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ABSTRACT. The sequential order of a topological space is the least
ordinal for which the corresponding iteration of the sequential clo-
sure is idempotent. Lower estimates for the sequential order of the
product of two regular Fre’chet topologies and upper estimates for
the sequential order of the product of two subtransverse topologies
are given in terms of their fascicularity and sagittality. Conse-
quently it is possible for every countable ordinal $\alpha$ to construct
two Fr\’echet topologies with the sequential order of their product
equal to $\alpha$ . This paper is a short version of [6].

The sequential order $\sigma(x)$ of a point $x$ of a topological space $X$ is the
least ordinal $\alpha$ such that whenever $x$ belongs to an iterated sequential
closure of a set, then it belongs to its $\alpha$-iterated sequential closure. The
sequential order of $X$ is equal to $\sup_{x\in X}\sigma(X)$ .

Sequential order is always less than or equal to $\omega_{1}$ . Recall that a
topology is sequential if each sequentially closed set is closed. Fr\’echet
topologies are precisely the sequential topologies of sequential order
less than or equal to 1. It is well-known [1, 10, 8, 13] that the product
of two Re’chet topologies needs neither be sequential nor of order less
than or equal to 1. This paper is devoted to the study of the sequential
order of products of Fr\’echet topologies.

In [14] T. Nogura and A. Shibakov investigate the sequential order of
products of sequential topologies under the requirement that the prod-
ucts be also sequential. They prove in particular that if the product
of two R\’echet topologies admitting point countable $\mathrm{k}$-networks () is
sequential, then its sequential order is less than or equal to 2. On the
other hand they construct [14, Example 2.13] two Fk\’echet topologies
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with $\mathrm{p}\mathrm{o}\dot{\mathrm{i}}\mathrm{n}\mathrm{t}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}$ countable $k$-networks such that the sequential order (in
our sense) of their product equals 3.

Here we show that for every countable ordinal $\alpha$ , there exists a La\v{s}nev
space () whose square is of sequential order $\alpha$ (as La\v{s}nev spaces are
Fr\’echet spaces with point countable $\mathrm{k}$-networks, our square is not se-
quential for $\alpha>2$ , because of the above mentioned result).

In a forthcoming paper [15] T. Nogura and A. Shibakov construct,
under CH for each $\alpha\leq\omega_{1}$ , two strongly Hk\’echet topologies the product
of which is sequential and of sequential order $\alpha$ .

Our estimates for the sequential order of products are formulated in
terms of two ordinals associated with every point $x$ of a topological
space: fascicularity $\lambda(x)$ and sagittality $\mu(x)$ . The first corresponds to
the rank of multifans converging to $x$ , the second to the rank of arrows
(i.e sequences of multifans) converging to $x$ . If $X,$ $Y$ are regular R\’echet
topological spaces, then the sequential order $\sigma(x, y)$ is not less than

$1+$ [ $(\lambda(X)\wedge\mu(y))\vee(\mu(x)$ A $\lambda(y))$ ]
for every $x\in X$ and $y\in Y$. The above quantity is an upper bound
for the sequential order $\sigma(x, y)$ provided that $X$ and $Y$ are sequential
and subtransverse (we say that a topological space $X$ is subtransverse
if for every injective sequence $(x_{n})$ converging to $x$ , there exists a sub-
sequence $(n_{k})$ and a sequence $Q_{k}$ with $Q_{k}\in N(x_{n_{k}})$ such that for each
neighborhood $Q$ of $x$ , there is $k_{Q}$ for which $Q_{k}\subset Q$ as $k\geq k_{Q}$ ). La\v{s}nev
spaces are R\’echet subtransverse and normal, so that in case of La\v{s}nev
spaces the above quantity is equal to the sequential order $\sigma(x, y)$ .

Our method hinges on the following general characterization: if $\alpha$ is
the least ordinal such that $x$ belongs to the $\alpha$-iteration of the sequential
closure of a set $A$ , then there exists a multisequence of rank $\alpha$ on $A$

which converges to $x$ .
All the topologies considered throughout this paper are Hausdorff.

1. SEQUENTIAL ORDER AND ADMISSIBLE MULTISEQUENCES

We denote by $cl_{seq}A$ the sequential closure of $A,$ $\mathrm{i}.\mathrm{e}$ , the union of the
limits of all convergent sequences valued in $A$ . One defines $cl_{Se}^{0}A=qA$

and for each ordinal $\alpha>0$ ,
$cl_{Seq}^{\alpha}A=cleq \bigcup_{\beta}S<\alpha seqACl^{\beta}$. $(^{3})$

The least ordinal $\alpha$ for which $cl_{seq}^{\alpha}$ is idempotent is called the sequential
order of the topological space and is denoted by $\sigma(X)$ .

2 i.e., closed image of metrizable spaces.
3 Some authors e.g., Nogura and Shibakov [14], define limit powers by $cl_{se}^{\alpha}A=q$

$\bigcup_{\beta<\alpha^{Cl^{\beta}}q}SeA$.
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If $x\in cl_{seq}^{\omega}1A$ , then the sequential order $\sigma(x;A)$ (of $x$ with respect to
$A)$ is the least ordinal $\alpha$ such that $x\in cl_{S}^{\alpha}Aeq$ . The sequential order
$\sigma(x)$ is defined by

$\sigma(x)=\sup\{\sigma(x;A):A\subset X, x\in cl_{se^{1}q}^{\omega}A\}$ .

Consequently, $\sigma(X)=\sup_{x\in X}\sigma(X)$ . Remark that for every $x$ , one has
$\sigma(x)\leq\omega_{1}$ .

Consider the set $\bigcup_{n\in \mathrm{N}}\mathrm{N}^{n}$ of finite sequences valued in $\mathrm{N}$ ordered by
inclusion (denoted by $\subseteq$ ). In what follows $(t, s)$ denotes the concate-
nation of the finite sequences $t$ and $s$ . It follows that $r\subseteq s$ whenever
there exists $t$ such that $s=(r, t)$ .

Following D. Fkemlin [9] we consider the subsets $T$ of $\bigcup_{n\in \mathrm{N}}\mathrm{N}^{n}$ that
are well-capped trees (i.e., such that every non empty subset of $T$ has
a maximal element in $T)^{4}$ that fulfill

(1.1) $s\subseteq t,$ $t\in T\Rightarrow s\in T$ ,

(1.2) $t\in T\forall(\exists n\in \mathrm{N} (t, n)\in T\Rightarrow n\in \mathrm{N}\forall$ $(t, n)\in T)$ .

Rom now on we understand by a tree a well-capped tree in $\bigcup_{n\in \mathrm{N}}\mathrm{N}^{n}$

fulfilling (1.1), (1.2). The elements of a tree are called indices. By a
subtree we understand a subset of a tree which is a tree in the above
sense.

Denote by $l(t)$ the length of the finite sequence $t$ . Every well-capped
tree $T$ admits the unique rank function:

$r(t)=r(t; \tau)=\min\{\alpha\in Ord:s\text{コ}t\forall r(s)<\alpha\}$ .

In our case (of well-capped trees) one has

$t \in\max T\Rightarrow r(t)=0$

(1.3)
$t \not\in\max T\Rightarrow r(t)=\sup(r(t, nn\in \mathrm{N})+1)$ .

For each $\alpha<\omega_{1}$ , there exists a tree $T$ of rank $\alpha$ (i.e., $r(\otimes;T)=\alpha$)
[9].

Let $T$ be a tree. We define on $T$ the irreducible convergence: $\lim_{k}t_{k}=$

$t$ if and only if that for almost all $k$ , either $t_{k}=t$ or $t_{k}=(t, n_{k})$ with
$\lim_{k}n_{k}=\infty$ . This convergence is Urysohn 5. The associated topology

4In other words, $T$ considered with the inverse order is well-founded.
5A sequence convergence is Urysohn if $\lim_{n}x_{n}=x$ and $\lim_{k}n_{k}=\infty$ imply

$\lim_{k^{X_{n_{k}}}}=x$ and, if a sequence does not converge to $x$ , then there exists a subse-
quence such that none of its subsequences converges to $x$ .
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6, $\mathrm{i}$ . $\mathrm{e}.$ , the finest topology coarser than the irreducible convergence is
called the irreducible topology.

Of course, if a tree $T$ is monotone 7, i.e., has the property that for
every $t \not\in\max T$ , the sequence $r(t, n)$ is increasing, then

(1.4) $r(t)= \lim_{n}(r(t, n)+1)$ .

An Urysohn convergence on $T$ is said to be admissible if it is coarser
than the irreducible convergence and if for every $t \in T\backslash \max T$ , one
has $\lim_{k}t_{k}=t$ implies that $t_{k}\underline{\text{コ}}t$ and if moreover $(t_{k})$ is such that
$t_{k}\underline{\text{コ}}(t, n_{k})$ , then $\lim_{k}n_{k}=\infty$ and

(1.5) $\lim_{k}\inf(r(t_{k})+1)=r(t)$ .

The topology associated with an admissible convergence is called ad-
missible. Of course, if $r(\emptyset)<\omega_{0}$ , then the only admissible convergence
is that irreducible.

Because of (1.5) and (1.3), for every $t$ in a monotone tree $T$ equipped
with the irreducible topology,

(1.6) $\sigma(t;\max\tau)=r(t;T)$ .

Let $T$ be a tree. A multisequence in $X$ is a mapping $f$ : $\max Tarrow X$ ;
the extension is a mapping $\tilde{f}:Tarrow X$ such that $\tilde{f}(t)=f(t)$ for every
$t \in\max T$ . We shall use the term multisequence also for such extensions
8. The rank $r(f)$ of a multisequence $f$ is, by definition, the rank of the
underlying tree. The initial restriction of a multisequence $f$ : $Tarrow X$

is the restriction of $f$ to a subtree $S$ of $T$ .
An (extended) multisequence $g:Sarrow X$ is a transmultisequence of

$f$ : $Tarrow X$ if there exists a mapping $h:Sarrow T$ such that $g=f\circ h$

and

(1.7) $h(\emptyset)=z$ ,

(1.8) $s\in S\forall$
$h(s, n)\supseteq(h(s), m_{n})$ with $\lim_{n}m_{n}=\infty$ ,

(1.9) $h( \max S)\subset\max T$ .

A submultisequence of $f$ : $Tarrow X$ is a transmultisequence such that

(1.10) $s\in S\forall$
$h(s, n)=(h(s), m_{n})$ with $\lim_{n}m_{n}=\infty$ .

6The associated topologies of Urysohn convergences with the unicity of limits
are sequential [11].

7Each tree includes a monotone tree of the same rank.
8We are grateful to Professor A. Kato for having drawn our attention to [2,

12] were (extended) multisequences with some extra topological properties were
introduced.
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An (extended) multisequence $f$ : $Tarrow X$ , valued in a topological
space $X$ , converges to a point $x$ if for every $t \in T\backslash \max T,$ $\lim_{n}f(t, n)=$

$f(t)$ and $x=f(\emptyset)$ . The sequential order of a convergent multisequence
$f$ is defined by $\sigma(f)=\sigma(f(\emptyset);f(\max\tau))$ . The sequential order $\sigma(f)$

is always less than or equal to the rank $r(f)$ .
An injective convergent multisequence $f$ : $Tarrow X$ is said to be irre-

ducible (resp. admissible) if the initial convergence on $T$ with respect
to $f$ is irreducible (resp., admissible).

One might suspect that if $\sigma(x, A)=\alpha$ , then there exists an irre-
ducible multisequence $f$ : $\max Tarrow A$ that converges to $x$ and such
that $r(f)=\alpha$ . This is in general not the case. There exists a topologi-
cal space and a point therein of sequential order $\omega_{0}$ with no irreducible
multisequence converging to it.

Theorem 1.1. If $\sigma(x, A)=\alpha$ , then there exists a monotone admissible
multisequence $f$ : $\max Tarrow A$ that converges to $x$ and such that
$r(f)=\alpha$ .

Corollary 1.2. If $\sigma(x;A)<\omega_{0;}$ then there exists an irreducible multi-
sequence $f$ on A converging to $x$ and such that $\sigma(f)=r(f)=\sigma(x;A)$ .

2. MULTIFANS AND ARROWS

A convergent multisequence $f$ : $Tarrow X$ is called a multifan if for
each $t$ of even length in $T \backslash \max T$ , one has $f(t, n)=f(t)$ for each
$n\in$ N. A convergent multisequence $f$ : $Tarrow X$ is said to be an arrow
if for every $t$ in $T \backslash \max T$ of odd length, one has $f(t, n)=f(t)$ for
each $n\in$ N. In other words, $f$ is an arrow if for each $n$ , the restriction
of $f$ to $T_{n}:=\{s:(n, s)\in T\}$ is a multifan. A multifan (resp. arrow)
$f$ : $Tarrow X$ is injective if it is injective modulo the equivalence relation:
if $t$ is of even (resp. odd) length in $T \backslash \max T$ , then $t\equiv(t, m)$ for
every $m\in$ N. Let $f$ : $Tarrow X$ be a multifan and $R$ the subtree of $T$

obtained by removing all maximal indices of odd length. If $f$ : $Rarrow X$

is injective, then we define its fascicularity $\lambda(f)$ as the rank $r(\emptyset;R)$ .
Similarly, if $f$ : $Tarrow X$ is an arrow and if $f$ restricted to the subtree

$R$ of $T$ obtained by removing all maximal indices of even length is
injective, then we define its sagittality $\mu(f)$ as the rank $r(\emptyset;R)$ . If
$R=\emptyset$ , then we convene that $\mu(f)=-1$ .

Consequently, if $f$ is a multifan and if $g$ is an arrow, then

(2.1) $\lambda(f)\leq r(f)\leq 1+\lambda(f)$ , $\mu(g)\leq r(g)\leq 1+\mu(g)$ .

If $f$ is a monotone multifan ( $\mathrm{i}$ . $\mathrm{e}.$ , if the corresponding tree is monotone)
and $f_{n}$ is its n-th arrow, then $\lambda(f)=\lim_{n}(\mu(fn)+1)$ ; if $g$ is a monotone
arrow and $g_{n}$ is its n-th multifan, then $\mu(f)=\lim_{n}(\lambda(fn)+1)$ .
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An injective multifan $f$ : $Tarrow X$ is untraversable if for every $t$ of even
length, and each $t_{k}$ コ $(t, n_{k})$ such that $\lim_{k}f(t_{k})=f(t)$ , the sequence
$(n_{k})$ is bounded. In paticular, a fan is untraversable if no sequence
$(x_{(n_{p)}}k_{p}))_{p}$ with $n_{p}$ tending to $\infty$ converges to $x$ . Untraversable fans are
frequently denoted by $S_{\omega}$ .

The fascicularity $\lambda(x)$ of a point $x$ is the least upper bound of $\lambda(f)$

of all the untraversable multifans $f$ converging to $x$ . The sagittality
$\mu(x)$ is the least upper bound of $\mu(g)$ of all the untraversable arrows
$g$ converging to $x$ . These bounds do not change if we consider only
the monotone untraversable multifans and arrows. Therefore and be-
cause every untraversable multifan is composed of untraversable ar-
rows, $\mu(x)+1\geq\lambda(x)$ .

3. BOUNDS FOR SEQUENTIAL ORDER OF PRODUCTS

We say that a multisequence $f$ : $Tarrow X$ is transversally closed if
for each $t \in T\backslash \max T,$ $t_{k}\underline{\text{コ}}(t, n_{k})$ such that $\lim_{k}f(t_{k})=x$ and
$\lim_{k}n_{k}=\infty$ implies that $x=f(t)$ .

It follows from [16, Theorem 3.8] of T. Nogura and Y. Tanaka that
for each untraversable fan $(x_{(n,k)})$ converging to $x$ in a regular Fk\’echet
space, there exists a mapping $h:\mathrm{N}arrow \mathrm{N}$ such that $\{x\}\cup\{X_{(n,k)}$ : $k\geq$

$h(n),$ $n\in \mathrm{N}\}$ is closed. For fans closedness and transversal closedness
coincide. Although the following theorem assures only the transversal
closedness of a submultifan, the submultifan constructed in the proof is
such that the proof extends the above quoted theorem of Nogura and
Tanaka.

Theorem 3.1. Each untraversable $mult\dot{i}fan$ in a regular Fr\’echet space
includes a transversally closed submultifan.
Theorem 3.2. If $X$ and $Y$ are regular Fr\’echet spaces, then

(3.1) a $(x, y)\geq 1+$ [ $(\lambda(x)$ A $\mu(y))(\mu(x)$ A $\lambda(y))$ ].

An upper bound for the sequential order of products is given in the
case of subtransverse topologies that we define below. A topology is
transverse if for every injective sequence $(x_{n})$ converging to $x$ , there
exists a sequence $Q_{n}$ with $Q_{n}\in N(x_{n})$ such that

$\lim_{n}Q_{n}=x$ ,

i.e., for each $Q\in N(x)$ there exists $n_{Q}\in \mathrm{N}$ with $Q_{n}\subset Q$ for $n\geq$

$n_{Q}$ . A topology is subtransverse if for every injective sequence $(x_{n})$

converging to $x$ , there exists a subsequence $(n_{k})$ and a sequence $Q_{k}$
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with $Q_{k}\in N(x_{n_{k}})$ such that $\lim_{k}Q_{k}=x$ . A convergent bisequence

(3.2) $x_{(n,k)}arrow x_{n}karrow Xn$ ’

with $\lim_{n}x_{(n},k_{n}$ ) $=x$ for every sequence $(k_{n})$ is called transverse. One
observes that the topology induced on such a bisequence is first-countable.
A topology is sequentially transverse if for every convergent injective
bisequence there exists $f$ : $\mathrm{N}arrow \mathrm{N}$ such that the bisequence restricted
to $x_{(n,k)}$ such that $k\geq f(n)$ for all $n$ is transverse. A topology is sequen-
tially subtransverse if every convergent bisequence admits a tranverse
subbisequence.

In [17] Popov and Ran\v{c}in say that a topological space $X$ is a $\Phi$-space
if for every $A\subset X$ and for each $x\in \mathrm{c}1A$ , there exists a sequence $(Q_{n})$

of open sets such that $\lim_{n}Q_{n}=x$ and $Q_{n}\cap A\neq\emptyset$ for each $n$ . In [4,
Proposition 7] it is shown that a topological space is a $\Phi$-space if and
only if it is a sequential subtransverse space.

Each sequential sequentially subtransverse space is Fr\’echet.
In [18] P. Simon constructed a compact Re’chet topology whose

square is not Fr\’echet. The Simon topology is an example of a Re’chet
non sequentially subtransverse space.

On the other hand, each Fr\’echet space with a point-countable k-
network is sequentially transverse. This fact follows from [14, Lemma
2.6] where T. Nogura and A. Shibakov prove (more than they an-
nounce) that in each Fr\’echet space with a point-countable k-network
for every convergent bisequence (3.2), there exists $h:\mathrm{N}arrow \mathrm{N}$ such that
$\{x\}\cup\{x_{n} : n\in \mathrm{N}\}\cup\{x_{(n,k)} : k\geq h(n), n\in \mathrm{N}\}$ is compact and the
points of the form $x_{(n,k)}$ are isolated in it.

There exist Fr\’echet transverse topologies without point-countable k-
network. It is shown in a forthcoming paper [4, Example 10] that
the $\Sigma$-product of uncountably many copies of the discrete two-point
space is Fr\’echet sequentially subtransverse not subtransverse space.
[4, Example ?] shows the existence of subtransverse non transverse
spaces under the provision of Martin’s Axiom.

Recall that a closed continuous image of a metrizable space is called
a La\v{s}nev space. It is known that every La\v{s}nev space is a Fr\’echet space
with a point countable $\mathrm{k}$-network [7]. In [17] Popov and Ran\v{c}in show
that each La\v{s}nev space is subtransverse. Unaware of their result, we
have proved in $[6]\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ La\v{s}nev spaces are transverse.

There exists a transverse topology without point countable k-network.

Theorem 3.3. If $X$ and $Y$ are sequential transverse $spaces_{2}$ then

(3.3) $\sigma(x, y)\leq 1+$ [ $(\lambda(x)$ A $\mu(y))(\mu(x)$ A $\lambda(y))$ ].
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As already mentioned, La\v{s}nev spaces are normal Re’chet and trans-
verse. Hence by Theorems 3.2 and 3.3, we have

Theorem 3.4. If $X$ and $Y$ are La\v{s}nev spaces, then

(3.4) a$(x, y)=1+$ [ $(\lambda(x)$ A $\mu(y))(\mu(x)$ A $\lambda(y))$ ].
On the other hand,

Theorem 3.5. For every ordinal $\alpha\leq\omega_{1}$ , there exists a La\v{s}nev space
such that the sequential order of its square is $\alpha$ .
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