The second pluri-genus of surface singularities

筑波大学数学系 渡辺公夫 (Kimio Watanabe) 筑波大学数学研究科 奥間智弘 (Tomohiro Okuma)

1 Preliminary

Let (X,x) be a normal *n*-dimensional isolated singularity over \mathbb{C} and $f:(M,E)\to (X,x)$ a resolution of the singularity (X,x) with exceptional locus $E=f^{-1}(x)$. We say a resolution f is good if E is a divisor of normal crossings. Then the m-th L^2 -plurigenus of (X,x) is an integer $\delta_m(X,x)$ which was introduced in [5] and can be computed as

$$\delta_m(X,x) = \dim_{\mathbf{C}} H^0(M-E,\mathcal{O}_M(mK))/H^0(M,\mathcal{O}_M(mK+(m-1)E)),$$
 where K denotes the canonical divisor on M .

The invariant $p_g(X,x)$ called the geometric genus of a singularity (X,x) is defined by

$$p_g(X,x)=\dim_{\mathbf{C}}(R^{n-1}f_*\mathcal{O}_M)_x.$$

We note that $p_g(X, x) = \delta_1(X, x)$.

Normal surface singularities are classified as the following theorem.

- (1.1) THEOREEM[1,Theorem 5.4]. For a nomal surface singularity (X,x), we have the following:
 - (1) $\delta_m(X,x) = 0$ for all $m \in \mathbb{N}$, when (X,x) is a quotient singularity;
- (2) $\delta_m(X,x) \leq 1$ for all $m \in \mathbb{N}$ and $\delta_n(X,x) = 1$ for some $n \in \mathbb{N}$, in one of the following cases;
 - (a) (X, x) is a simple elliptic singularity;
 - (b) (X, x) is a cusp singularity;
- (c) (X, x) is the quotient by a finite group of a singularity of type (a) or (b);
 - (3) $0 < \limsup_{m \to \infty} \delta_m(X, x)/m^2 < \infty$, in other cases.
- (1.2) DEFINITION. A normal surface singularity (X,x) is of general type if which is in the class (3) above.
- (1.3) DEFINITION. A normal surface singularity (X, x) is minimally elliptic if $p_g(X, x) = 1$ and (X, x) is a Gorenstein singularity.

2 The minimally elliptic singularities

Throughout this section, we assume that (X, x) is a minimally elliptic singularity, $f:(M, E) \to (X, x)$ the minimal good resolution with the irreducible decomposition $E = \bigcup_{i=1}^k E_i$ and K the canonical divisor on M

which is supported on E.

Then $-K \geq E$, and -K = E if and only if (X, x) is a simple elliptic or a cusp singularity. If (X, x) is not a simple elliptic singularity, then $E_i \cong \mathbf{P}^1$ for all i.

(2.1) DEFINITION. Let Z be the fundamental cycle on M. We say the dual graph of E is obtained from another singularity (X', x') if the self-intersection number of the fundamental cycle of (X', x') is -1 and the weighted dual graphs of (X, x) and (X', x') are same except for self-intersection numbers of the components of E with multiplicity 1 in Z.

and the color of the combiner of the end of the first set of

gar i siste di la la compansiona del del

In [6], we have followings. The decrease through a problem and the property of the problem of th

(2.2) THEOREM. For a minimally elliptic singularity (X, x),

$$\delta_2(X,x) = \dim_{\mathbf{C}} H^1_E(M,\mathcal{O}_M(2K+E)).$$

If (X, x) is of general type, $\delta_2(X, x) = KD + 2$, where D = -K - E.

- (2.3) COROLLARY. If (X, x) is a hypersurface (resp. complete intersection), then $\delta_2(X, x) \leq 4$ (resp. 5).
- (2.4) PROPOSITION. Let (X,x) be a minimally elliptic singularity of general type. Then $\delta_2(X,x) = 1$ (resp. 2) if and only if (X,x) is obtained from a unimodal (resp. bimodal) singularity, and f is good if and only if

 $\delta_2(X,x)\geq 2.$

(2.5) QUESTION. Does the inequality $\delta_2 \geq m(X,x)$ (m(X,x) denotes the modality of a hypersurface singularity) hold?

That holds for quasi-homogeneous hypersurface singularities (see [7]).

3 The equisingular deformations

We follow the notation and terminology of the second section. We always assume that (X, x) is a minimally elliptic singularity.

Let ES be the equisingular deformation functor in the sense of [3]. By [2], an equisingular deformation of M induces a topologically constant deformation of a singularity (X, x).

By [3], ES is smooth and the tangent space of ES is $H^1(M, S)$, where $S = \mathcal{H}_{\mathcal{OM}_{\mathcal{O}_M}}(\Omega^1_M(logE), \mathcal{O}_M)$ (which is a locally free sheaf of rank 2).

(3.1) DEFINITION. We define an invariant q(X, x) called *irregularity* by

$$q(X,x) = \dim_{\mathbf{C}} H^0(M-E,\Omega^1_{M-E})/H^0(M,\Omega^1_{M}).$$

If (X,x) is a simple elliptic or not a quasi-homogeneous singularity, then q(X,x)=0, and q(X,x)=1 for every other (cf. [4, Theorem 1.9]). We denote by $h^i(\cdot)$ (resp. $h^1_E(\cdot)$) the dimension of C-vector space $H^i(\cdot)$ (resp. $H^1_E(\cdot)$).

(3.2) PROPOSITION. If (X, x) is of general type, then

$$h^1(S) = q(X, x) + h^0(D, \Omega^1_M(log E) \otimes \mathcal{O}_D(-E)),$$

where D = -K - E.

Proof. By the duality, $h^1(S) = h^1_E(\Omega^1_M(logE) \otimes \mathcal{O}(K))$. By Wahl's vanishing theorem, $h^1(\Omega^1_M(logE) \otimes \mathcal{O}(K)) = 0$. Hence we have

$$h_E^1(\Omega_M^1(log E) \otimes \mathcal{O}(K)) = \dim_{\mathbf{C}} H^0(M - E, \Omega_{M - E}^1) / H^0(\Omega_M^1(log E) \otimes \mathcal{O}(K))$$

and

$$h^0(D,\Omega^1_M(logE)\otimes \mathcal{O}_D(-E))=\dim_{\mathbf{C}} H^0(\Omega^1_M(logE)\otimes \mathcal{O}(-E))/H^0(\Omega^1_M(logE)\otimes \mathcal{O}(K)).$$

From the exact sequence

$$0 \to H^0(\Omega^1_M(log E) \otimes \mathcal{O}(-E)) \to H^0(\Omega^1_M) \to H^0(\oplus \Omega^1_{E_i}) = 0,$$

and inclusions

$$H^0(\Omega^1_{\boldsymbol{M}}(logE)\otimes\mathcal{O}(K))\subseteq H^0(\Omega^1_{\boldsymbol{M}}(logE)\otimes\mathcal{O}(-E))\subseteq H^0(\Omega^1_{\boldsymbol{M}})\subseteq H^0(\boldsymbol{M}-E,\Omega^1_{\boldsymbol{M}}),$$

Alette San de la julie de S

we have the assertion of the proposition.

In a similar way as above, we have $h^1(S) = 1$ for simple elliptic singularities and $h^1(S) = 0$ for cusp singularities.

(3.3) Example. Let (X,x) be of general type and $E = \bigcup_{i=0}^r E_i$ the irreducible decomposition. Assume that dual graph of E is star-shaped such that $E_0E_i=1$ for $i=1,\ldots,r$, $E_iE_j=0$ if $1\leq i< j\leq r$ and $E_0^2=-r+2$.

Then
$$K=-2E_0-\sum_{i=1}^r E_i$$
, and $D=-K-E=E_0$. Hence $\delta_2(X,x)=KD+2=r-2$.

There is an isomorphism

$$\Omega^1_{M}(log E)\otimes \mathcal{O}_{E_0}(-E)\cong \mathcal{O}_{E_0}(-4+r)\oplus \mathcal{O}_{E_0}(-2).$$

By (3.2),
$$h^1(S) = q(X,x) + r - 3$$
. Hence $\delta_2(X,x) = h^1(S) - q(X,x) + 1$.

If (X,x) is a quasi-homogeneous hypersurface singularity, and moreover if the invariance of Milnor's number implies the invariance of the topological type, then $\delta_2(X,x) = m(X,x)$.

By [4, (1.5),(1.6)], the exterior differentiation gives an exact sequence

$$0 \to d\mathcal{O}(K) \to \Omega^1_M(log E) \otimes \mathcal{O}(K) \to \Omega^2_M \otimes \mathcal{O}(K+E) \to 0$$

and isomorphisms $H^i(\mathcal{O}(K)) \cong H^i(d\mathcal{O}(K))$ for all i, where we consider $\mathcal{O}(K)$ an ideal sheaf of \mathcal{O}_M .

Therer is an exact sequence

$$0 \to H^0(d\mathcal{O}(K)) \to H^0(M - E, d\mathcal{O}) \to H^1_E(d\mathcal{O}(K))$$
$$\to H^1(d\mathcal{O}(K)) \cong H^1(\mathcal{O}(K)) = 0.$$

If (X,x) is of general type, then $H^1_{\{x\}}(d\mathcal{O}_X)=0$ by [4,(1.13.4)]. Hence

 $H^0(X, d\mathcal{O}_X) \cong H^0(M - E, d\mathcal{O})$, and the map $H^0(d\mathcal{O}(K)) \to H^0(M - E, d\mathcal{O})$ is surjective. Hence $H^1_E(d\mathcal{O}(K)) = 0$.

By the exact sequence

$$egin{aligned} H^1_E(d\mathcal{O}(K)) &
ightarrow H^1_E(\Omega^1_M(logE)\otimes \mathcal{O}(K))
ightarrow H^1_E(\mathcal{O}(2K+E)) \ &
ightarrow H^2_E(d\mathcal{O}(K))
ightarrow H^2_E(\Omega^1_M(logE)\otimes \mathcal{O}(K)), \end{aligned}$$

we have $\delta_2(X,x) = h^1(S) + \alpha$ for the singularity (X,x) of general type, where

$$\alpha = \dim_{\mathbf{C}} \mathrm{Ker}(H_E^2(d\mathcal{O}(K)) \to H_E^2(\Omega_M^1(logE) \otimes \mathcal{O}(K))).$$

REFERENCES

- 1. Ishii,S.: The asymptotic behavior of plurigenera for a normal isolated singularity. Math. Ann. 286, 803-812(1990)
- 2. Laufer, H.B.: Weak simultaneous resolution for deformations of Gorenstein surface singularies. Proc. Sympos. Pure Math., vol 40, Part 2, 1-29(1983)
- 3. Wahl, J.M.: Equisingular deformations of normal surface singularities, I. Ann. of Math. 104, 325-356(1976)
- 4. Wahl, J.M.: A characterization of quasi-homogeneous Gorenstein singularities. Composito Math. 55, 269-288(1985)
- 5. Watanabe, K.: On plurigenera of normal isolated singularities I.

 Math. Ann. 250, 65-94(1980)

- 6. Watanabe, K., Okuma, T.: Characterization of unimodular singularities and bimodular singularities by the second plurigenus. Preprint.
- 7. Yoshinaga, E., Watanabe, K.: On the geometric genus and the inner modality of quasihomogeneous isolated singularities. Sci. Rep. Yokohama Nat. Univ. Sect. I 25, 45-53(1978)