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0 Introduction

This note is a survey of the results by Beilinson-Bernstein [1], Brylinski-Kashiwara [3],
Kashiwara [12], Kashiwara-Tanisaki [13], [15], [16], Casian [4], [5] concerning highest
weight modules over symmetrizable Kac-Moody Lie algebras. ’

The theory of highestA weight modules over finite dimensional semisimple Lie alge-
bras with general (not necesarily dominant integral) highest weights was initiated by
Verma [25], where he defined the so called Verma modules and proposed the problem
of determining their composition factors with multiplicities. This problem is equivalent
to the one of determining the characters of the infinite dimensional irreducible highest
weight modules with general highest weights. The composition factors were determined
by the works of Verma [25] and Bernstein—Gelfand-Gelfand [2] (the corresponding result
for symmetrizable Kac-Moody Lie algebras is due to Kac-Kazhdan [10]), and Jantzen [8]
developped the algebraic theory of highest weight modules by which he determined the
multiplicities in many cases; however, the general multiplicity formula was not known

until the end of 70’s.
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A remarkable breakthrough was made around 1980. Kazhdan-Lusztig [17] proposed
a conjectural multiplicity formula involving the so called Kazhdan-Lusztig polynimials,
and soon after it was settled independently by Beilinson-Bernstein [1] and Brylinski-
Kashiwara [3] using D-modules on the flag manifolds (see the expositions Hotta-Tanisaki [7],
Sekiguchi [21], Tanisaki [22], [23], [24]).

Finally, this result was extended to Kac-Moody Lie algebras by Kashiwara [12], Kashiwara-
Tanisaki [13], [15], [16], Casian [4], [5]. |

The contents of this note is as follows. In §1 we recall fundamental results on highest
weight modules, and formulate the multiplicity formulas. A sketch of the proofs for the
formulas are given in §2. In §3 we shall explain how Therem 3.5 below, which is related to
Lusztig’s conjectures concerning quantum groups at roots of unity and semisimple groups

in positive characteristics, is deduced from the result in Kashiwara-Tanisaki [16].

1 The character fdrmula

1.1 Let g be a symmetrizable Kac-Moody Lie algebra over C, p its Cartan subalgebra,
{a;}ier C b* the set of simple roots, {h;};er C h the set of simple coroots, A the set of
roots, and At the set of positive roots. For each a € A we denote the corresponding root
space by g,. Set
nt = @ Gay N = @ e, T =nt®ph, " =n"Gn
a€At aeAt

Let W be the Weyl group. It is a Coxeter group with canonical generator system {s; |2 €
I}, where s; is the simple reflection coresponding to ¢ € I. We denote its length function

by £ : W — Zyo, and its standard partial order by 2.

1.2 Let U(g) be the enveloping algebra of g. For A € §* define a g-module M(A) by

M(N) = U(s)/(hz U(g)(h = A(R)1) + U(g)n™).
€b
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Then M()) contains a unique maximal proper submodule K()), and hence the quotient
module L(A) = M(X)/K()) is an irreducible U(g)-module. We call M(\) the Verma
module with highest weight A, and L() the irreducible highest weight module with highest
weight A.

For a g-module M and u € b* set

M, = {m € M| for any h € § there exists some N € Zy,

such that (A — u(h))Nm = 0}.‘

If M =@, M, and dim M, < oo for any p € h*, we can define the character of M as
a formal infinite sum -
ch(M) =Y dimM,e*.

nep*
Especially we can consider the characters of M(A) and L(}). Since M(]) is a free U(n™)-
module of rank 1, we see easily the following.
Proposition 1.1 For any X € §* we have

ch(M(\)) =€ H (1 — e=)dime),
aEA"'
Here, we understand that the symbols e* satisfy e*1e#2 = e#*+#2 and 1/(1 — e*) =

0 Liu
j=o €.

Problem 1.2 (Verma) Determine ch(L(})).

We fix a Z-lattice P such that (P, h;) C Z and o; € P for any 7 € I. In §1 and §2 we
shall treat the above problem in the case A € P.

Fix p € v* such that {p,h;) =1 for any 1 c I,vand sét
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Pt = {/\EPI(A,h1)€Z>oforanyz€I}

= {)\EVPI()\—H), ) € Zso forany i € I}
P~ = {A€P|(A+p ki) € Zeoforany i€ I}
Ping = {/\E_P]()\-l—p, ;) = 0 for some 7 € I}

= P\Psing

Teg

The following is well known. |

Theorem 1.3 (Weyl-Kac) For any A € Pt we have

ch(L(A)) = 3 (=1)*™eh(M(w(X + p) — p))
weW .

1.3 As is seen from the formula in Theorem 1.3 it is convenient to intoroduce a new

shifted'action of W on bh* given by‘ .
wopu=w(p+p)—p (weWpeh).

Note that P is preserved under this new action of W.

If g is of type A, the weights are as in Figure 1. Here, the reflections with respect
to the three lines (walls) generate the group corresponding to the shifted action of W.
The dots e denote the points in P, and“i;hose‘: lon" the three walls (resp. B ,resp. &4 )
represent the points in Pgyg (resp. P*, resp P7). For type A, (or more generally if g is
of finite type), both of Pt and P~ are complete set of representativés with respect to the
shifted action of W on P.

1.4 We first consider the case where g is of finite type. I is known that ch(L(X)) for
A € Ping is a certain limit of the one for' A € P, (translation principle, see Jantzen [8]).

Hence we can restrict ourselves to the case A € Preg.
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Figure 1: weights for A,

Proposition 1.4 Assume that g ts of finite type and that rankg < 2.
(i) For A € P~ and w € W we have

1) (Do) = T (-1 & ch(M(y o \),
(2) ch(M(wod)) = ; & ch(L(y o N)).

(ii) For A € P* and w € W we have

(3) ch(L(wo})) = g(—l)e(w)~£(y) & ch(M(y o A)),
(4) h(Mwo)) = T & h(L(y o )
Here & = 1. )

Note that all of (1),...,(4) are equivalent formulas. In fact, (1) and (2) are equivalent

by the formula

Y~ =4, (ySw).

ySrsw

Let wg € W be the (unique) element such that ¢(wy) is maximal. Then we have wyo Pt =

P~ and y £ w if and only if ywy > wwy. Hence (3) (resp. (4)) is equivalent to (1) (resp.

(2)-
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If rankg > 2, then the situation is not so simple, and &’s possibly take integers greater
than 1. The Kazhdan-Lusztig conjecture asserts that & can be described using the

Kazhdan-Lusztig polynomials.

1.5 We recalll the definition of the Kazhdan—Lﬁsztig polynomials. For a Coxeter system
(W, S) let H(W) be the free Z[g,q~']-module with basis {Tu}uwew. We can define a

structure of an associative algebra over Z[q,¢™'] on H(W) by

ToiTay = Tupwy  (£(01) + L) = E(wyw3)),
(T, +1)(T, — q) = 0 - (s€S).

Note that T, = 1. This algebra is called the Hecke algebra, (or the Iwahori algebra or the
Hecke-Iwahori algebra) of (W, S). ‘

Proposition 1.5 (Kazhdan-Lusztig [17]) For any w € W there exists uniquely an
element C,, € H(W) of the form
Cuw= 2 Pyu(d)Ty  (Pywlg) € Z[g))
ySw
satisfying the following.condz'tidns.
(a) Pyw =1,
(b) for y < w we have P, ,(q) € Z[ ~1/2]g ) ~tW)=1)/2 1 Z[g],
(C) Co = 4" Tygu Puwla™ T

The polynomials wa are called the Kazhdan-Lusztig polynomlals We set P, = 0

unless y < w. If |S| = 2, we have P, ,, = 1 for any y,w € W with y £ w.

1.6 The answer to the probem 1.2 for finite dimensional semisimple Lie algebras is given

by the following.

Theorem 1.6 (Beilinson-Bernstein [1], Brylinski-Kashiwara [3]) Assume that g is

of finite type.
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(i) For A € P~ and w € W we have

(5) C ch(Lwod) = Y(=1)@WP, (1)ch(M(y o \),
(6) ch(M(w o}d)) = ; Py ywo (1)ch(L(y o /\))

(ii) For A € P* and w € W we have

(7) ch(L(wo X)) = 3 (=1 Pyyy g (1)ch(M(y o X)),

(8) ch(M(wo})) = g P, y(1)ch(L(y o X)).

This result was conjectured by Kazhdan-Lusztig [17]. Again, all of (5),...,(8) are
equivalent formulas. In fact, (5) and (6) are equivalent by the following formula in [17];

| Z (—1)E(w)_e(y)Py,wawo,x.wo = 5y"w | (y < w),

ySziw

and (7) (resp. (8)) is equivalent to (5) (resp. (6)) by the same reason as the one for

Proposition 1.4.

1.7 We nextly consider generalizations of Theorem 1.6 to arbitrary symmetrizable Kac-
Moody Lie algebras.

In order to illustrate the difference between the finite and the infinite dimensional cases
let us draw the figure of weights for A§l) (see Figure 2).

The walls corresponding to the reflections generating the shifted action of W are given

by

n—1 n+1 : . v
y=— T, y=-— r (n=1,2,3,...), z=0.
n n
We have another special wall y = —& which plays a different role. Starting from a po"int

on P* (or P~) and operating the reflections, the point leaps over the walls and move
to the next regions successively; however, it is impossible to leap over the special wall

y = —z. The wall y = —z (of Berlin) divides the city into two parts with different laws.
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Figure 2: weights for Agl)

In this note we do not treat the case when the highest weight lies on the wall y = —z,
where the third law is applied.

Among the formulas (5),. .., (8), we can only consider direct generalizations of (5) and
(8), since wy does not exist. Moreover, the formulas (5) and (8) give different statements

for general Kac-Moody Lie algebras.

Theorem 1.7 (Kashiwara(-Tanisaki) [12], [13], Casian [4]) For any symmetrizable

Kac-Moody Lie algebra g, we have

ch(M(wo X)) = Z P, ,(1)ch(L(y o A))
y2w
for any A € Pt and w € W.

This result was conjectured by Deodhar-Gabber-Kac [6].

Theorem 1.8 (Kashiwara-Tanisaki [15], Casian [5]) For any affine Lie algebra g,

we have

ch(L(w o N)) = S (-=1){™W=*Wp, (1)ch(M(y o X))
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forany A € P~ andw e W.

This result was conjectured by Lusztig [19].

Remark The formula (5) does not hold unless g is afiine or of finite type.
2 D-modules on the flag manifold

2.1 The scheme of the proofs of Theorem 1.6, Theorem 1.7, Theorem 1.8 are similar.

Via the correspondence:

g-modules | «— | D-modules | «— | perverse sheaves

the problem is translated into the one for perverse sheaves, where the calculation of the

intersection cohomology groups for the Schubert varieties gives the answer.

2.2 We first explain the strategy of the proof for Theorem 1.6 which is the prototype of
those for Theorem 1.7 and Theorem 1.8.

Let g be of finite type. Let G be the connected algebraic group with Lie algebra g, and
let B and B~ be the subgroup of G corresponding to b+ and b~ respectively. We call the

homogeneous space X = G/B™* the flag manifold of G. In general, for a smooth variety

Y over C we denote its structure sheaf, the canonical sheaf and the sheaf of differential

operators on Y by Oy, Qy and Dy respectively. The action of G on X induces an algebra,

homomorphism

U(g) = I'(X; Dx) (¢ d4)

(0af)(z) = 4 f(exp(—ta)e)|t =0 (a €0, f € Ox,z € X).

Let 3 be the center of U(g), and let x : 3 — C be the restriction of the algebra homo-

morphism U(g) — C given by a — 0 for any a € g. Let My (g) be the category of (left)
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g-modules M such that zm = x(z)m for any z € 3 and m € M, and let M(Dx) be the

category of (left) Dyx-modules which are quasi-coherent over Ox. We have two functors

I['(X,e): M(Dx)— My(g)

DX ®U(g) (O) . Mo(g) e M(Dx)

Theorem 2.1 (Beilinson-Bernstein [1]) The functors ['(X,e) and Dx Qu(y) () give

equivalences of abelian categories which are inverses to each other.

Note that an equivalence of smaller categories is given in Brylinski-KaJshiwara [3].

The g-modules M(wo(—2p)) = M(~wp~p) and L(wo(—2p)) = L(—wp—p) forw € W
are objects of Mo(g), and we have the corresponding objects My, = Dx ®uig) M(wo(—2p))
and £,, = Dx ®ug) L(w o (=2p)) of M(Dx). Then, (5) in Theorevm 1.6 for A = —2p is
equivalent to the formula | | |

[ﬁw] = Z(_1)e(w)_e(y)Py,w’(1)[My]A :
ySw

in the Grothendieck group K (M(Dx)). Therefore, in order to show Theorem 1.6, we need
descriptions of the Dyx-modules M,, and £,,. Set X,, = BtwB*/BT C X for w € W.

The following is well-known.

Proposition 2.2 (i) X, is a locally closed subvariety.
(i) X = Hyew X
(iif) X, ~ Cl),

(iv) Xy = Mycw Xy,
Then we have the following.
Theorem 2.3 For any w € W we have

M, = HE X (0x)", L, = Image(M,, — M)
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Here, H;;’jim"w denotes the functor taking the local cohomology sheaf with support
X, and degree codimX,,. Since Ox is a Dx-module, Hﬁ?jjm((')x) is also a Dx-module.
Moreover it is a regular holonomic Dy-module by the general theory of D-modules. In
the category of regular holonomic Dx-modules we have the duality functor M ~ M~

given by
M* = gwt%;?X(M, Dx) ®0X ’Homox(QX, Ox)

Therefore, M,,, M*, L,, are regular holonomic Dx-modules. Setting 0.X,, = X\ Xy, we
have M| X\ 0X, ~ M}|X\0X, ~ L,|X\0X,, and they correspond to the differential
equation satisfied by the delta-function supported on X,.

For a smooth algebraic variety over C we denote the the category of perverse sheaves on

Y (resp. regular holonomic Dy-modules) by P(Y) (resp. M,(Dy)). Then an eqivalence
of M, (Dy) and P(Y) is given by

DR:M,(Dy) = P(Y) (M~ RHomp,(Oy, M)[dimY])
(the Riemann-Hilbert correspondence). By the general theory we have
DR(My) = Cx,[l(w)l, DR(Ls) ="Cx,[{(w)],

where Cy,_ (resp. "Cy, ) denotes the zero extention (minimal extension) of the constant
sheaf Cx, on X, to X. Therefore, Theorem 1.6 for A = —2p follows from the following

theorem which had been already known before Theorem 1.6 was proved.

Theorem 2.4 (Kazhdan-Lusztig [18]) In the Grothendieck group K(P(X)) we have

["Cx, [l(w)]] = 3 (1) WP, ,(1)[Cx, [w)]]

ySw
Theorem 1.6 for general A can be proved either by reducing it to the special case
A = —2p using the translation principle, or by applying the arguments above to twisted

differential operators instead of Dy.
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2.3 In order to apply the arguments used in the proof of Theorem 1.6 to general Kac-
Moody Lie algebras we need their flag manifolds. In this subsection we explain the scheme
theoretical construction of the flag manifolds for general Kac-Moody Lie algebras given
by Kashiwara [11].
Let g be a symmetrizable Kac-Moody Lie algebra. For k € Z set
.nf = @ LR
a€A* ht(a)2k

where for a = 3°;c; m;a; € A1 we define ht(a) by ht(a) = X_;e; mi. Define group schemes
H,N*t,N-,B*, B~ as follows:

H = SpecC[P],
N* = (the projective limit of exp(n/nf)),

B* = (the semidirect product of H and N¥).

Here, for a finite dimensional nilpotent Lie algebra a we denote the corresponding unipo-
tent algebfaic group by expa. Setting it = [aca+ g;ha,lwe have an isomorphism exp :
At — N * of schemes. Note that H is finite dimensional, while N* and B* are infinite
dimensional (unless g is finite dimensional). If g is finite dimensional, then the coordinate
algebra of the corresponding algebraic group G is a certain dual Hopf algebra of the en-
veloping algebra U(g). Kashiwara [11] constructed a scheme G for a general Kac-Moody
Lie algebra g using a similar method (We omit the details). This G is not a group scheme
but a scheme equipped with a locally free left action of B~ and a locally free right éction

of B*, and the flag manifold X is constructed as the quotient scheme
X = G/B*.

One can also define Schubert varieties X* and X, for w € W, which are analogues of
l—?‘iuB"“/].?Jr and BtwBt/B* respectively in the finite dimensional case, as locally closed

subvarieties of X.
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Proposition 2.5 (Kashiwara [11]) (i) X = U,ew X¥.
(i1) X* is isomorphic to C* (unless g is finite dimensional) and codimX¥ = {(w).
(iif) X* = Uy X?.
Proposition 2.6 (Kashiwara-Tanisaki [15]) (i) Uwew Xw = Unew Xy C X, and the
equality holds only if g is finite dimeﬁsional. |
(i1) X, is isomorphic to CH),
(ili) Xy = Uyguw Xy

Here, C* denotes the affine scheme corresponding to the polynomial ring vC[:ci li € N] =
(the inductive limit of Clz1,...,z,]). Hence we have C* ~ (the projective limit of C").
Although X is infinite dimensional, it is a good scheme in the sense that it is locally

isomorphic to C*.

2.4 We use left D-modules supported on infinite dimensional Schubert varieties X* in
the proof of Theorem 1.7, while in préving Theorem 1.8 right D-modules supported on
finite dimensional Schubert varieties X,, are used. Iﬁ the fbllowing we shall explain how
Theorem 1.8 is proved. ‘ |

Let g be a symmetrizable Kac-Moody Lie algebra. We first define a category H of
“right holonomic D X—modﬁles’;, which plays a fundamental role in the proof. We éall a
‘ﬁnit‘e dimensional closed subset Z (resp. an open subset Y) of X an admissible closed

subset (resp. an admissible open subset) of X if Z = Uyep Xy, (resp. Y = UyepX™) for

some finte subset F' of W satisfying
weF ySw=—yekF

For an admissible closed subset Z of X let H(Z) be the category of “right holonomic Dx-

modules supported in Z”. Then the abelian category H is defined to be the inductive limit
of H(Z) with respect to Z. The definition of H(Z) is given as follows. For an admissible
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open subset Y of X containing Z let H(Z,Y') be the category of “right holonomic Dy-
modules supported in Z”. Then H(Z) is the projective limit of H(Z,Y') with respect to Y.
Finally, the category H(Z,Y) is defined as follows. For any sufficiently large k € Z the
subgroup Ny = exp(Ilaea+ ht(a)zk 8-a) Of N~ acts on Y locally freely. Then the quotient
schéme Y, = N \Y is finite dimensional, and the natural morphism ix : Z.— Y} is
injective. Let H(Dy,,%x(Z)) be the category of right holonomic Dy, -modules supported in
1x(Z), and let H(Z,Y, k) be the category consisting of (M;)izx € [1;zx Ob(H(Dy,,4(Z)))
such that fpg M, = My, for I 2 I, > k, where pi! : ¥, — Y, is the natural morphism.
Then the category H(Z,Y') is defined to be the projective limit of H(Z,Y, k) with respect
to k. |

Note that what we really treat is not D-modules on infinite dimensional spaces, but
certain limits of D-modules on finite dimensional spaces. In this framework we can directly
apply the fruitful theory of .D-modules on finite dimensional manifolds. .

For X in P let Ox(A) be the invertible Ox-module corresponding to the g-equivariant
line bundle Ly on X such that the action of b on the fiber (LA)e§+ is given by A. Define

a sheaf Dx(A) of rings of twisted differential operators by
Dx () = Ox (=) Qox Dx ®ox Ox(A) C Endc(Ox(—A)).

We can also define an invertible Oy,-module Oy, (1) and a sheaf Dy, (A) of twisted rings
of differential operators. Then a category H(X) of “right holonomic Dx())-modules” and
categories H(X, Z),H(\, Z,Y), H(\, Z,Y, k) are defined similarly to H, H(Z), H(Z,Y),
H(Z,Y, k) using Dy, ()) instead of Dy, .

For M € Ob(H())) take a representative (M) € H(X, Z,Y, k) and set

H"(X, M) = (the projevtive limit of H" (Y}, M;))

for n € Zyo. It carries a natural left g-module structure induced from the action of g on
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Ox()), and we obtain additive functors
H™(X,0) : H(A) - M(g) (n € Z30),

where M(g) denotes the category of g-modules.

Remark that the category H(X, Z, Y, k) is isomorphic to H(Dy,()),%4(Z)) for any single
I > k. However, in order to define the functor H™(X,e) we need all | 2 k.

For w € W we can define objects M, () (resp. Ly(A)) of H(A) as the dual meromor-
phic extension (resp. the minimal extension) of the right D X;-module Qx, to a “right
Dx(A)-module”. Then L£,()) is an irreducible object of H()), and M,,(A) has a finite
composition series whose composition factors are isomorphic to £,()) for some y < w.
Let Ho()) be the full subcategory of H()) consisting of objects of H()) which have finite
composition series whose composition factors are isomorphic to some L, ().

For M € Ob(Hy())) define a g-submodule H"(X, M) of H"(X, M) by

H' (X, M) = P H* (X, M), C H"(X, M).
' ueEP ‘

Then H™(X, M) is a certain completion of H*(X, M). For a short exact sequence 0 —

K — L — M — 0in Hyg()) we have a long exact sequence
.- AX,K) - H(X, L) —» HY (X, M) —» H""Y(X,K) — - --

in M(g).

Then Theorem 1.8 follows from the following.

Theorem 2.7 (Kashiwara-Tanisaki [15]) Let g be an affine Lie algebra. For A € P~
we have the following.

(i) HY(X, M) =0 for anyn > 0 and any M € Ob(Ho(A)).

(i) Ho(X, M,())) = M(wo ), HY(X,L,(A\)) = L(wo ) for anyw e W.

(iii) [Co(X)] = Tygu(=1) I WP, ,(1)[M(X)] in the Grothendieck group of Ho(A).
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The statements (i) and (ii) are the main results of [15]. The statement (iii) is proved
by reducing it to the calculation of the intersection cohomology sheaf of X, via the

Riemann-Hilbrt correspondence.
3 The character formula for untwisted affine Lie algebras

3.1 Recently we have generalized Theorem 1.8 for integral highest weights to the one
for rational highest weights (Kashiwara-Tanisaki [16]). In this section we shall formulate

this result and give its consequence in the case of untwisted affine Lie algebras.

3.2 Let g be a (not necesarily untwist.ed) affine Lie algebra with Cartan subalgebra b,
and let gv be the dual affine Lie algebra whose Dinkin diégram is obtained by reversing
the arrows in the Dynkin diagram of g. We identify the Cartan sszﬂgebra of g¥ with the
dual space h* of h. Let AV, AV*+ AY C h be the set of roots, positivebroots and real roots

for g¥. For u € 6* set

() = {heAY|(n+p)(h) €2},
(k) = AY(p)NAY,

At(w) = AV (w)nAg,
(0) = AT () \ (A" () + A (),
(n) = T'(p)NAL

Tre?

and let W(u) be the subgroup of W generated by the reflections s, corresponding to
h € AY*(p). Then W(p) is a Coxeter group with canonical generator system S(u) =
(sn | h € IV, (). Let £¢: W(u) — Zyo be its length function.

The main result of [16] is the following.

Theorem 3.1 (Kashiwara-Tanisaki [16]) Let A € p* be such that (A+p)(h) € Q\Zso
for any h € AYF and (A + p)(c) # 0, where ¢ € b is a generator of the center of g. Let
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w € W(X) be such that £*(w) = min{f*(w') | w' € W(\),w' oA =wo A}. Then we have

ch(L(wo A)) = Y (=1)F-CGp,  (1)ch(M(y o A)).

ySw

Here < and P, ,, are the standard partial order and the Kazhdan-Lusztig polynomial for

the Cozeter group W(\).

This result was conjectured by Lusztig [20].

3.3 In connection with other Kazhdan-Lusztig type conjectures due to Lusztig concern-
ing quantum groups at roots of unity and semisimple groups in positive characteristics,
some special cases of Theorem 3.1 are important. We shall formulate it in the following.

Let go be a finite dimensional simple Lie algebra with Cartan subalgebra . We fix
a nondegenerate invariant symmetric bilinear form ( , ) on go such that relative to the
induced symmetric bilinear form on by we have (o, a) = 2 for any long root . We identify
ho with g via this symmetric bilinear form. For a root « of go we denote the corresponding

coroot by a". Let

Ag = (the set of roots),

A} = (the set of positive roots),

Iy = {ai}ier, = (the set of simple roots),
AY = (the set of coroots),
Wo = (si|i € Ip) = (the Weyl group),

{
§ = (the highest root),
(

§ = (the root such that the corresponding coroot is the highest coroot),
Q = ) Zo,
acAY
QO = Z ZOé7
a€ly

Po= e l(hel)eZ (i€},
Ff = {den| (o)) €Zy (i€}
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Let po € b be such that (pg, ) =1 for any 1 € Iy, and set g = (po,0") + 1. Let r =1,
or 2, or 3 according as gq is of type A, D,E, or B,C, F, or G,. '

The untwisted affine Lie algebra g corresponding to go is given by

g=go® C[t,t‘l] @ Cec,

whiere the bracket product of g is given by [z ® t*,y ® t™] = [z,y] ® t"*™ + 6nimo(2,y)c

for any z,y € go, and [c,g] = 0. The Cartan subalgebra of g is given by
h = ho ® Cec.

Define x € §* by x(ho) = 0 and x(c) = 1. Identifying b} with a subspace of §* by t5(c) =0,
we have

h* = ho & Cx.
Set I = I LI {0}. The set of simple coroots for g is given by {hi}ies, where h; = a for
i € Iy and hg = —0Y + c = —0 + c. Setting p = po + gx we have p(h;) =1 for any ¢ € I.
The Weyl group W C GL(b*) is identified with the semidirect product of Wy and @y via

ty{(A+ax) = (A—ay)+ax  (YEQg, A EbyacC),~

z(A+ax) = z(A)+ax (z € Wy, A € hg,a € C),

where ¢, denotes the element of W corresponding to v € Q. Then the canonical generdtor
system {s;}icr of W is given by s; = s, for ¢ € Iy and so = sete. Here, éa € W, for
a € Ag denotes the reflection corresponding to a.

The sets AY, AVt AYt defined in §3.2 are given by

AV = {a"+2nc/(a,a) |a€ Ap,n € Z}U{nc|neZ\{0}},
AVt = {aV 4+ 2nc/(a,a) | a € Ag,n € Zso} UAF U {nc|n € Zso},

AV = {a¥ 4 2nc/(a,a) | a € Ag,n € Zso} UAS.

Te
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3.4 In therest of this section we fix k € Q such that —(k+g¢) > 0. Write —(k+g¢) = 1/q,
where [ and q are relatively prime positive integers.

For A € Py set A = A+ ky € b*. Note that we have (:\ + p)(c) = k+ g < 0 for any
A€ B

Lemma 3.2 Let A € F,.

(1) If r does not divide g, then we have

AY(N) = {a¥+2mgc/(a,a) | a € Aoym € Z} U {mgc | m € Z\ {0},
() = {a) i€ L} U{~6"+qc},
‘ W(X) = (the semidirect product of Wy and Q).
(ii) If r divides q, then we have
AYQA) = {a“+mgc|a€ Ag,m € Z}U{mgc|me Z\ {0}},
() = {a) i€ ) U{~0"+qc},
W) = (the semidirect product of Wy and qQo).
Let W' denote the semidirect product of Wy and Q,. It is a Coxeter group with
- canonical generator system S* = {so, | i € In} U {s;t;}

Definition
(i) Assume that r does not divide q.

(a) Define a group homomorphism @, : W — W by
O(z) =z (z€ W), Oy(ty) =tyy (v € Qg)-
(b) Define an action of W on P, by

CEO])\ = .’L'()\—f-po)—po (Z'GWO,)\EP()),

tyogd = A4ly (v € Qg X € By).
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(c) Set
A= e Pl (Mt poa) S0 GEL), (A 4pnd)2 1)

(ii) Assume that r divides g¢.
(a) Define a group homomorphism @g : Wi — W by

(Dg(x) =T (:r € WO)a Qg(tv) =tgy (ve Q(\)/)
(b) Define an action of W# on P, by

ol X = a(A+po)—po (z € Wo, )€ Py),
tyob N = A4ly (7 € Qo, ) € Py).
(c) Set
A=A e€P | (M +p0,0) S0 (1€T), (MN+po,0%)2—1}.
Lemma 3.3 Let ) € Po.

(i) Asuume that r does not divide q.

(a) We have Im(®,) = W()), and ®, : W — W(}) is an iso‘morphism of the

Cozeter groups.
(b) ®,(w)oX=(wo, A) for any w € W.

(c) A is a fundamental domain with respect to the acton o; of W on Py.
(d) We have X € A, if and only if (A + p)(h) € Zso fér any h € AYF. |

(ii) Asuume that r divides q.

(a) We have Im(®!) = W(A), and & : W — W(X) is an isomorphism of the

Cozeter groups.
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(b) @g(w) o\ = (w o? N~ for any w € W,
c) A is a fundamental domain with respect to the acton o of Wt on Py.
l l

(d) We have X € A" if and only if (X + p)(h) & Zso for any h € AVt
Lemma 3.4 (i) Asuume that r does not divide q. Let w € W and A € A;.

(a) If wo; A € P, then s;w < w for any ¢ € .

(b) If siw < w for any i € Iy, then wo; A € Py — po.
(i1) Asuume that r divides q. Let w € W and X € A?.

(a) Ifwol X € Py, then s;w < w for any i € Io.

(b) If s;w < w for any ¢ € Iy, then wo?)\ € P — po.

3.5 For u € Py we define g-modules My () and Ly(p) as follows. Set p = go® C[t]® Ce.
It is a maximal parabolic subalgebra of g corresponding to the subset Iy of 1. Let Lo(u) be
the finite dimensional irreducible go-module with highest weight . We regard it as a U(p)-
module via the algebra homomorphism ¢ : U(p) — U(ao) given by € (g0 @ tC[tD = {0},
ex(c) = k and ex(z) = « for any z € go. Set My(n) = U(a) ®u(py Lo(p). It is obviously a
vhighest weight module with highest weight ji. Let (1) be its unique irreducible quotient.
Note that M(x) (resp. Li(g)) is a quotient of M (i) (resp. is isomorphic to L(f)).

Theorem 3.5 (i) Assume that r does not divide q. Let A € A; and w € W be such that
wo, A € P and £(w) = min{f(w') | w’ o A = wo; A}. Then we have
ch(Lg(w oy A)) = 3 (=)A= P (1)ch(My(y o, A)).
yEW,ygw,yogx\EPo"'

Here, the length function ¢, the standard partial order <, and the Kazhdan-Lusztig poly-

nomial Py, are those for W.
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(i) Assume that r divides q. Let X € A} and w € W* be such that w ol X € P§ and
{(w) = min{l(w’) | w’ o X = w of X\}. Then we have
ch(Lu(woi A) = 30 (-1 WP, (1)eh(Mily of 1)).
yeW! ySw,yol e P o
Here, the length funétion ¢, the standard partial order <, and the Kazhdan-Lusztig poly-

nomial P, are those for WH.
We need the following in order to deduce Theorem 3.5 from Theorem 3.1.
Lemma 3.6 (i) For u € P{ we have

S (~1Ych(M(z o 7)) = ch(Mx(s)).
.Z‘EWO
(ii) For p € Py such that (i + po,Y) =0 for some i € I, we have
D (=)@ eh(M(z 0 1)) = 0.
z€W)y
Prbof. (1) For v € Fy let My(v) be the Verma module of g, with highest weight z), and
regard it as a U(p)-module via ;. Then we have U(g) ®U(p‘) My(v) = M(7) for any v € P,
and ch(Lo(p)) = Coemw, (—1)*@ ch(My(2(u + po) — po)) for any p ’6 P. The last equality

is Weyl’s character formula. Since U(g) ®u(,) (o) is an exact functor, we have

S (~1)@eh(M(z o )

= T ) B (o + 0) = ))
_ ZW (=1)%)ch(U(5) ®us) Mol(tt + po) — p0))

= ch(U(g) ®u) Lo())
= ch(Mk(,u)).
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(i1
EEV:V (=1)“@)ch(M(z o p))
- :ewzz,;s,.n(””“” (ch(M(z o 7)) — ch(M (x5, 0 7))
= (Mo g) — (Mo )
= 0.

We also note the following general result.

Lemma 3.7 (Kazhdan-Lusztig [17]) Let (W', 5") be a Coxwter system, and let S” C
S" and w € W' be such that sw < w for any s € S". Then P,,, = P,,,, for anyy € W/,
se S,

Proof of Theorem 3.5. (i)Set E={ye W |ysw}, F={ye€ FE|sy<y(€l)}.
By Lemma 3.4 we have s;w < w for any ¢ € I, and hence the product map Wox FF — E is
bijective. Moreover, for any y € F' we have yo,A € Py —po. Set Fy = {y € F | yo,\ € P},
Fy = F\ F;. By Lemma 3.3, Theorem 3.1, Lemma 3.7, we have

ch(Lx(w o; A))

= ch(L((wo; A)7))

= ch(L(®(w)o N))

= 3 (=P, L (1)ch(M(®(y) o A))

= Y (1) p, 1) T (—1>‘<f>ch<Mt¢(wy) o))
yeEF : z€Wy

= Y (=1)™-p (1) > (=1)"®)ch( ]V[(mo(yol/\) )

By Lemma 3.6 wee see that if y € F} (resp. F}), then

> (<1 (M (e (y 1) = ch(Wa(y o AS))  (esp. =0)
r€EWo



Moreover, for y € W we have y € F, if and only if y o; A € P, by Lemma 3.4. Hence we
have obtained the desired formula.

The statement (ii) is proved similarly. ]
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