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Let $F$ and $H$ be subsets of a space X. $F$ and $H$ are separated if there are disjoint

open sets $U$ and $V$ with $F\subset U$ and $H\subset V$ . Moreover let $\mathcal{U}$ be an open cover

of a space $X$ . A collection $\mathcal{F}=\{F(U) : U\in \mathcal{U}\}$ of subsets of $X$ is srinking of

$\mathcal{U}$ if $F(U)\subset U$ for each $U\in \mathcal{U}$ . Here we do not require $\mathcal{F}$ covers $X$ . A space is

normal if each pair of disjoint closed sets are separated. A space $X$ is shrinking if

each open cover of $X$ has a closed shrinking, i.e. a shrinking by closed sets, which

covers $X$ . By these definitions, shrinking spaces are normal, and collectionwise

normal spaces are normal. It is well known that all subspaces of an ordinal space,

more generally all GO-spaces, are shrinking, (collectionwise) normal and countably

paracompact. It is also well known the product space $\omega_{1}\cross(\omega_{1}+1)$ is not normal,

but it is countably paracompact. In [KOT], the normality of $A\cross B$ , where $A$ and

$B$ are subspaces of an ordinal, was characterized and it was shown that normality,

shrin.king and collectionwise normality of $A\cross B$ are equivalent. In $\mathrm{p}$.articular:

Theorem 1. [KOT] Let $A$ and $B$ be subspaces of $\omega_{1}$ . Then the followifng are

equivalent:

(1) $A\cross B$ is (collectionwise) normal.

(2) $A\cross B$ is shrinking.
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(3) $A$ is not stationary in $\omega_{1},$
$Bi_{\mathit{8}}$ not stationary in $\omega_{1}$ or $A\cap Bi_{\mathit{8}}$ stationary.

(4) $A\cross B$ is countably paracomapct.

Take disjoint stationary sets $A$ and $B$ in $\omega_{1}$ . Then by this theorem, $A\cross B$ is

neither normal nor countably paracompact.

Question in [KOT].

(a) If $A$ and $B$ are subspaces of an ordinal, then is $A\cross B$ countably meta-

comapct?

(b) For any subspace $X$ of the square of an ordinal, are normality, collectionwise

normality and shrinking property equivalent?

Recently an affimative answer of (a) is given by N. Kemoto and K. D. Smith as

follows.

Theorem 2. [KS] All $sub_{\mathit{8}}paCes$ of the square of an ordinal are countably meta-

compact.

In the proof of Theorem 2, they used a set-theoretical technic ”the diagonal

intersection”. We thought this technic would be applicable for solving (b). We

have gotten a complete affirmative answer of (b). For brevity, we will show the

equivalence of normality and shrinking property of subspaces of $\omega_{1}^{2}$ .

Note that, if $A$ is a countable subspace of $\omega_{1}$ , then, since $A$ is non-stationary,

by Theorem 1, $A\cross B$ is normal for each $B\subset\omega_{1}$ . In particular, as is well known,

$(\omega+1)\cross\omega_{1}$ is normal. But as is shown in the next example, there is a non-normal

subspace of $(\omega+1)\cross\omega_{1}$ .

Example 1. Put $X=\omega\cross\omega_{1}\cup\{\omega\}\mathrm{x}(\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1))$ , where $\mathrm{L}\mathrm{i}\mathrm{m}(A)=\{\alpha<\omega_{1}$ :

$\sup(A\cap\alpha)=\alpha\}$ . Note that $\mathrm{L}\mathrm{i}\mathrm{m}(A)$ is the set of all cluster point of $A$ in $\omega_{1}$ , hence
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it is closed in $\omega_{1}$ . Put $F=\omega\cross \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})$ and $H=\{\omega\}\cross(\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1))$ . Then

they are disjoint closed sets in $X$ . Let $U$ be an open set containing $H$ . For each

$\alpha\in\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1)$ , pick $n(\alpha)\in\omega$ such that $[n(\alpha),\omega]\mathrm{x}\{\alpha\}\subset U$ . Since $\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1)$

is uncountable, there are uncountable subset $C\subset\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})$ and $n\in\omega$ such

that $n(\alpha)=n$ for each $\alpha\in C$ . Observe that $[n,\omega]\cross C\subset U$ . Pick $\alpha\in \mathrm{L}\mathrm{i}\mathrm{m}(C)$ .

Noting $\mathrm{L}\mathrm{i}\mathrm{m}(C)\subset \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})$, we have $\langle$ $n,$ $\alpha)\in[n,\omega]\cross \mathrm{L}\mathrm{i}\mathrm{m}(C)\cap F\subset \mathrm{C}1U\cap F$. This

argument shows $X$ is not normal.

We use the following notation: Let $X\subset\omega_{1}^{2},$ $\alpha<\omega_{1}$ and $\beta<\omega_{1}$ . Put $V_{\alpha}(X)=$

$\{\beta<\omega_{1} : \langle\alpha, \beta\rangle\in X\},$ $H_{\beta}(X)=\{\alpha<\omega_{1} : (\alpha, \beta\rangle\in X\}$ and $\triangle(X)=\{\alpha<$

$\omega_{1}$ : $\langle$

$\alpha,$ $\alpha)\in X\}$ . Moreover put $A=$ { $\alpha<\omega_{1}$ : $V_{\alpha}(X)$ is stationary in $\omega_{1}$ } and

$B=$ { $\beta<\omega_{1}$ : $H_{\beta}(X)$ is stationary in $\omega_{1}$ }. Finally, for subsets $C$ and $D$ of $\omega_{1}$ , put

$X_{C}=X\cap C\cross\omega_{1},$ $X^{D}=X\cap\omega_{1}\cross D$ and $X_{C}^{D}=X\cap C\cross D$ .

We will show:

Theorem. Let $X\subset\omega_{1}^{2}$ . Then the following are equivalent.

(1) $X$ is shrinking.

(2) $X$ is $norm\alpha l$.

(3) (3-1a) If $\alpha$ is a limit ordinal in $\omega_{1}$ and $V_{\alpha}(X)$ is not staionary in $\omega_{1}$ , then

there is a $cub$ ($=cl_{os}ed$ unbounded) set $D\subset\omega_{1}$ such that $X_{\{\alpha\}}$ and $X^{D}$ are

separated.

(3-1b) If $\beta i_{\mathit{8}}$ a limit ordinal in $\omega_{1}$ and $H_{\beta}(X)$ is not staionary in $\omega_{1}$ , then

there is a $cub$ set $C\subset\omega_{1}$ such that $X^{\{\beta\}}$ and $X_{C}$ are separated.

(3-2) If $\triangle(X)$ is not stationary in $\omega_{1}$ , then there is a $cub$ set $C\subset\omega_{1}\mathit{8}uch$

that $X_{C}$ and $X^{C}$ are separated.
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Intuitively, we may consider (3-1a) is a condition which guarantees the normality

(shrinking) of $X_{\alpha+1}$ for each $\alpha<\omega_{1}$ , and (3-1b) the normality (shrinking) of $X^{\beta+1}$

for each $\beta<\omega_{1}$ . After knowing $X_{\alpha+1}$ and $X^{\beta+1}$ are normal (shrinking) for each

$\alpha,$ $\beta<\omega_{1},$ $(3- 2)$ is a condition which guarantees the normality (shrinking) of $X$ .

Before proving this theorem, we prepare some lemmas.

Lemma $0$ .

(1) If $C$ is a $cub$ set in $\omega_{1}$ , then $\omega_{1}\backslash Ci_{\mathit{8}}$ represented as $\alpha$ free union of bounded

open intervals of $\omega_{1}$ , and covered by a disjoint collection of bounded closed

and open intervals in $\omega_{1}$ .

(2) If $X\subset\omega_{1}^{2},$ $Ci_{\mathit{8}}$
$a$ $cub\mathit{8}et$ in $\omega_{1}\alpha ndX_{\alpha+1}$ is normal (shrinking) for each

$\alpha<\omega_{1}$ , then $X_{\omega_{1}\backslash C}$ is normal $(\mathit{8}hrinking)$ .

Proof. (1): Put $h( \alpha)=\sup(C\cap\alpha)$ for each $\alpha\in C$ . Then

$\omega_{1}\backslash C=\oplus(h(\alpha), \alpha)\subset\alpha\in C\backslash \mathrm{L}\mathrm{i}\mathrm{m}(C)\alpha\in c\backslash \bigoplus_{C\mathrm{L}:\mathrm{m}()}(h(\alpha), \alpha]$
.

(2): Assume $X_{\alpha+1}$ is normal (shrinking) for each $\alpha<\omega_{1}$ . Let $\alpha<\omega_{1}$ be a

limit ordinal. Take a strictly increasing cofinal sequenc $\{\alpha_{n} : n\in\omega\}$ in $\alpha$ . Then

$X_{\alpha}=\oplus_{n\in\omega}X_{(\alpha_{n}-\alpha_{n}]}1,$ , where $\alpha_{-1}=-1$ , is normal (shrinking), because $X_{(]}\alpha n-1,\alpha n$

is a closed and open subspace of $X_{\alpha_{n}+1}$ . Therefore $X_{\alpha}$ is normal (shrinking) for each

$\alpha<\omega_{1}$ . Since, by (1), $X_{\omega_{1}\backslash C}=\oplus_{\alpha\in C\backslash \mathrm{L}}:\mathrm{m}(c)X_{(h(\alpha),\alpha)}$, it is normal (shrinking).

It is easy to show:

Lemma 1. Assume $X$ is the finite union of closed subspaces $X_{i}$ ’s, $i\in n$ . If $\mathcal{U}$ is

an open cover such that, for each $i\in n,$ $\mathcal{U}$ has a closed shrinking $\mathcal{F}_{i}$ which covers

$X_{i}$ , then $\mathcal{U}ha\mathit{8}$ a closed shrinking which covers $X$ .
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This shows the following:

Lemma 2. Assume $X$ is the union of two $\mathit{8}hrinking$ open $\mathit{8}ubspacesY$ and Z. If

$X\backslash \mathrm{Y}$ and $X\backslash Z$ are separated, then $X$ is shrinking.

Lemma 3. If $X$ is a normal subspace of $\omega_{1}^{2}$ such that $\triangle(X)$ is not stationary in

$\omega_{1_{J}}$ then there is a $cub$ set $C$ in $\omega_{1}$ such that $X\cap C^{2}=\emptyset$ .

Proof. First we show the following claim.

Claim. $A=$ { $\alpha<\omega_{1}$ : $V_{\alpha}(X)$ is stationary in $\omega_{1}$ } is not stationary in $\omega_{1}$ .

Proof of Claim. Assume $A$ is staionary in $\omega_{1}$ . For each $\alpha\in A$ , fix $h(\alpha)<\omega_{1}$ with

$\alpha<h(\alpha)\in V_{\alpha}(X)\cap\bigcap_{\alpha\in A\cap\alpha},\mathrm{L}\mathrm{i}\mathrm{m}(V_{\alpha}’(X))$ . For each $\alpha\in\omega_{1}\backslash A$ , define $h(\alpha)=0$ .

Take a cub set $C’$ in $\omega_{1}$ disjoint from $\triangle(X)$ and put $C=\{\alpha<\omega_{1}$ : $\forall\alpha’<\alpha(h(\alpha’)<$

$\alpha)\}\cap C’$ . Then $C$ is cub in $\omega_{1}$ , therefore $A’=A\cap C$ is staionary in $\omega_{1}$ . For each

$\alpha\in A’$ , put $x_{\alpha}=\langle\alpha, h(\alpha)\rangle$ , then, by $h(\alpha)\in V_{\alpha}(X)$ , we have $x_{\alpha}\in X$ . We shall

show $F=\{x_{\alpha} : \alpha\in A’\}$ is closed discrete in $X$ . To show this, let $\langle\gamma, \delta\rangle\in X$ .

First assume $\gamma\in\omega_{1}\backslash C$ . Then, by the closedness of $C$ , there is $\gamma’<\gamma$ such that

$(\gamma’, \gamma]\cap C=\emptyset$ . Then $U=(\gamma’,\gamma]\cross\omega_{1}\cap X$ is an neighborhood of $\langle\gamma, \delta\rangle$ missing $F$ .

$\mathrm{N}\mathrm{e}\mathrm{x}\mathrm{t}\sim$ assume $\gamma\in C$ . If $\gamma>\delta$ , then $U=(\delta, \gamma]_{\mathrm{X}}[0, \delta]\cap X\mathrm{i}\mathrm{S}\mathrm{a}J1_{\mathrm{S}\mathrm{O}}$ a neighborhood of

$\langle\gamma, \delta\rangle$ missing $F$ . So assume $\mathit{7}\leq\delta$ . Since $C’$ is disjoint from $\triangle(X)$ and $\gamma\in C\subset C’$ ,

we have $\gamma\neq\delta$ . Then $U=[0, \gamma]\cross(\gamma, \delta]\cap X$ is an neighborhood of $\langle\gamma, \delta\rangle$ which

intersects $F$ with at most one point. This argument shows $F$ is closed discrete in

X.

Since $A’$ is staionary in $\omega_{1}$ , we can decompose $A’$ into two disjoint stationary sets

$T_{0}$ and $T_{1}$ in $\omega_{1}$ . Put $F_{i}=\{x_{\alpha} : \alpha\in T_{i}\}$ for each $i\in 2=\{0,1\}$ . Let $U_{i}$ be an open

set containing $F_{i}$ for each $i\in 2$ . For each $\alpha\in T_{i}$ , by $x_{\alpha}=\langle\alpha, h(\alpha)\rangle\in F_{i}\subset U_{i}$ , we
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can fix $f(\alpha)<\alpha$ and $g(\alpha)<h(\alpha)$ such that $(f(\alpha), \alpha]\mathrm{X}(g(\alpha), h(\alpha)]\cap X\subset U_{i}$ . By

the $\mathrm{P}\mathrm{D}\mathrm{L}$ ( $=\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}$ Down Lemma), we find $\gamma_{i}<\omega_{1}$ and a staionary set $T_{i}’\subset T_{i}$

such that $f(\alpha)=\gamma_{i}$ for each $\alpha\in T_{i}’$ . Put $\mathit{7}=\max\{\gamma 0,\mathit{7}1\}$ . Then we have

$(\gamma, \alpha]\cross(g(\alpha), h(\alpha)]\cap X\subset U_{i}$ for each $\alpha\in T_{i}’$ with $i\in 2$ . Fix $\alpha_{0}\in A$ with

$\mathit{7}<\alpha_{0}$ . Moreover fix $\beta_{0}\in \mathrm{n}i\in 2\mathrm{L}\mathrm{i}\mathrm{m}(T)i’\cap V_{\alpha_{0}}(X)$ with $\alpha_{0}<\beta_{0}$ . We shall show

$\langle\alpha_{0}, \beta_{0}\rangle\in \mathrm{C}1U_{0}\cap \mathrm{C}1U_{1}$ . To show this, let $V$ be an open neighborhood of $\langle\alpha_{0}, \beta 0\rangle$ .

Then we can find $\beta<\beta_{0}$ such that $\alpha_{0}\leq\beta$ and $\{\alpha_{0}\}\cross(\beta, \beta_{0}]\cap X\subset V$ . By

$\beta_{0}\in \mathrm{L}\mathrm{i}\mathrm{m}(T’)0$

’ we can find $\delta,$ $\delta’\in T_{0}’$ with $\beta<\delta<\delta’<\beta_{0}$ . Since $T_{0}’\subset C$ and

$\delta<\delta’$ , we have $h(\delta)<\delta’$ . On the other hand, by $\beta<h(\delta),$ $g(\delta)<h(\delta)$ and

$h(\delta)\in \mathrm{L}\mathrm{i}\mathrm{m}(V\alpha_{0}(X))$ , there is $\iota \text{ノ_{}0}\in V_{\alpha_{0}}(X)$ such that $\max\{\beta, g(\delta)\}<$ \iota ノ 0 $<h(\delta)$ .

Then

$\langle\alpha_{0}, \mathcal{U}_{0}\rangle\in\{\alpha_{0}\}\mathrm{x}(\beta, \beta_{0}]\cap(\gamma, \delta]\mathrm{x}(g(\delta), h(\delta)]\cap x\subset V\cap U_{0}$ .

Thus $\langle\alpha_{0}, \beta 0\rangle\in \mathrm{C}1U_{0}$ . Similarly we have $\langle\alpha_{0}, \beta 0\rangle\in \mathrm{C}1U_{1}$ . But this contradicts the

normality of $X$ . This completes the proof of the Claim.

Similarly we can prove $B$ is not stationary in $\omega_{1}$ .

Take a cub set $D$ in $\omega_{1}$ disjoint from $A\cup B\cup\triangle(X)$ . For each $\mathit{7}\in D$ , by $\gamma\not\in A\cup B$ ,

we can fix a cub set $C_{\gamma}$ in $\omega_{1}$ disjoint from $V_{\gamma}(X)\cup H_{\gamma}(X)$ . Then, by a similar

argument of [Ku, II, Lemma 6.14], $E=\{\alpha\in D : \forall\gamma\in D\cap\alpha(\alpha\in C_{\gamma})\}$ is a cub

set in $\omega_{1}$ . Assume $\langle\gamma, \alpha\rangle\in X\cap E^{2}$ . Since $D$ is disjoint from $\triangle(X)$ and $E\subset D$ , we

have $\gamma\neq\alpha$ . We may assume $\mathit{7}<\alpha$ . Since $\alpha\in E$ and $\gamma\in E\cap\alpha\subset D\cap\alpha$ , we have

$\alpha\in C_{\gamma}$ . Thus $\alpha\not\in V_{\gamma}(X)$ . This shows $\langle\gamma, \alpha\rangle\not\in X$ , a contradiction. This completes

the proof of Lemma 3.

Proof of the Theorem. (1) $arrow(2)$ is evident.
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(2) $arrow(3)$ : Let $X$ be a normal subspace of $\omega_{1}^{2}$ .

(3-1a): Assume $\alpha$ is a limit ordinal in $\omega_{1}$ and $V_{\alpha}(X)$ is not stationary in $\omega_{1}$ . Take

a cub set $D$ in $\omega_{1}$ disjoint from $V_{\alpha}(X)$ . Since $X_{\{\alpha\}}$ and $X^{D}$ are disjoint closed sets

of the normal space $X$ , they are separated.

(3-1b): Similar.

(3-2): By Lemma 3.

(3) $arrow(1)$ : Assume the clause (3). First we show the following Lemma.

Lemma 4. $X_{\alpha+1}$ is shrinking for each $\alpha<\omega_{1}$ .

Proof. We prove this Lemma by induction. The cases of $\alpha=0$ and $\alpha=\alpha’+1$ are

almost trivial. So assume $\alpha$ is a limit ordinal in $\omega_{1}$ and $X_{\alpha’+1}$ is shrinking for each

$\alpha’<\alpha$ .

First assume $V_{\alpha}(X)$ is not staionary in $\omega_{1}$ . By (3-1a), take a cub set $D$ in

$\omega_{1}$ such that $X_{\{\alpha\}}$ and $X^{D}$ are separated, therefore $X_{\{\alpha\}}$ and $X_{\alpha+1}^{D}$ are sepa-

rated. The argument in the proof of (2) of Lemma $0$ shows $X_{\alpha}$ is shrinking open

subspace of $X_{\alpha+1}$ . Since $X_{\alpha+}^{\omega_{1}\backslash _{1}D}$ is a free union of countable subspaces, it is shrink-

ing open subspace of $X_{\alpha+1}$ . Since $X_{\alpha+1}=X_{\alpha}\cup X_{\alpha+1}^{\omega_{1}\backslash D},$ $X_{\alpha+1}\backslash X_{\alpha}=X_{\{\alpha\}}$ and

$X_{\alpha+1}\backslash X^{\omega\backslash }\alpha+11D=X_{\alpha+1}^{D}$ , by Lemma 2, $X_{\alpha+1}$ is shrinking.

Next assume $V_{\alpha}(X)$ is stationary in $\omega_{1}$ . Let $\mathcal{U}$ be an open cover of $X_{\alpha+1}$ . For

each $\beta\in V_{\alpha}(X)$ , fix $f(\beta)<\alpha,$ $g(\beta)<\beta$ and $U(\beta)\in \mathcal{U}$ such that $(f(\beta), \alpha]\mathrm{x}$

$(g(\beta), \beta]\cap X\subset U(\beta)$ . By the PDL and $|\alpha|<\omega_{1}$ , we find $\alpha_{0}<\alpha,$ $\beta_{0}<\beta$ and a

stationary set $S\subset V_{\alpha}(X)$ such that $f(\beta)=\alpha_{0}$ and $g(\beta)=\beta_{0}$ for each $\beta\in S$ . Put

$Z=(\alpha_{0}, \alpha]\cross(\beta_{0}, \omega_{1})\cap X$ . We show:

Claim. There $i_{\mathit{8}}$ a closed shrinking which covers $Z$
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Proof of the Claim. For each pair $\beta$ and $\beta’$ in $S$ , define $\beta\sim\beta’$ by $U(\beta)=U(\beta’)$ .

Then $\sim$ is an equivalence relation on $S$ . For each $E\in s/\sim$
’ put $U_{E}=U(\beta)$ for

some (eqivalently, any) $\beta\in E$ .

Case 1. There is $E\in s/\sim$ which is unbounded in $\omega_{1}$ .

In this case, for each $U\in \mathcal{U}$ , put

$F(U)=\{$
$Z$ , if $U=U_{E}$ ,
$\emptyset$ , otherwise.

Then $\mathcal{F}=\{F(U):U\in \mathcal{U}\}$ is a desired one.

Case 2. Each $E\in s/\sim \mathrm{i}\mathrm{s}$ bounded in $\omega_{1}$ .

In this case, by induction, take a strictly increasing sequence $\{\beta(\delta):\delta<\omega_{1}\}$ in

$\omega_{1}$ and a sequence $\{E(\delta) : \delta<\omega_{1}\}\subset s/\sim$ satisfying $\sup(\bigcup_{\delta<\delta},E(\delta’))<\beta(\delta)\in$

$E(\delta)$ for each $\delta<\omega_{1}$ . Note that elements of $\{E(\delta) : \delta<\omega_{1}\}$ are all distinct. For

each $U\in \mathcal{U}$ , put

$F(U)=\{$ $\emptyset(\alpha_{0},’\alpha]$

$\cross(\beta 0, \beta(\delta)]\cap X$ , if $U=U_{E(\delta)}$ for some $\delta<\omega_{1}$ ,
otherwise.

Then $\mathcal{F}=\{F(U) : U\in \mathcal{U}\}$ is a desired one. This completes the proof of the Claim.

By the inductive assumption, $X_{\alpha_{0}+1}$ is shrinking. Moreover, by countability of

$X_{\alpha+}^{\beta_{0}+1}1$

’ it is shrinking. Since $X_{\alpha+1}$ is the union of closed subspaces $X_{\alpha_{0}+1},$ $X_{\alpha+1}^{\beta_{0}+1}$

and $Z$ , by the above claim and Lemma 1, we can find a closed shrinking of $\mathcal{U}$ which

covers $X_{\alpha+1}$ . This completes the proof of Lemma 4.

In a similar way, using (3-1b), we can show $X^{\beta+1}$ is shrinking for each $\beta<\omega_{1}$ .

To show $X$ is shrinking, first assume $\triangle(X)$ is not stationary. By (3-2), $\dot{\mathrm{t}}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ is

a cub set $C$ in $\omega_{1}$ such that $X_{C}$ and $X^{C}$ are separated. Therefore, by Lemma $0$

and Lemma 2, $X=X_{\omega_{1}\backslash C}\cup X^{\omega_{1}\backslash C}$ is shrinking.
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Finally assume $\triangle(X)$ is stationary. Let $\mathcal{U}$ be an open cover of $X$ . For each

$\alpha\in\triangle(X)$ , fix $f(\alpha)<\alpha$ and $U(\alpha)\in \mathcal{U}$ such that $(f(\alpha), \alpha]^{2}\cap X\subset U(\alpha)$ . Then, by

the PDL, we find $\alpha_{0}<\omega_{1}$ and a stationary set $S\subset\triangle(X)$ such that $f(\alpha)=\alpha_{0}$ for

each $\alpha\in S$ . Put $Z=(\alpha_{0},\omega_{1})^{2}\cap X$ . Then, by a similar argument of Lemma 4, we

can get a closed shrinking of $\mathcal{U}$ which covers $X=X_{\alpha_{0}+1}\cup X^{\alpha_{0}+1}\cup Z$ . Thus $X$ is

shrinking. This completes the proof of the Theorem.

Hereafter we give some examples and related problems.

Consider $X=\omega_{1}^{2}$ . Since $V_{\alpha}(X)$ and $H_{\beta}(X)$ are the stationary set $\omega_{1}$ for each

$\alpha,$
$\beta<\omega_{1}$ and $\triangle(X)$ is also the staionary set $\omega_{1}$ , the clause (3) of the Theorem is

satisfied. So $X$ is normal.

Example 2. Let $A$ and $B$ be disjoint stationary sets in $\omega_{1}$ and put $X=A\cross B$ .

Let $\alpha$ be a limit ordinal in $\omega_{1}$ . Then we have

$V_{\alpha}(X)=\{$

$B$ , if $\alpha\in A$ ,
$\emptyset$ , otherwise.

Therefore, if $V_{\alpha}(X)$ is not stationary, it must be $\alpha\not\in A$ and $V_{\alpha}(X)=\emptyset$ , so $X_{\{\alpha\}}=\emptyset$ .

Therefore $X_{\{\alpha\}}$ and $X^{\omega_{1}}$ are separated. This argument witnesses (3-1a). Similarly

we have (3-1b). Therefore $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha,$
$\beta<\omega_{1}$ .

Note that $\triangle(X)=\emptyset$ . Let $C$ be a cub set in $\omega_{1}$ . Then $X\cap C^{2}=(A\cap C)\cross(B\cap C)\neq$

$\emptyset$ , equivalently $X_{C}\cap X^{C}\neq\emptyset$ . Thus $X_{C}$ and $X^{C}$ can not be separated. Therefore

$X$ is not normal, because the clause (3-2) is not satisfied.

Example 3. Let $X=\{\langle\alpha, \beta\rangle\in\omega_{1}^{2} : \alpha\leq\beta\}$ and $Y=\{\langle\alpha, \beta\rangle\in\omega_{1}^{2} : \alpha<\beta\}$ .

Checking (3-1a) and (3-1b), we can show $X\alpha+1,$ $X^{\beta+}1,$ $Y\alpha+1$ and $\mathrm{Y}^{\beta+1}$ are normal

for each $\alpha,$ $\beta<\omega_{1}$ .
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Since $\triangle(X)=\omega_{1}$ is staionary, (3-2) for $X$ is stisafied. Thus $X$ is normal $(\mathrm{b}\mathrm{u}\mathrm{t}$

this is obvious, because $X$ is a closed subspace of $\omega_{1}^{2}$ ). On the other hand, note

that $\triangle(\mathrm{Y})=\emptyset$ . For each cub set $C$ in $\omega_{1}$ , pick $\alpha$ and $\beta$ in $C$ with $\alpha<\beta$ . Then

$\langle$

$\alpha,$
$\beta)\in \mathrm{Y}\cap C^{2}$ . Therefore (3-2) for $\mathrm{Y}$ is not satisfied. Thus $\mathrm{Y}$ is not normal.

Let $X=\omega_{1}\cross(\omega_{1}+1)$ . Observe that $X\cap\omega_{1}^{2}=\omega_{1}^{2}$ is normal, and $X_{\alpha+1}$ and

$X^{\beta+1}$ are normal for each $\alpha,$
$\beta<\omega_{1}$ . Since $\{\langle\alpha, \alpha\rangle : \alpha\in\omega_{1}\}$ and $X^{\{\omega_{1}\}}$ can not be

separated, $X$ is not normal. Note that both $\triangle(X)$ and $H_{\omega_{1}}(X)$ are the stationary

set $\omega_{1}$ . Next we give such an example $X\subset\omega_{1}\cross(\omega_{1}+1)$ , but $\triangle(X)$ and $H_{\omega_{1}}(X)$

are not stationary.

Example 4. Let

$X=[\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1)]\cross[(\omega_{1}+1)\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})]\cup\{\langle\alpha, \alpha+1\rangle : \alpha\in \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})\}$.

Observe that $X\cap\omega_{1}^{2}$ is normal, $X_{\alpha+1}$ and $X^{\beta+1}$ are normal for each $\alpha,$ $\beta<\omega_{1}$

and both $\triangle(X)$ and $H_{\omega_{1}}(X)$ are the non-stationary set $\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1)$ . By a similar

argument in Lemma 3, we can see $F=\{\langle\alpha, \alpha+1\rangle : \alpha\in \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})\}$ is closed

(discrete). We shall show $F$ and $X^{\{\omega_{1}\}}$ can not be separated. To show this, let $U$

be an open set containing $F$ . For each $\alpha\in \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})$ , by $\langle\alpha, \alpha+1\rangle\in F\subset U$ , take

$f(\alpha)<\alpha$ such that $(f(\alpha), \alpha]\mathrm{x}\{\alpha+1\}\cap X\subset U$ . By the PDL, there are $\alpha_{0}<\omega_{1}$

and a stationary set $S\subset \mathrm{L}\mathrm{i}\mathrm{m}(\omega_{1})$ such that $f(\alpha)=\alpha_{0}$ for eachf $\alpha\in S$ . Take

$\beta\in\omega_{1}\backslash \mathrm{L}\mathrm{i}\mathrm{m}(\omega 1)$ with $\alpha_{0}<\beta$ . Noting $\langle$ $\beta,$ $\alpha+1)\in X$ for each $\alpha\in S$ with $\alpha>\beta$ ,

we have

$\langle\beta,\omega_{1}\rangle\in \mathrm{C}1\{\langle\beta, \alpha+1\rangle : \alpha\in S, \alpha>\beta\}\cap X\{\omega_{1}\}\subset \mathrm{C}1U\cap x^{\{\}}\omega_{1}$.

Thus $F$ and $X^{\{\omega_{1}\}}$ can not be separated.
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In these connections, we have the next question.

Question 1. Does there exsist a non-normal subspace X of $\omega_{1}\cross\omega_{2}$ such that $X_{\alpha+1}$

and $X^{\beta+1}$ are normal for each $\alpha<\omega_{1}$ and $\beta<\omega_{2}$ .

In this connection, we show:

Proposition. If $X=A\cross B$ is a $sub_{\mathit{8}}pace$ of $\omega_{1}\mathrm{x}\omega_{2}$ such that $X_{\alpha+1}$ and $X^{\beta+1}$

are normal for each $\alpha<\omega_{1}$ and $\beta<\omega_{2}$ , then $X$ is normal.

Proof. If $A$ is not staionary in $\omega_{1}$ , then take a cub set $C$ in $\omega_{1}$ disjoint from $A$ .

Then, by (2) of Lemma $0,$ $X=X_{\omega_{1}\backslash C}$ is normal. Similarly $X$ is normal if $B$ is not

stationary in $\omega_{2}$ . So we may assume $A$ and $B$ are stationary in respectively $\omega_{1}$ and

$\omega_{2}$ . Let $\mathcal{U}=\{U_{i} : i\in 2\}$ be an open cover of $X$ . Fix $\alpha\in A$ . For each $\beta\in B$ , fix

$f(\alpha, \beta)<\alpha,$ $g(\alpha, \beta)<\beta$ and $i(\alpha, \beta)\in 2$ such that $(f(\alpha, \beta),$ $\alpha]\mathrm{x}(g(\alpha, \beta),$ $\beta]\cap X\subset$

$U_{i(\alpha,\beta)}$ . Applying the PDL to $B$ , we find $f(\alpha)<\alpha,$ $g(\alpha)<\omega_{2},$ $i(\alpha)\in 2$ and

a stationarty set $B(\alpha)\subset B$ in $\omega_{2}$ such that $f(\alpha, \beta)=f(\alpha),$ $g(\alpha, \beta)=g(\alpha)$ and

$i(\alpha, \beta)=i(\alpha)$ for each $\beta\in B(\alpha)$ . Then, applying the PDL to $A$ , we find $\alpha_{0}<\omega_{1}$ ,

$i_{0}\in 2$ and a stationary set $A’\subset A$ in $\omega_{1}$ such that $f(\alpha)=\alpha_{0}$ and $i(\alpha)=i_{0}$ for each

$\alpha\in A’$ . Put $\beta_{0}=\sup\{g(\alpha) : \alpha\in A’\}$ . Then we have $Z=(\alpha_{0}, \omega_{1})\cross(\beta_{0},\omega_{2})\cap X\subset$

$U_{i_{0}}$ . Since $X$ is the union of closed subspaces, $X_{\alpha_{0}+1},$
$X^{\beta+}01$ and $Z,$ $\mathcal{U}$ has a closed

shrinking which covers $X$ . Therefore $X=A\cross B$ is normal.

By Theorem 1, normality and countable paracompactness of $A\cross B\subset\omega_{1}^{2}$ are

equivalent. In this connection, it is natural to ask:

Question 2. For any $X\subset\omega_{1}^{2}$ , are normality and countable paracompactness equiv-

alent?
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Finally we restate a question from [KOT]

$Que\mathit{8}tion\mathit{3}$ . For any subspace $X$ of the square of an ordinal, are countable paracom-

pactness, expandability, strong $\mathrm{D}$ -property and weak $\mathrm{D}(\omega)$ -property equivalent?
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