in establishing error estimates. Thus FEM is an excellent application of the
variational procedure to the practical purpose for solving PDEs.

In this paper we discuss on the finite element analysis of axisymmetric flow problems
and its application to the computation of drag coefficients.

Throughout this article we consider a regular family [2] of triangulations of $\Omega$ . We
denote by $h$ the maximum element size of each triangulation.
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2A variational formulation of axisymmetric flow
problems

Here we derive a variational formulation of the Navier-Stokes equations in the cylindrical
domain. For a variational formulation in the Cartesian coordinate we refer to [3].

Let $\Omega$ be the meridian of an axisymmetric domain in $\mathrm{R}^{3}$ . We denote the point in $\Omega$

by $x=(X_{1}, x_{2})$ , where $x_{1}$ is the distance from the axis and $x_{2}$ is the axis coordinate. The
stationary axisymmetric Navier-Stokes equations are written in the cylindrical coordinates
as

$(u \cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d})u+\frac{1}{Re}Lu+\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}p=f$ , (1)

$\mathrm{d}\mathrm{i}\mathrm{v}_{1}u=0$ , (2)

where $u=(u_{1}, u_{2})^{\tau}$ is the velocity, $p$ is the pressure, $f=(f_{1}, f_{2})^{T}$ is an external force,
$Re$ is the Reynolds number, and

$\mathrm{d}\mathrm{i}\mathrm{v}_{1}u=\frac{1}{x_{1}}\mathrm{d}\mathrm{i}\mathrm{v}(X_{1}u)$, $\triangle_{1}\equiv \mathrm{d}\mathrm{i}\mathrm{v}_{1\mathrm{g}}.\mathrm{r}\mathrm{a}\mathrm{d}=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{1}{x}\frac{\partial}{\partial x_{1}}+\frac{\partial^{2}}{\partial x_{2}^{2}’}1$ $L=[-\triangle_{1}1\tau 0^{+_{\overline{x}_{1}}}$ $-\triangle_{1}0]$ .

We note that the differential operators acting each component of the velocity are different
each other and that they have singularities on the axis $x_{1}=0$ . The boundary of $\Omega$ is
divided into three parts,

$\partial\Omega=\Gamma_{0+}\Gamma 1+\Gamma_{2}$ $(\Gamma_{0}\equiv\partial\Omega \mathrm{n}\{x1=0\})$

and we impose the boundary conditions

$u=g^{1}(x\in\Gamma_{1})$ , $\sigma n=g^{2}$ $(x\in\Gamma 2)$ (3)

where $g^{1}$ is a given velocity, $g^{2}$ is a given surface force, $n$ is a unit outer normal to $\partial\Omega$

and $\sigma=’[\sigma_{ig}\cdot]$ is the stress tensor defined by

$\sigma_{ij}=-p\delta ij+\frac{2}{Re}D_{i}j(u)$ , $D_{ij}(u)= \frac{1}{2}(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}})$ . (4)

We introduce function spaces

$x_{1/2}^{l,2}(\Omega)=\{v\in v’(\Omega);x^{\frac{1}{12}-l+|\beta|}D\beta v\in L^{2}(\Omega), 0\leq|\beta|\leq l\}$,

$W_{1/2}^{t,2}(\Omega)=\{v\in p’(\Omega);x^{\frac{1}{12}}D^{\beta}v\in L^{2}(\Omega), 0\leq|\beta|\leq\ell\}$

and define
$V(g^{1})=\{v\in X_{1/2}^{1,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega);v=g^{1}(x\in\Gamma_{1})\}$ ,

$V=V(0)$ , $Q=L_{1/2}^{2}(\Omega)\equiv W_{1}^{0}/’ 22(\Omega)$ .
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We derive a variational formulatio,n corresponding to (1)$-(3)$ : Find $(u, p)\in V(g^{1})\cross Q$

such that
$a_{1}(u, u, v)+a(u, v)+b(v,p)=<F,$ $v>$ $(\forall v\in V)$ , (5)

$b(u, q)=0$ $(\forall q\in Q)$ , (6)

where

$a(u, v)= \frac{2}{Re}\int_{\Omega}\{.\sum_{*,j=1}^{2}Dij(u)D_{j()}tv+\frac{u_{1}v_{1}}{x_{1}^{2}}\}x_{1}d_{X}$ , $b(v, q)=- \int_{\Omega}q\mathrm{d}\mathrm{i}_{\mathrm{V}v}1x1dx$ , (7)

$a_{1}(w, u, v)= \int_{\Omega}\sum_{i=1}^{2}(w\cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}u:)v_{i}x_{1}d_{X}$ , $<F,$ $v>= \int_{\Omega}f\cdot vx_{1}dx+\int_{\Gamma_{2}}g^{2}\cdot vX1ds$ .

Remark 1. If $u_{1}$ belongs to $x_{1/2}^{1,2}(\Omega)$ , then $u_{1}=0$ $(x\in\Gamma_{0})$ .

3 A finite element approximation
Let $\phi_{i}$ and $\psi_{j}$ be shape functions at the nodal point $P_{i}$ and $P_{j}(\in\overline{\Omega})$ of velocity and
pressure satisfying the inf-sup conditions in the Cartesian coordinates ([3], e.g. $\mathrm{P}2/\mathrm{P}1$

elements, $\mathrm{P}\mathrm{l}+\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{P}1$ elements). We assume that on each element $\{\phi:\}\supset\prime P_{k}$ and
$\{\psi_{j}\}\supset P_{k-1}$ , where $P_{k}$ is the polynomial space of degree $\mathrm{k}(\mathrm{k}=2$ when $\mathrm{P}2/\mathrm{P}1$ elements
and $\mathrm{k}=1$ when $\mathrm{P}\mathrm{l}+\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{P}\mathrm{l}$ elements).

Lemma 1.

$\phi_{i}\in X_{1}^{1}/’ 22(\Omega)$ $(P\dot{.}\not\in\Gamma_{0})$ , $\phi$. $\in W_{1/2}^{1,2}(\Omega)$ $(\forall i)$ , $\psi_{j}\in L_{1/2}^{2}(\Omega)$ $(\forall j)$ .

We define $W_{h}$ by the linear combination of

$(\phi_{i}, 0)^{T}$ $(P.\cdot\not\in\Gamma_{0})$ , $(0, \phi_{i})^{T}$ $(\forall i)$ , (8)

$Q_{h}$ by the linear $\mathrm{c}o$mbination of $\psi_{j}(\forall j)$ , and $V_{h}(g^{1})$ and $V_{h}$ by

$V_{h}(g^{1})=\{v_{h}\in W_{h};v_{h}(P_{i})=g^{1}(P_{1}) (P_{i}\in\Gamma_{1})\}$ , $V_{h}=V_{h}(0)$ .

The mixed finite element formulation of (5) and (6) is: Find $(u_{h},p_{h})\in V_{h}(g^{1})\cross Q_{h}$ such
that

$a_{1}(u_{hh}, u, v_{h})+a(u_{h}, vh)+b(v_{h},p_{h})=<F,$ $v_{h}>$ $(\forall v_{h}\in V_{h})$ , (9)

$b(u_{h}, q_{h})=0$ $(\forall q_{h}\in Q_{h})$ . (10)

The core of the analysis of the mixed finite element method is found in the corresponding
Stokes problem: Find $(u_{h},p_{h})\in V_{h}(g^{1})\cross Q_{h}$ such that

$a(u_{h,h}v)+b(v_{h},ph)=<F,$ $v_{h}>$ $(\forall v_{h}\in V_{h})$ , (11)
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$b(u_{h}, q_{h})=0$ $(\forall q_{h}\in Q_{h})$ . (12)

As in the Cartesian coordinates, we can show that the inf-sup condition is satisfied for
the choice of basis functions $\phi$ . and $\psi_{j}$ .

Lemma 2. There exists a positive constant $\beta$ independent of $h$ such that

$\inf_{q_{h}\in Qhv_{h}\in h}\mathrm{s}\mathrm{u}\mathrm{p}V\frac{b(v_{hq_{h})}}{||q_{h}||_{Q}||v_{h}||V},\geq\beta$.

After preparing an approximation theory in the weighted Sobolev spaces $X_{1/2}^{t,2}(\Omega)$ and
$W_{1/2}^{t,2}(\Omega)$ , we have the following error estimate for the Stokes problem.

Theorem $1.[4]$ (i) There exists a unique solution $(u_{h}, p_{h})$ of (11) and (12).
(ii) Suppose that the exact solution $(u, p)$ belongs to $W_{1/2}^{k+1,2}(\Omega))^{2}\cross W_{1/2}^{k,2}(\Omega),$ $k\geq 1$ . Then
we have

$||u-u_{h}||_{V}+||p-p_{h}||Q\leq chk\{|u|(W(1/2\Omega)+1,2)^{2}+k|p|_{W^{k}1/2},2(\Omega)\}$ ,

where $c$ is a positive constant independent of $h$ and $(u,p)$ .

4 Drag coefficients of axisymmetric bodies
In this section we apply. the finite element method for axisymmetric flow problems to the
computation of drag coefficients of axisymmetric bodies.

Let $G$ be an axisymmetric body in a velocity field. Let $U$ be the representative velocity,
$\rho$ be the density of the fluid, and $A$ be the area of the cross section of $G$ to the direction
$U$ . The drag coefficient of $G$ is defined by

$C_{D}=- \frac{4\pi}{\rho U^{2}A}\int_{c}\sum_{j=1}^{2}\sigma 2j(u,p)n_{j}X1d\mathit{8}$ , (13)

where $\sigma$ is the stress tensor defined by (4) and $C$ is an intersection curve of the surface
of $G$ and the meridian $(x_{1}>0)$ .

The following proposition is proved easily by using the Gauss-Green theorem.

Proposition 1. Let ( $u_{1},$ $u_{2,p)}$ be any functions in $X_{1/2}^{2,2}(\Omega)\cross W_{1/2}^{2,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega)$ .
Then for any function $v\in x_{1/2}^{1,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega)$ we have

$a_{1}(u, u, v)+a(u, v)+b(v,p)$

$=$ $\int_{\Omega}\{(u\cdot \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d})u+\frac{1}{Re}Lu+\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}p+\frac{1}{Re}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}(\mathrm{d}\mathrm{i}\mathrm{v}_{1}u)\}vx_{1}dx+\int_{\partial\Omega}[\sigma(u,p)]nvx_{1}ds$ .

Suppose $f$ is given in $(L_{1/2}^{2}(\Omega))^{2}$ . Let $(u,p)$ be a solution of (1) and (2) subject to a
boundary condition. If $(u,p)$ has the regularity assumed in Proposition 1, we have

$\int_{\partial\Omega}[\sigma(u,p)]nvx1d\mathit{8}=a_{1}(u, u, v)+a(u, v)+b(v, p)-\langle f, v\rangle$, (14)
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for any function $v\in X_{1/2}^{1,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega)$ , where

$\langle f, v\rangle=\int_{\Omega}f\cdot vx_{1}dx$ .

Since (14) is meaningful for the function $(u_{1}, u_{2}, p)\in x_{1/2}^{1,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega)\cross L_{1/2}^{2}(\Omega),$ (14)
is valid for the (weak) solution $(u,p)$ of $(1.)$ and (2). Let $v^{*}=(0, v_{2}^{*})$ be $\mathrm{a}$

. fixed function
such that

$v_{2}^{*}\in W_{1/2}^{1,2}(\Omega)$ , $v_{2}^{*}=1$ on $C$, $v_{2}^{*}x_{1} \sum_{1j=}^{2}\sigma 2j(u,p. )n_{j},=0$ on $\partial\Omega\backslash C$ . (15)

From (13) and (14) we obtain

$C_{D}=- \frac{4\pi}{\rho U^{2}A}\{a_{1}(u, u, v^{*})+a(u, v^{*})+b(v^{*},p)-\langle f, v^{*}\rangle\}$ . (16)

We employ (16) for the computation of the drag coefficient.
Let $(u_{1h}, u_{2h,p_{h}})\in X_{1/2}^{1,2}(\Omega)\cross W_{1/2}^{1,2}(\Omega)\cross L_{1/2}^{2}(\Omega)$ be a corresponding finite element

solution. Let $v_{h}^{*}$ be an interpolation of $v^{*}$ in the finite element space. We define an
approximate drag coefficient $C_{D}^{h}$ by

$C_{D}^{h}=- \frac{4\pi}{\rho U^{2}A}\{a_{1}(u_{h}, uh, v^{*})h+a(u_{h}, v_{h})*+b(v_{h}^{*},ph)-\langle f, v_{h}^{*}\rangle\}$. (17)

Remark 2. (i) The drag coefficient $C_{D}^{h}$ applied to the problem in the Cartesian
coordinates coincides with that obtained from the consistent flux method $[5],[6],[7]$ . In
those papers, however, the function $v^{*}$ is not used. As will be shown soon the use of $v^{*}$

enables us to derive an error estimate.
(ii) The direct boundary integration (13) for finite element solutions produces poor results.
Similar facts are pointed out also in the literatures cited just above. In (13) the boundary
values of $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}u$ and $p$ appear. In general, the estimate at the boundary of a function is
harder than that in the interior (we need more regularity). That is the reason why we
employ (17) for the computation of drag coefficients, where only interior integrals appear
and there are no boundary terms.
(iii) In the real computation of $C_{D}^{h}$ we replace the function $v_{h}^{*}$ by a more convenient
function, which makes the computation simpler but does not change the value [8].

We have the following error estimates.

Proposition 2. There exists a positive constant

$c_{1}=c_{1}(||u||_{V}, ||u_{h}||_{V}, ||v^{*}||_{V}, ||f||_{(}L^{2}(1/2\Omega))^{2,\rho}’ U,$ $A,$ $Re)$

such that
$|C_{D}-C_{D}^{h}|\leq c_{1}\{||u-u_{h}||V+||p-ph||Q+||v^{*}-v^{*}|h|_{V}\}$ . (18)
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Theorem $2.[8]$ Suppose that there exist positive constants $c_{2}$ and $\alpha$ independent of $h$

such that
$||u-u_{h}||_{V}$ , $||p-p_{h}||_{Q}$ , $||v^{*}-v_{h}|*|V\leq c_{2}h^{\alpha}$ . (19)

Then we have
$|C_{D}-C_{D}^{h}|\leq c_{3}h^{\alpha}$ , (20)

where $c_{3}i_{\mathit{8}}$ a positive constant independent of $h$ .
Remark 3. In the case of low Reynolds numbers the same error estimate as Theorem

1 can be obtained for (9) and (10). Therefore we get $\alpha=2$ and $\alpha=1$ in (20) for $\mathrm{P}2/\mathrm{P}1$

and $\mathrm{P}\mathrm{l}+\mathrm{b}\mathrm{u}\mathrm{b}\mathrm{b}\mathrm{l}\mathrm{e}/\mathrm{P}\mathrm{l}$ elements, respectively.

5 Concluding remarks
We have presented a finite element analysis of axisymmetric flow problems and its ap-
plication to the computation of drag coefficients. We can also apply to these problems
a stabilized finite element method, which does not require the inf-sup condition [4], e.g.,
the choice of $\mathrm{P}1/\mathrm{P}1$ element is $\mathrm{p}_{\mathrm{o}\mathrm{S}\mathrm{s}_{J}}\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ . For the precise computation of drag coefficients
of the sphere we refer to [8].
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