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NORMAL SUBSPACES OF &?
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Let F' and H be subsets of a space X. F and H are separated if there are disjoint
open sets U and V with FF C U and H C V. Moreover let & be an open cover
of a space X. A collection F = {F(U) : U € U} of subsets of X is srinking of
U if F(U) C U for each U € U. Here we do not require F covers X. A space is
normal if each pair of disjoint closed sets are separated. A space X is shrinking if
each open cover of X has a closed shrinking, i.e. a shrinking by closed sets, which
covers X. By these definitions, shrinking spaces are normal, and collectionwise
normal spaces are normal. It is well known that all subspaces of an ordinal space,
more generally all GO-spaces, are shrinking, (collectionwise) normal and countably
paracompact. It is also well known the product space w; x (w1 + 1) is not normal,
but it is countably paracompact. In [KOT], the normality of A X B , where A and
B are subspaces of an ordinal, was characterized and it was shown that normality,

shrinking and collectionwise normality of A x B are equivalent. In particular:
Theorem 1. [KOT] Let A and B be subspaces of wy. Then the followifng are
equivalent:

(1) A x B s (collectionwise) normal.

(2) A x B 1s shrinking.



(3) A is not stationary in wy, B is not stationary in wy or AN B 1is stationary.

(4) A x B is countably paracomapct.

Take disjoint stationary sets A and B in w;. Then by this theorem, A x B is

neither normal nor countably paracompact.
Question in [KOT].
(a) If A and B are subspaces of an ordinal, then is A X B countably meta-
comapct?
(b) For any subspace X of the square of an ordinal, are normality, collectionwise

normality and shrinking property equivalent?

Recently an affimative answer of (a) is given by N. Kemoto and K. D. Smith as

follows.

Theorem 2. [KS] All subspaces of the square of an ordinal are countably meta-

compact.

In the proof of Theorem 2, they used a set-theoretical technic ”the diagonal
intersection™. We thought this technic would be applicable for solving (b). We
have gotten a complete affirmative answer of (b). For brevity, we will show the
equivalence of normality and shrinking property of subspaces of w?.

Note that, if A is a countable subspace of wi, then, since A is non-stationary,
by Theorem 1, A X B is normal for each B C w;. In particular, as is well known,
(w+1) X wy is normal. But as is shown in the next example, there is a non-normal

subspace of (w + 1) x wy.

Example 1. Put X = w X w; U {w} X (w1 Lim(w;)), where Lim(A) = {a < w; :

sup(ANa) = a}. Note that Lim(A) is the set of all cluster point of A in w;, hence

62



it is closed in w;. Put F = w X Lim(w;) and H = {w} x (w1\Lim(w;)). Then
they are disjoint closed sets in X. Let U be an open set containing H. For each
a € wy\ Lim(wy ), pick n(a) € w such that [n(a),w] x {a} C U. Since wy\ Lim(w;)
is uﬁcountable, there are uncountable subset C' C w;\Lim(w;) and n € w such
that n(a) = n for each @ € C. Observe that [n,w] x C C U. Pick a € Lim(C).
~ Noting Lim(C) C Lim(w; ), we have (n,a) € [n,w] x Lim(C)N F C CLU N F. This

argument shows X is not normal.

We use the following notation: Let X C w?, a < w; and B < w;y. Put Vo(X) =
(B <wr: (mf) € X}, Ho(X) = {a < wn : (o) € X} and AX) = {a <
wy : (a,a) € X}. Moreover put A = {a < w; : Vo(X) is stationary in w; } and
B ={B <w : Hy(X) is stationary in w; }. Finally, for subsets C and D of w;, put

Xe=XNCxuw,XP=XNw; xDand XE =XnNC xD.
We will show:

Theorem. Let X Cw?. Then the following are equivalent.

(1) X is shrinking.

(2) X is normal.

(8) (8-1a) If « is a limit ordinal in wy and Vo(X) is not staionary in wy, then
there is a cub (=closed unbounded) set D C wy such that X (o} and X are
separated.

(3-1b) If B 1s a limit ordinal in wy and Hg(X) is not statonary in wq, then
there is a cub set C C wy such that X1#} and X are separated.
(3-2) If A(X) is not stationary in wy, then there is a cub set C C wy such

that Xc and X© are separated.
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Intuitively, we may consider (3-1a) is a condition which guarantees the normality
(shrinking) of X, for each a < wy, and (3;1b) the normality (shrinking) of X#+!
for each # < wy. After knowing X,41 and X?#+! are normal (shrinking) for each
a,f < wq, (3-2) is a condition which guarantees the normality (shrinking) of X.

Before proving this theorem, we prepare some lemmas.

Lemma 0.

(1) If C is a cub set in wy, then wi\C is represented as a free union of bounded
open intervals of wy, and covered by a disjoint collection of bounded closed
and open intervals in w.

(2) If X C w?, C is a cub set in w; and Xqoyqq 18 normal (shrinking) for each

a < wi, then X, \¢ is normal (shrinking).

Proof. (1): Put h(a) = sup(C N «) for each a € C. Then
\C= P k@ B (Wa)al
«€C\ Lim(C) «€C\ Lim(C)

(2): Assume X,4; is normal (shrinking) for each o < w;. Let o < w; be a
limit ordinal. Take a strictly increasing cofinal sequenc {a, : n € w} in a. Then
Xo = Drew X(an_1,an]> Where a_; = —1, is normal (shrinking), because X(an—1,an]
isa ciosed and open subspace of X, 41. Therefore X, is normal (shrinking) for each

a < wj. Since, by (1), Xy \c = @aec\Lim(C) X(h(a),a), it is normal (shrinking).
It is easy to show:

Lemma 1. Assume X 1is the finite union of closed subspaces X;’s, 1 € n. If U 1is
an open cover such that, for each ¢ € n, U has a closed shrinking F; which covers

X;, then U has a closed shrinking which covers X.



This shows the following:

Lemma 2. Assume X is the union of two shrinking open subspaces Y and Z. If

X\Y and X\Z are separated, then X 1s shrinking.

Lemma 3. If X is a normal subspace of w? such that A(X) is not stationary in

wq, then there is a cub set C in wy such that X N C? = {).
Proof. First we show the following claim.
Claim. A = {a < wy : Vo(X) is stationary in wy} s not stationary in wy.

Proof of Claim. Assume A is staionary in w;. For each a € A, fix h(a) < w; with
a < h(a) € Val(X) NNy cane Lim(Var (X)). For each a’'€ wi\A, define h(a) = 0.
Take a cub set C' in w; disjoint from A(X) and put C = {a < w; : Yo' < a(h(a') <
a)} N C'. Then C' is cub in wq, therefore A’ = AN C is staionary in w;y. For each
a € A, put 2o = (o, h(a)), then, by h(a) € Vao(X), we have zo € X. We shall
show F' = {zq : @ € A'} is closed discrete in X. To show this, let (v,6) € X.
First assume v € wy\C. Then, by the closedness of C, there is v/ < v such that
(7,10 C = 0. Then U = (',7] x w1 N X is an neighborhood of (v, §) missing F.
Next assume"y €C.Ify>6 then U = (6] x [0,6] N X is also a neighborhood of
(v, 6) missing F. So assume v < 4. Since C' is disjoint from A(X) and v € C C C',
we have v # 6. Then U = [0,]  (7,6] N X is an neighborhood of (y,8) which
intersects F' with at most one point. This argument shows F is closed discrete in
X.

Since A’ is staionary in w;, we can decompose A’ into two disjoint stationary sets
To and Ty in wy. Put F; = {24 : a € T;} for each 7 € 2 = {0, 1}. Let U; be an open

set containing F; for each i € 2. For each a € T;, by z4 = (a, h(a)) € F; C U;, we
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can fix f(a) < o and g(a) < h(a) such that (f(a),a] x (9(a), h(a)]N X C U;. By
the PDL(=Pressing Down Lemma), we find v; < w; and a staionary set T; C T;
such that f(a) = «; for each @ € T]. Put v = max{y,71}. Then we have
(v,a] X (g(a),Ma)) N X C U; for each a € T/ with 1 € 2. Fix ay € A with
7 < ap. Moreover fix fy € (;p Lim(T!) N Vo (X) with ag < fo. We shall show
(ag,Bo) € ClUy N C1U;. To show this, let V' be an open neighborhood of (ag, o).
Then we can find 8 < By such that oy < 8 and {ap} x (8,8,) N X C V. By
Bo € Lim(T}), we can find 6,6’ € Ty with 8 < § < §' < fo. Since Ty C C and
6 < &', we have h(é) < §'. On the other hand, by 8 < h(6), g(6) < h(6) and
h(8) € Lim(Vyo(X)), there is vy € Vo (X) such that max{3,¢(6)} < vo < h(9).

Then

(a0, v0) € {an} x (B, Bo] N (7, 8] x (9(6), (6] N X C V N T,

Thus (g, o) € ClUy. Similarly we have (ag,8p) € C1U;. But this contradicts the

normality of X. This completes the proof of the Claim.

Similarly we can prove B is not stationary in wy.

Take a cub set D in w; disjoint from AUBUA(X). For eachy € D, by v ¢ AUB,
we can fix a cub set C, in w; disjoint from V,(X) U H,(X). Then, by a similar
argument of [Ku, II, Lemma 6.14], E = {a € D : Vy € DNa(a € Cy)} is a cub
set in w;. Assume (vy,a) € X N E%. Since D is disjoint from A(X) and E C D, we
have v # a. We may assume 7 < a. Since « € E and vy € ENa C DN «, we have
a € C,. Thus a ¢ V,(X). This shows (vy,a) ¢ X, a contradiction. This completes

the proof of Lemma 3.

Proof of the Theorem. (1) — (2) is evident.



(2) — (3): Let X be a normal subspace of w?.

(3-1a): Assume « is a limit ordinal in w; and V(X)) is not stationary in w;. Take
a cub set D in w; disjoint from V,(X). Since X{4} and X are disjoint closed sets
of the normal space X, they are separated.

(3-1b): Similar.

(3-2): By Lemma 3.

(3) — (1): Assume the clause (3). First we show the following Lemma.
Lemma 4. X, 1s shrinking for each o < wy.

Proof. We prove this Lemma by induction. The cases of @ = 0 and a = o' + 1 are
almost trivial. So assume « is a limit ordinél in wy and X,/ 47 is shrinking for each
a < a.

First assume V,(X) is not staionary in w;. By (3-1a), take a cub set D in
w1 sﬁch that X, and XD are separated, therefore X{ay and X£+1 are s\epa—
rated. The argument in the proof of (2) of Lemma 0 shows X, is shrinking open
subspace of Xy41. Since X :}F\lD is a free union of countable subspaces, it is shrink-
ing open subspace of X,4;1. Since Xo41 = Xy U X:_li_\lD, Xot1\Xo = X(q) and
X1\ X2\P = XD, || by Lemma 2, Xq11 is shrinking.

Next assume V,(X) is stationary in w;. Let U be an open cover of Xyy;. For
each B € Vo(X), fix f(B) < a, g(B) < B and U(B) € U such that (f(8),a] x
(9(8),B]N X C U(B). By the PDL and |a| < w1, we find ag < a, By < § and a
stationary set S C V,(X) such that f(8) = ao and ¢g(8) = fo for each g € S. Put

Z = (o, a] X (B, w1) N X. We show:

Claim. There is a closed shrinking which covers Z
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Proof of the Claim. For each pair 8 and ' in S, define 8 ~ g’ by U(8) = U(#').
Then ~ is an equivalence relation on S. For each E € /., put Ug = U(B) for

some (eqivalently, any) 3 € E.
Case 1. There is E € °/.. which is unbounded in wy.

In this case, for each U € U, put

Z, #U="Ug,

0, otherwise.

P = {
Then F = {F(U): U € U} is a desired one.
Case 2. Each E € ¥/ is bounded in w.

In this case, by induction, take a strictly increasing sequence {4(6): é < w1} in
w; and a sequence {E(é) 18 < wy} C 7/ satisfying sup(Uﬁ,v<5 E(8") < B(¢) €
E(8) for each § < w;. Note that elements of {E(6) : § < wy} are all distinct. For
each U € U, put

(g, a] % (Bo, B(8)]N X, if U= Ugs for some 6 < wy,

0, otherwise.

F(U) = {
Then F = {F(U): U € U} is a desired one. This completes the proof of the Claim.

By the inductive assumption, X4,+1 is shrinking. Moreover, by countability of

ngl'l, it is shrinking. Since X,4; is the union of closed subspaces Xy, +1, ngil
and Z, by the above claim and Lemma 1, we can find a closed shrinking of ¢ which

covers X,y1. This completes the proof of Lemma 4.

In a similar way, using (3-1b), we can show X?#*+! is shrinking for each 8 < w;.
To show X is shrinking, first assume A(X) is not stationary. By (3-2), there is
a cub set C in w; such that X¢ and X are separated. Therefore, by Lemma 0

and Lemma 2, X = Xul\d U X“1\C is shrinking.



Finally assume A(X) is stationary. Let & be an open cover of X. For each
a € A(X), fix f(a) < a and U(e) € U such that (f(a),a]? N X C U(a). Then, by
the PDL, we find @y < w; and a stationary set S C A(X) such that f(a) = aq for
each o € S. Put Z = (ap,w1)? N X. Then, by a similar argument of Lemma 4, we
can get a closed shrinking of & which covers X = Xq,41 U Xty Z. Thus X is

shrinking. This completes the proof of the Theorem.

Hereafter we give some examples and related problems.
Consider X = w?. Since Vo(X) and Hg(X) are the stationary set w; for each
o, < w; and A(X) is also the staionary set wy, the clause (3) of the Theorem is

s_atisﬁed. So X is normal.

Example 2. Let A and B be disjoint stationary sets in w; and put X = A x B.

Let o be a limit ordinal in w;. Then we have

B, ifacA,

0,  otherwise.

Va(x) = {

Therefore, if V(X ) is not stationary, it must be a ¢ A and Va(X) = 0, 50 X (o) = 0.
Thereforé X (o} and X“'are separated. This argument witnesses (3-1a). Similarly
we have (3-1b). Thereforek Xo41 and XP+! are normal for each o, <w;.

Note that A(X) = 0. Let C be a cub set iﬁ wi. Then XNC? = (ANC)x(BNC) #
0, equivalently Xo N X€ # §. Thus X¢ and X€ can not be separated. Therefore

X is not normal, because the clause (3-2) is not satisfied.

Example 3. Let X = {(a,f) € w? : a < B} and ¥ = {(o, B) € w} : a < B}.
Checking (3-1a) and (3-1b), we can show X441, XP#+1 Y,.; and YA*! are normal

for each a, f < w;.
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Since A(X) = w; is staionary, (3-2) for X is stisafied. Thus X is normal(but
this is obvious, because X is a closed subspace of w?). On the other hand, note
that A(Y) = 0. For each cub set C in wyq, pick a and B in C with a < 8. Then

(o, B) € Y N C?. Therefore (3-2) for Y is not satisfied. Thus Y is not normal.

Let X = w; x (w; +1). Observe that X Nw? = w? is normal, and X4, and
XPB+1 are normal for each @, 8 < w;. Since {(a,a) : @ € w1} and X{“1} can not be
separated, X is not normal. Note that both A(X) and H,, (X) are the stationary
set wy. Next we give such an example X C w; X (w; + 1), but A(X) and H,, (X)

are not stationary.

Example 4. Let
X = [wi\Lim(w1)] % [(w1 + 1)\ Lim(w1)] U {{e, 0 + 1) : € Lim(wy)}.

Observe that X N w? is normal, X441 and X#*! are normal for each «,f < w;
and both A(X) and H,,(X) are the non-stationary set w;\ Lim(w;). By a similar
argument in Lemma 3, we can see F' = {(a,a + 1) : a € Lim(w;)} is closed
(discrete). We shall show F and X{“1} can not be separated. To show this, let U
be an open set containing F. For each a € Lim(w), by (a,a+ 1) € F C U, take
f(a) < a such that (f(a),a] x {a+1} N X CU. By the PDL, there are ap < w;
and a stationary set S C Lim(w;) such that f(a) = ag for eachf & € S. Take
B € wi\ Lim(w;) with ap < 8. Noting (8,a + 1) € X for each a € S with a > f3,

we have
(B,w1) € CH{(B,a+1):a € S,a>pynX{} cClUnxi)

Thus F and X{“1} can not be separated.
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In these connections, we have the next question.

Question 1. Does there exsist a non-normal subspace X of w; X ws such that X4

and X#11 are normal for each o < w; and 8 < w;.
In this connection, we show:

Proposition. If X = A x B is a subspace of wy X wy such that Xoy1 and XPH1

are normal for each o < wy and f < wy, then X i3 normal.

Proof. If A is not staioﬁary in w;, then take a cub set C in w; disjoint from A.
Then, by (2) of Lemma 0, X = X, \¢ is normal. Similarly X is normal if B is not
stationary in w,. So we may assume A and B are stationary in reépectively wy and
wy. Let U = {U; : i € 2} be an open cover of X. Fix a € A. For each § € B, fix
f(@,8) < @, g(a, ) < B and i(a, B) € 2 such that (f(a, ), ] x (s(a, 8), 81N X C
Ui(a,5)- Applying the PDL to B, we find f(a) < @, g(a) < ws, i(a) € 2 and
a stationarty set B(a) C B in w, such that f(a,kﬂ) = f(a), g(a,B) = g(a) and
i(a,B) = i(a) for each § € B(a). Then, applying the PDL to A, we find o < wy,
ip € 2 and a stationary set A’ C A in w; such that f(a) = ap and ¢(a) = i for each
a € A'. Put By =sup{g(a): a € A'}. Then we have Z = (ag,w;) X (Bo,w2)NX C
U;,. Since X is the union of closed subspaces, Xq,+1, X! and Z, U has a closed

shrinking which covers X. Therefore X = A x B is normal.

By Theorem 1, normality and countable paracompactness of A x B C w? are

equivalent. In this connection, it is natural to ask:

~ Question 2. For any X C w?, are normality and countable paracompactness equiv-

alent?
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Finally we restate a question from [KOT]

Question 3. For any subspace X of the square of an ordinal, are countable paracom-

pactness, expandability, strong D-property and weak D(w)-property equivalent?
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