A Survey of [AJS]

KANEDA Masaharu
Department of Mathematics, Faculty of Science
Osaka City University
584 Osaka Sumiyoshi-ku Sugimoto
e-mail address: H1871@ocugw.cc.osaka-cu.ac.jp

This is a survey of the work [AJS] by H.H. Andersen, J.C. Jantzen and W. Soergel. There are also excellent expositions by the authors [A2], [S1], [S2], of which [A2] includes the entire aspect of Lusztig's program.

During the AMS Summer Institute 1986 at Arcata I had an opportunity to ask G. Lusztig how he had come to his conjectural formula [L1] that should describe the irreducible characters of simple \mathbb{F}_p -groups in terms of the Kazhdan-Lusztig polynomials. He kindly explained me the idea, that is in [H], and said it would be easier to relate the conjecture to his analogous conjecture for affine Kac-Moody Lie algebras than to derive the exact formula in the category of modules for the \mathbb{F}_p -groups or for their infinitesimal subgroups.

Meanwhile, quantized enveloping algebras were discovered by V. G. Drinfeld and Jimbo M. Their representation theory at roots of 1 has subsequently been related to that of affine Kac-Moody Lie algebras by D. Kazhdan and Lusztig [KL1, 2] and [L4], to the former [AJS] has related the representation theory of simple \mathbb{F}_p -groups, and Lusztig's conjectural formula for affine Kac-Moody Lie algebras has been verified by Kashiwara M. and Tanisaki T. [KT]. Altogether Lusztig's conjectural modular irreducible character formula is now proved to hold for large p and in type A, D, and E.

The morphism spaces of modules for simple \mathbb{F}_p -groups are \mathbb{F}_p -linear whereas those for quantized enveloping algebras over cyclotomic fields $\mathbb{Q}(\zeta)$ are $\mathbb{Q}(\zeta)$ -linear, hence one cannot hope to have an equivalence between these categories. Neither is \mathbb{F}_p flat over \mathbb{Z} . In order to overcome the difficulties,

[AJS] works not over \mathbb{F}_p , $\mathbb{Q}(\zeta)$ or \mathbb{Z} , but over various localizations of the completions of the Cartan part of the universal enveloping algebra of the Lie algebra of the \mathbb{F}_p -group and of the quantized enveloping algebra over $\mathbb{Q}(\zeta)$, introduces certain combinatorial categories over these algebras and finally over the symmetric algebra of the root lattice, then applies some standard techniques of finite dimensional algebras.

a° The problem

(a1) Let us first fix the notations.

R an irreducible root system with the set of coroots R^{\vee}

 R^+ a positive system of R

 Σ the simple system of R^+

X the weight lattice of R

 X^+ the set of dominant weights of X

 \geq the standard partial order on X such that $\lambda \geq \mu$ iff $\lambda - \mu \in \sum_{\alpha \in R^+} \mathbb{N}\alpha$

W the Weyl group of R

 $W_a = W \ltimes \mathbb{Z}$ the affine group of W

$$\rho = \frac{1}{2} \sum_{\alpha \in R^+} \alpha$$

 α_0 the dominant short root of R^+

 $h = \langle \rho, \alpha_0^{\vee} \rangle + 1$ the Coxeter number of R

 $(d_{\alpha})_{\alpha \in \Sigma} \in \{1, 2, 3\}^{\Sigma}$ minimal such that $[(d_{\alpha}\langle \beta, \alpha^{\vee} \rangle)]_{\alpha, \beta \in \Sigma}$ is symmetric

(a2) Let $k = \mathbb{F}_p$ the prime field of characteristic p > 0, and \mathfrak{G}_k the simply connected simple k-group with a maximal torus \mathfrak{T}_k split over \mathbb{Z} and the associated root system R. We will identify X with the weight group $\mathbf{Grp}_k(\mathfrak{T}_k,\mathfrak{GL}_1)$ of \mathfrak{T}_k .

If M is a \mathfrak{T}_k -module, M admits a weight space decomposition $M = \coprod_{\lambda \in X} M_{\lambda}$ with $M_{\lambda} = \{ m \in M \mid t(m \otimes 1) = m \otimes \lambda(t) \text{ in } M \otimes A \ \forall A \in \mathbf{Alg}_k \text{ and } t \in \mathfrak{T}_k(A) \}$, where \mathbf{Alg}_k denotes the category of commutative k-algebras. One

calls $\lambda \in X$ a weight of M iff $M_{\lambda} \neq 0$. Set $\operatorname{ch} M = \sum_{\lambda \in X} (\dim M_{\lambda}) e(\lambda)$, called the character of M, in the group algebra $\mathbb{Z}[X]$ of X with the natural basis $e(\lambda)$, $\lambda \in X$.

There is a bijection, due to C. Chevalley [J], (II.2.4), between X^+ and the set of the isomorphism classes of the simple \mathfrak{G}_k -modules such that

(1)
$$\lambda \longmapsto L(\lambda)_k$$
 simple of highest weight λ .

The fundamental problem in the representation theory of \mathfrak{G}_k has been to find all $\operatorname{ch} L(\lambda)_k$.

(a3) Let $\mathfrak{F}_{\mathfrak{G}}: \mathfrak{G}_k \to \mathfrak{G}_k$ be the Frobenius endomorphism of \mathfrak{G}_k . Let $X_k = \{ \mu \in X^+ \mid \langle \mu, \alpha^{\vee} \rangle \leq p-1 \ \forall \alpha \in \Sigma \}$. If $\lambda = \lambda^0 + p\lambda^1$ with $\lambda^0 \in X_k$ and $\lambda^1 \in X^+$, Steinberg's tensor product theorem says

$$L(\lambda)_k \simeq L(\lambda^0)_k \otimes_k L(\lambda^1)_k^{[1]}$$
 in $\mathfrak{G}_k \mathbf{Mod}$,

where $L(\lambda^1)_k^{[1]}$ is the composite of the representation $L(\lambda^1)_k$ with $\mathfrak{F}_{\mathfrak{G}}$. Hence we have only to find all $\operatorname{ch} L(\lambda)_k$, $\lambda \in X_k$.

- (a4) Let $\mathfrak{G}_1 = \ker \mathfrak{F}_{\mathfrak{G}}$ the Frobenius kernel of \mathfrak{G}_k . It is an infinitesimal subgroup of \mathfrak{G}_k defined by the Hopf algebra $k[\mathfrak{G}]/\mathfrak{m}_k^p$, where $k[\mathfrak{G}]$ is the Hopf algebra of \mathfrak{G}_k with the augmentation ideal \mathfrak{m}_k . Due to C.W. Curtis [J], (II.3.15),
- (1) $L(\lambda)_k, \lambda \in X_k, \text{ remains simple as } \mathfrak{G}_1\text{-module.}$

In order to keep track of the weights, however, we will work in the category of $\mathfrak{G}_1\mathfrak{T}_k$ -modules.

In $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ the simples are still parametrized by their highest weights, varying though over the entire X. We will denote the simple of highest weight $\mu \in X$ in $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ by $L_k(\mu)$. Then

(2)
$$L_k(\mu) \simeq L(\mu^0)_k \otimes_k p\mu^1 \text{ with } p\mu^1 = (\mu^1)^{[1]}.$$

(a5) Let $\lambda \in X$. If \mathfrak{B}_k is the Borel subgroup of \mathfrak{G}_k whose roots are $-R^+$, regard λ as a \mathfrak{B}_k -module via the projection $\mathfrak{B}_k \to \mathfrak{T}_k$, and let

$$\hat{Z}_k(\lambda) = \{ f \in \mathbf{Sch}_k(\mathfrak{G}_1\mathfrak{T}_k, \mathbb{A}^1) \mid f(A)(xb) = (\lambda(A)(b))^{-1} f(A)(x) \\ \forall x \in \mathfrak{G}_1\mathfrak{T}_k(A), b \in \mathfrak{B}_1\mathfrak{T}_k(A), A \in \mathbf{Alg}_k \},$$

that is just the $\mathfrak{G}_1\mathfrak{T}_k$ -module of global sections of the invertible sheaf on the quotient $\mathfrak{G}_1\mathfrak{T}_k/\mathfrak{B}_1\mathfrak{T}_k$ induced by the $\mathfrak{B}_1\mathfrak{T}_k$ -module λ , where \mathfrak{B}_1 is the Frobenius kernel of \mathfrak{B}_k and $\operatorname{\mathbf{Sch}}_k$ denotes the category of k-schemes. The $\mathfrak{G}_1\mathfrak{T}_k$ -module structure is given by $xf = f(x^{-1}?)$. Regarded as a functor $\mathfrak{B}_1\mathfrak{T}_k\operatorname{\mathbf{Mod}} \to \mathfrak{G}_1\mathfrak{T}_k\operatorname{\mathbf{Mod}} \hat{Z}_k$ is exact, that makes the representation theory of $\mathfrak{G}_1\mathfrak{T}_k$ more algebraic than that of \mathfrak{G}_k . One has

$$\operatorname{ch} \hat{Z}_k(\lambda) = e(\lambda) \prod_{\alpha \in R^+} \frac{1 - e(-p\alpha)}{1 - e(-\alpha)},$$

hence the composition factor multiplicity $[\hat{Z}_k(\lambda) : L_k(\lambda)] = 1$, and all the other composition factors of $\hat{Z}_k(\lambda)$ have highest weights $< \lambda$. It follows that the determination of $\operatorname{ch} L_k(\lambda)$ is now reduced to counting the decomposition numbers $[\hat{Z}_k(\lambda) : L_k(\mu)]$ for all $\lambda, \mu \in X$.

(a6) Define a partition of X into disjoint subsets, called the blocks of $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$, to be the finest partition such that λ and μ belong to the same block if $\mathbf{Ext}^1_{\mathfrak{G}_1\mathfrak{T}_k}(L_k(\lambda), L_k(\mu)) \neq 0$. The linkage principle [J], (II.6.17) says

(1) each block is contained in a
$$W_a$$
-orbit,

where we let W_a act on X by $\gamma w \cdot_k \lambda = w(\lambda + \rho) - \rho + p\gamma$, $\gamma \in \mathbb{Z}R$, $w \in W$, and $\lambda \in X$.

If b is a block of $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$, denote by $\mathfrak{G}_1\mathfrak{T}_k(b)$ the full subcategory of $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ consisting of all modules whose composition factors are of the form $L_k(\lambda)$, $\lambda \in b$. If Ω and Γ are two W_a -orbits in X, one has an exact functor

$$T_{\Omega}^{\Gamma}:\coprod_{b\subseteq\Omega}\mathfrak{G}_{1}\mathfrak{T}_{k}(b)\longrightarrow\coprod_{b\subseteq\Gamma}\mathfrak{G}_{1}\mathfrak{T}_{k}(b),$$

called the translation functor from Ω to Γ , that is both left and right adjoint to the translation functor T_{Γ}^{Ω} [J], (II.7).

(a7) Let $\mathfrak{A}_k = \{x \in X \otimes_{\mathbb{Z}} \mathbb{R} \mid 0 < \langle x + \rho, \alpha_0^{\vee} \rangle < p \ \forall \alpha \in \mathbb{R}^+ \}$. The W_a -translates of \mathfrak{A}_k are called alcoves. In particular, \mathfrak{A}_k is called the bottom dominant alcove. One has

$$\mathfrak{A}_k\cap X\neq\emptyset\quad \text{iff}\quad 0\in\mathfrak{A}_k\quad \text{iff}\quad p\geq h.$$

Assume from now on that $0 \in \mathfrak{A}_k$ throughout the rest of the survey.

Let $W_a^+ = \{ w \in W_a \mid w \cdot_k 0 \in X^+ \}$ and $W_1 = \{ w \in W_a \mid w \cdot_k 0 \in X_k \}$. Note that both W_a^+ and W_1 are independent of k.

As $\hat{Z}_k(\lambda)$ is indecomposable, one can write by the linkage principle

$$\operatorname{ch} L_k(\lambda) = \sum_{w \in W_a} a_{\lambda w} \operatorname{ch} \hat{Z}_k(w \cdot_k \lambda), \quad a_{\lambda w} \in \mathbb{Z}.$$

If μ belong to the "upper closure" of the alcove of λ , then the translation principle [J], (II.7.17)(b) yields

(1)
$$\operatorname{ch} L_k(\mu) = \sum_{w \in W_a} a_{\lambda w} \operatorname{ch} \hat{Z}_k(w \cdot_k \mu).$$

Also $\hat{Z}_k(\lambda + p\mu) = \hat{Z}_k(\lambda) \otimes_k p\nu \ \forall \nu \in X$, hence together with (a4)(2)

(2)
$$[\hat{Z}_k(\lambda + p\nu) : L_k(\eta + p\nu)] = [\hat{Z}_k(\lambda) : L_k(\eta)].$$

As any weight belongs to the upper closure of an alcove, for $p \geq h$ the problem is now reduced to counting all

(3)
$$[\hat{Z}_k(w \cdot_k 0) : L_k(w' \cdot_k 0)], \quad w \in W_a, w' \in W_1.$$

(a8) One says a $\mathfrak{G}_1\mathfrak{T}_k$ -module admits a \hat{Z}_k -filtration if it has a filtration in $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ with the factors of the form $\hat{Z}_k(\nu)$, $\nu \in X$.

Let $Q_k(\lambda)$ be the projective cover of $L_k(\lambda)$, $\lambda \in X$, in $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$. The Brauer-Humphreys reciprocity [J], (II.11.4) says

(1)
$$Q_k(\lambda)$$
 admits a \hat{Z}_k -filtration

and that the multiplicities in the \hat{Z}_k -filtration are given by

$$[Q_k(\lambda) : \hat{Z}_k(w \cdot_k \lambda)] = [\hat{Z}_k(w \cdot_k \lambda) : L_k(\lambda)],$$

where the factors of the filtration must be of the form $\hat{Z}_k(w \cdot_k \lambda)$, $w \in W_a$, by the linkage principle. Hence the problem is further reduced to finding the multiplicities in \hat{Z}_k -filtrations

$$[Q_k(w \cdot_k \lambda) : \hat{Z}_k(w' \cdot_k \lambda)] \quad \forall w \in W_1, w' \in W_a.$$

(a9) Let $\Omega_0 = W_a \cdot_k 0$ and $\lambda \in \Omega_0$. In one case the \hat{Z}_k -filtration of $Q_k(\lambda)$

is well-understood. The Steinberg module $\hat{Z}_k((p-1)\rho) = L_k((p-1)\rho) = L((p-1)\rho)_k$ is a projective indecomposable [J], (II.10.2), hence also

$$\hat{Z}_k((p-1)\rho + p\nu) \simeq \hat{Z}_k((p-1)\rho) \otimes_k p\nu \quad \forall \nu \in X.$$

If λ lies in the top alcove of the box $p\lambda^1 + X_k$, then [J], (II.11.10)

(1)
$$Q_k(\lambda) = T_{W_a \cdot k((p-1)\rho + p\lambda^1)}^{\Omega_o} \hat{Z}_k((p-1)\rho + p\lambda^1),$$

in a \hat{Z}_k -filtration of which all $\hat{Z}_k(w \cdot_k \lambda^0 + p(\rho - w\rho + \lambda^1))$, $w \in W$, appear exactly once. More generally [J], (II.9.19),

(a10) **Lemma**. Let $\lambda, \mu \in X$ belonging to the closure of an alcove. Then $T_{W_a \cdot k}^{W_a \cdot k} \hat{Z}_k(\lambda)$ has a \hat{Z}_k -filtration with the factors

$$\hat{Z}_k(w \cdot_k \mu), \quad w \in C_{W_a}(\lambda)/C_{W_a}(\lambda) \cap C_{W_a}(\mu),$$

each appearing exactly once.

(a11) Let Σ_a be the set of reflexions of W_a in a wall of \mathfrak{A}_k , that is independent of k. If $s \in \Sigma_a$, choose $\mu_s \in X \cap \overline{\mathfrak{A}_k}$ with $C_{W_a}(\mu_s) = \{1, s\}$, and set $T_s = T_{\Omega_0}^{W_{a \cdot k} \mu_s}$, $T_s' = T_{W_{a \cdot k} \mu_s}^{\Omega_0}$, and $\Theta_s = T_s \circ T_s'$.

For $\lambda \in \Omega_0$ define a sequence $I = (s_1, \ldots, s_r)$ of elements of Σ_a inductively as follows. If λ lies in the top alcove of the box $p\lambda^1 + X_k$, take $I = \emptyset$. Otherwise choose $s_1 \in \Sigma_a$ such that $\lambda < ws_1 \cdot_k 0$ if $\lambda = w \cdot_k 0$, $w \in W_a$, and that $ws_1 \cdot_k 0 \in p\lambda^1 + X_k$. Now set

$$Q_k^I(\lambda) = \Theta_{s_1} \circ \ldots \circ \Theta_{s_r} Q_k^{\emptyset}(\lambda)$$

with $Q_k^{\emptyset}(\lambda) = T_{W_a \cdot k((p-1)\rho + p\lambda^1)}^{\Omega_0} \hat{Z}_k((p-1)\rho + p\lambda^1)$. From (a10) we know the \hat{Z}_k -filtration of $Q_k^I(\lambda)$. On the other hand, if $\hat{\lambda} = w_0 \cdot_k \lambda^0 + p(\lambda^1 + 2\rho)$,

(1)
$$Q_k^I(\lambda) = \coprod_{\substack{\nu \in \Omega_0 \\ \lambda \uparrow \nu \uparrow \hat{\nu} \uparrow \hat{\lambda}}} Q_k(\nu)^{m_k(\lambda,\nu)} \quad \text{with} \quad m_k(\lambda,\lambda) = 1,$$

where \uparrow is a partial order on X such that $\nu \uparrow \nu'$ if $\nu' = s_{\beta} \cdot_k \nu + pm\beta \geq \nu$ for some $\beta \in \mathbb{R}^+$ and $m \in \mathbb{Z}$ [J], (II.11.6).

As the ch $Q(\nu)$ are linearly independent, the $m_k(\lambda, \nu)$ are uniquely determined. Then by induction on $\hat{\lambda} - \lambda$ finding all $m_k(\lambda, \nu)$ will determine the

 \hat{Z}_k -filtration of each $Q_k(\nu)$, $\nu \in \Omega_0$.

(a12) The set of $w \in W_a$ with

$$0 \uparrow w \cdot_k 0 \uparrow \widehat{w \cdot_k 0} \uparrow \widehat{0} = 2(p-1)\rho$$

is finite and independent of k. Enumerate those $w_1, ..., w_{n_0}$ such that if $w_i \cdot_k 0 \uparrow w_j \cdot_k 0 \uparrow \widehat{w_j \cdot_k 0} \uparrow \widehat{w_i \cdot_k 0}$, then $j \leq i$. Note that

$$W_1 \subseteq \{w_1, \ldots, w_{n_0}\}.$$

For each $w_i \cdot_k 0$, $i \in [1, n_0]$, choose a sequence I(i) as in (a11) and set $Q^{[i]}(k) = Q_k^{I(i)}(w_i \cdot_k 0)$. Then

(1)
$$Q^{[i]}(k) = \coprod_{j=1}^{i} Q_k(w_j \cdot_k 0)^{m_k(j,i)} \quad \text{with} \quad m_k(i,i) = 1.$$

Set $Q(k) = \coprod_{i=1}^{n_0} Q^{[i]}(k)$ and let

$$\mathcal{E}_{[i],[j]}(k) = \mathfrak{G}_1 \mathfrak{T}_k \mathbf{Mod}(Q^{[i]}(k),Q^{[j]}(k)), \quad \mathcal{E}(k) = \mathfrak{G}_1 \mathfrak{T}_k \mathbf{Mod}(Q(k),Q(k)).$$

Then $\mathcal{E}(k) = \coprod_{i,j \in [1,n_0]} \mathcal{E}_{[i],[j]}(k)$. Under the composition each $\mathcal{E}(k)_{[i],[i]}$ and $\mathcal{E}(k)$ form finite dimensional k-algebras.

Let $1 = \sum_{n \in E_k(i)} e_k^n(i)$ be a decomposition into orthogonal primitive idempotents in $\mathcal{E}(k)_{[i],[i]}$, where $E_k(i)$ is an indexing set with $e_k^0(i)$ corresponding to $Q_k(w_i \cdot_k 0)$, i.e., $Q_k(w_i \cdot_k 0) \simeq e_k^0(i)Q^{[i]}(k)$. Then $1 = \sum_{i=1}^{n_0} \sum_{n \in E_k(i)} e_k^n(i)$ is a decomposition into orthogonal primitive idempotents in $\mathcal{E}(k)$. Now

(2) $e_k^n(i)$ is conjugate to $e_k^m(j)$ in $\mathcal{E}(k)$, i.e., there is some $u \in \mathcal{E}(k)^{\times}$ with $e_k^n(i) = ue_k^n(j)u^{-1}$, iff $\mathcal{E}(k)e_k^n(i) \simeq \mathcal{E}(k)e_k^n(j)$ in $\mathcal{E}(k)\mathbf{Mod}$ iff $e_k^n(i)Q(k) \simeq e_k^m(j)Q(k)$ in $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$.

Hence if $n \neq 0$, $e_k^n(i)$ is conjugate to some $e_k^0(j)$ for j < i while $e_k^0(i)$ is not conjugate to any of $e_k^m(j)$, $m \in E_k(j)$ with j < i. It follows that

(3)
$$m_k(j,i) = \#\{s \in E_k(i) \mid E_k^s(i) \text{ is conjugate to } e_k^0(j) \text{ in } \mathcal{E}(k)\}.$$

(a13) By transferring from $\mathfrak{G}_k\mathbf{Mod}$ to $\mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ one has obtained finite

dimensional projectives (in $\mathfrak{G}_k\mathbf{Mod}$ there are no finite dimensional injectives nor projectives), and the translations in W_a have been reflected in a simple manner: for each λ and $\nu \in X$,

$$L_k(\lambda + p\nu) \simeq L_k(\lambda) \otimes_k p\nu, \quad \hat{Z}_k(\lambda + p\nu) \simeq \hat{Z}_k(\lambda) \otimes_k p\nu,$$

and $Q_k(\lambda + p\nu) \simeq Q_k(\lambda) \otimes_k p\nu.$

In characteristic 0 similar phenomenon occurs with the quantized enveloping algebra.

Let $\mathcal{A} = \mathbb{Z}[v,v^{-1}]$ with v an indeterminate and $U(\mathcal{A})$ Lusztig's \mathcal{A} -form of the Drinfeld-Jimbo quantized enveloping algebra over $\mathbb{Q}(v)$ [L3]. Let $\ell \in \mathbb{N}^+$ prime to the nonzero entries of the Cartan matrix of R, ζ a primitive ℓ -th root of 1 in \mathbb{C} , $\kappa = \mathbb{Q}(\zeta)$, and $U(\kappa) = U(\mathcal{A}) \otimes_{\mathcal{A}} \kappa$. Lusztig has discovered a characteristic 0 analogue of the Frobenius kernel in $U(\kappa)$, that is an $\ell^{|R|}(2\ell)^{|\Sigma|}$ -dimensional subalgebra $\mathfrak{u}(\kappa)$ of $U(\kappa)$ generated by $E_{\pm\alpha}$, K_{α} , $\alpha \in \Sigma$. Let $\mathcal{C}_{U(\kappa)}$ be the category of finite dimensional $U(\kappa)$ -modules with K_{α}^{ℓ} acting by 1 for each $\alpha \in \Sigma$. One has $K_{\alpha}^{2\ell} = 1$ in $U(\kappa)$. Then (cf. [APW1], (9.12); if ℓ is not a prime power, one argues as in [AW]) each $M \in \mathcal{C}_{U(\kappa)}$ admits a weight space decomposition with respect to the Cartan subalgebra $U^0(\kappa) = U^0(\mathcal{A}) \otimes_{\mathcal{A}} \kappa$ with $U^0(\mathcal{A})$ the \mathcal{A} -subalgebra of $U(\mathcal{A})$ generated by $K_{\alpha}^{\pm 1}$ and $K_{\alpha}^{K} = 1$ in K_{α}^{K} with K_{α}^{U} and $K_{\alpha}^{K} = 1$ in K_{α}^{U} and $K_{\alpha}^{$

(1)
$$M = \coprod_{\lambda \in X} M_{\lambda}$$
 with $M_{\lambda} = \{ m \in M \mid um = \lambda(u)m \ \forall u \in U^{0}(\kappa) \},$

where
$$\lambda(K_{\alpha}) = \zeta^{d_{\alpha}\langle\lambda,\alpha^{\vee}\rangle}$$
 and $\lambda(\begin{bmatrix}K_{\alpha}\\m\end{bmatrix}) = \begin{bmatrix}\langle\lambda,\alpha^{\vee}\rangle\\m\end{bmatrix}_{d_{\alpha}}$ with $\begin{bmatrix}r\\m\end{bmatrix}_{d_{\alpha}} = \prod_{i=1}^{m} \frac{v^{d_{\alpha}(r-i+1)}-v^{-d_{\alpha}(r-i+1)}}{v^{d_{\alpha}i}-v^{-d_{\alpha}i}} \otimes 1$.

The simples of $C_{U(\kappa)}$ are parametrized by their highest weights in X^+ as in $\mathfrak{G}_k\mathbf{Mod}$. Let $X_{\kappa} = \{\mu \in X^+ \mid \langle \mu, \alpha^{\vee} \rangle \leq \ell - 1 \ \forall \alpha \in \Sigma \}$. If $L(\lambda)_{\kappa}$ denotes the simple of $C_{U(\kappa)}$ of highest weight $\lambda \in X^+$ and if $\lambda = \lambda^0 + \ell \lambda^1$ with $\lambda^0 \in X_{\kappa}$ and $\lambda^1 \in X$, then Lusztig's tensor product theorem [LMR], (7.4) asserts

(2)
$$L(\lambda)_{\kappa} \simeq L(\lambda^{0})_{\kappa} \otimes_{\kappa} \bar{L}(\lambda^{1})_{\kappa}^{[1]} \quad \text{in } C_{U(\kappa)},$$

where $\bar{L}(\lambda^1)^{[1]}_{\kappa}$ is the composite of the simple representation $\bar{L}(\lambda^1)_{\kappa}$ of \mathfrak{G}_{κ} , i.e., of the universal enveloping algebra $U(\text{Lie}(\mathfrak{G}_{\kappa}))$ of the Lie algebra $\text{Lie}(\mathfrak{G}_{\kappa})$

of \mathfrak{G}_{κ} , with Lusztig's lift $U(\kappa) \to U(\text{Lie}(\mathfrak{G}_{\kappa}))$ of the Frobenius morphism [L3], (8.16) such that for each $\alpha \in \Sigma$ and $n \in \mathbb{N}$

$$E_{\pm\alpha}^{(n)} \mapsto \begin{cases} \bar{E}_{\pm\alpha}^{(\frac{n}{\ell})} & \text{if } \ell \mid n \\ 0 & \text{otherwise,} \end{cases} \quad K_{\alpha}^{\pm 1} \mapsto K_{\alpha}^{\pm 1}, \quad \begin{bmatrix} K_{\alpha} \\ n \end{bmatrix} \mapsto \begin{cases} \begin{bmatrix} H_{\alpha} \\ \frac{n}{\ell} \end{bmatrix} & \text{if } \ell \mid n \\ 0 & \text{otherwise,} \end{cases}$$

where $(\bar{E}_{\pm\beta}, H_{\alpha})_{\alpha\in\Sigma,\beta\in R}$ is a basis of $\text{Lie}(\mathfrak{G}_{\kappa})$ obtained from a Chevalley basis, and $E_{\pm\alpha}^{(r)} = \frac{E_{\pm\alpha}^r}{[r]_{d_{\alpha}}^l}$ in $U(\kappa)$ with $[r]_{d_{\alpha}}^! = \prod_{i=1}^r \frac{v^{d_{\alpha}i} - v^{-d_{\alpha}i}}{v^{d_{\alpha}} - v^{-d_{\alpha}i}} \otimes 1$ while $\bar{E}_{\pm\alpha}^{(r)} = \frac{\bar{E}_{\pm\alpha}^r}{r!}$ in $U(\text{Lie}(\mathfrak{G}_k))$. By [AW], (1.9)

(3)
$$L(\lambda^0)_{\kappa}$$
 remains simple as $\mathfrak{u}(\kappa)$ -module.

Again in order to keep track of the weights, we will consider $\tilde{\mathfrak{u}}(\kappa) = U^0(\kappa)\mathfrak{u}(\kappa)$ and the category $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ of all finite dimensional $\tilde{\mathfrak{u}}(\kappa)$ -modules admitting weight space decompositions (1) with K_{α}^{ℓ} acting by 1 for each $\alpha \in \Sigma$. The category $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ resembles much the category $\mathfrak{G}_1\mathfrak{T}_k$ -mod of finite dimensional $\mathfrak{G}_1\mathfrak{T}_k$ -modules [APW2], (4.7/4.10) (again if ℓ is not a prime power, refer to [AW]). In particular, finding the irreducible characters of $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ is reduced for $\ell \geq h$ to the determination of the multiplicity $m_{\kappa}(j,i)$ of the projective cover $Q_{\kappa}(w_j \cdot_{\kappa} 0)$ of $L_{\kappa}(w_j \cdot_{\kappa} 0)$ in the projective $Q^{[i]}(\kappa)$:

$$Q^{[i]}(\kappa) = \coprod_{j \le i} Q_{\kappa}(w_j \cdot_{\kappa} 0)^{m_{\kappa}(j,i)},$$

using the notations of (a12) to define $Q^{[i]}(\kappa)$, where \cdot_{κ} is the (\cdot_k) -action of W_a on X with p replaced by ℓ . Define $\mathcal{E}_{[i],[j]}(\kappa)$, $\mathcal{E}(\kappa)$, and the idempotents as in (a12) with k replaced by κ . Then

(5)
$$m_{\kappa}(j,i) = \#\{s \in E_{\kappa}(i) \mid e_{\kappa}^{s}(i) \text{ is conjugate to } e_{\kappa}^{0}(j) \text{ in } \mathcal{E}(\kappa)\}.$$

(a14) We are not to ask for an equivalence of categories between $\mathfrak{G}_1\mathfrak{T}_k$ mod and $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$, but to expect for p and $\ell \geq h$

(1)
$$m_k(i,j) = m_{\kappa}(i,j) \quad \forall i,j.$$

Indeed, a morphism space in $\mathfrak{G}_1\mathfrak{T}_k\mathbf{mod}$ is finite dimensional over \mathbb{F}_p while that in $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ is finite dimensional over $\mathbb{Q}(\zeta)$.

If $p = \ell < h$, however, Andersen and Jantzen have found an example [A1], (7.9) that $\operatorname{ch} L_k(\lambda) \neq \operatorname{ch} L_{\kappa}(\lambda)$ for some $\lambda \in X_k = X_{\kappa}$.

b° The theorem

(b1) Retain the notations of (a12/13).

Theorem (cf. [AJS], Corollary 16.8) There is a \mathbb{Z} -algebra \mathcal{E} of finite type as \mathbb{Z} -module with isomorphisms

$$\mathcal{E} \otimes_{\mathbb{Z}} k \simeq \mathcal{E}(k)$$
 in $k\mathbf{Alg}$ and $\mathcal{E} \otimes_{\mathbb{Z}} \kappa \simeq \mathcal{E}(\kappa)$ in $\kappa\mathbf{Alg}$.

Moreover, \mathcal{E} admits a decomposition $\mathcal{E} = \coprod_{i,j \in [1,n_0]} \mathcal{E}_{[i],[j]}$ such that $\mathcal{E}_{[i],[j]} \mathcal{E}_{[n],[m]} \subseteq \delta_{jn} \mathcal{E}_{[i],[m]}$ for each i,j,m and n, and that the above isomorphisms restrict to isomorphisms

$$\mathcal{E}_{[i],[j]} \otimes_{\mathbb{Z}} k \simeq \mathcal{E}_{[i],[j]}(k)$$
 and $\mathcal{E}_{[i],[j]} \otimes_{\mathbb{Z}} \kappa \simeq \mathcal{E}_{[i],[j]}(\kappa),$

respectively.

- (b2) Remark (cf. [AJS], Corollary 16.11) One can realize \mathcal{E} such that $\mathcal{E} \otimes_{\mathbb{Z}} \mathbb{Z}[\frac{1}{d}]$ is free of finite type over $\mathbb{Z}[\frac{1}{d}]$ with d = (h-1)!.
- (b3) For a commutative ring A let us write $\mathcal{E}_A = \mathcal{E} \otimes_{\mathbb{Z}} A$. There is a finite extension field F of \mathbb{Q} that is a splitting field of $\mathcal{E}_{\mathbb{Q}}$ [NT], Theorem 2.3.11. Let \mathfrak{o}_F be the ring of algebraic integers in F and let $1 = \sum_{n \in E_F(i)} e_F^n(i)$, $1 \le i \le n_0$, and $1 = \sum_{i=1}^{n_0} \sum_{n \in E_F(i)} e_F^n(i)$ be decompositions into orthogonal primitive idempotents in $(\mathcal{E}_{[i],[i]})_F$ and \mathcal{E}_F , respectively. One can find $N \in \mathbb{N}^+$ such that if $\mathfrak{o} = \mathfrak{o}_F[\frac{1}{N}]$, then (cf. [NT], Lemma 1.13.14)

(2)
$$\mathbf{o}$$
 is of finite type as $\mathbb{Z}[\frac{1}{N}]$ -module,

(3)
$$\mathcal{E}_{o}$$
 is o -free of finite type,

(4)
$$all e_F^n(i) live in \mathcal{E}_{\mathfrak{o}},$$

i.e., one can write $e_F^n(i) = e^n(i) \otimes 1$ with idempotents $e^n(i)$ in $\mathcal{E}_{\mathfrak{o}}$, and

(5) $e^n(i)$ and $e^m(j)$ are conjugate in \mathcal{E}_F iff they are so in $\mathcal{E}_{\mathfrak{o}} \ \forall i, j, n, m$.

If $\mathfrak{m} \in \operatorname{Max}(\mathfrak{o})$, $\mathfrak{o}_{\mathfrak{m}}$ is a DVR as \mathfrak{o} is a Dedekind domain [AM], (9.5). Put $\mathfrak{o}' = \mathfrak{o}_{\mathfrak{m}}$, $\mathfrak{m}' = \mathfrak{m}\mathfrak{o}'$, and let $\hat{\mathfrak{o}}'$ be the completion of \mathfrak{o}' in the \mathfrak{m}' -adic topology.

Then $\hat{\mathfrak{o}}'$ is a complete DVR with the maximal ideal $\hat{\mathfrak{m}}' = \mathfrak{m}'\hat{\mathfrak{o}}'$ (cf. [B1], (VI.5.3), Proposition 5) and with $\hat{\mathfrak{o}}'/\hat{\mathfrak{m}}' \simeq \mathfrak{o}'/\mathfrak{m}' \simeq \mathfrak{o}/\mathfrak{m}$ [AM], (10.16). In fact, if $\hat{\mathfrak{o}}$ is the completion of \mathfrak{o} in the \mathfrak{m} -adic topology, then $\hat{\mathfrak{o}} \simeq \hat{\mathfrak{o}}'$ [B1], Exercise III.2.27(a). As F is a splitting field of $\mathcal{E}_{\mathbb{Q}}$, the $e^n(i)$ remain primitive in $\mathcal{E}_{\text{Frac}(\hat{\mathfrak{o}}')}$, hence in $\mathcal{E}_{\hat{\mathfrak{o}}'}$. Also $e^n(i)$ and $e^m(j)$ are conjugate in $\mathcal{E}_{\hat{\mathfrak{o}}'}$ iff they are so in $\mathcal{E}_{\mathfrak{o}'}$. Hence (cf. [NT], Theorem 1.14.2(ii))

- (6) the $e^n(i)$ remain primitive in $\mathcal{E}_{\mathfrak{o}/\mathfrak{m}}$, and (cf. [NT], Theorem 1.14.2(iii))
- (7) $e^{n}(i)$ and $e^{m}(j)$ are conjugate in $\mathcal{E}_{\mathfrak{o}/\mathfrak{m}}$ iff they are so in $\mathcal{E}_{\mathfrak{o}}$.

Rearrange the index sets E(i) of the primitive idempotents in $\mathcal{E}_{\mathfrak{o}}$ so that $e^{0}(i)$ is not conjugate in $\mathcal{E}_{\mathfrak{o}}$ to any of $e^{m}(j)$, $m \in E(j)$, j < i.

- (b4) As the simples of $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ are absolutely simple, any indecomposable projective of $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ remains indecomposable projective under field extensions. Hence
- (1) $m_{\kappa}(j,i) = \#\{s \in E(i) \mid e^s(i) \text{ is conjugate to } e^0(j) \text{ in } \mathcal{E}_{\mathfrak{o}}\}.$

Also if p >> 0 so that $p \notin \mathfrak{o}^{\times}$, then considering $\mathfrak{m} \in \operatorname{Max}(\mathfrak{o})$ with $p \in \mathfrak{m}$ yields

(2)
$$m_k(j,i) = \#\{s \in E(i) \mid e^s(i) \text{ is conjugate to } e^0(j) \text{ in } \mathcal{E}_{\mathfrak{o}}\}.$$
 Hence for $p >> 0$

$$(3) m_k(j,i) = m_{\kappa}(j,i).$$

(b5) Let $\mathfrak{u}^-(\kappa)$ be the κ -subalgebra of $\mathfrak{u}(\kappa)$ generated by $E_{-\alpha}$, $\alpha \in \Sigma$, and let $\tilde{\mathfrak{u}}^{\flat}(\kappa) = \mathfrak{u}^-(\kappa)U^0(\kappa)$. Define a category $\mathcal{C}_{\tilde{\mathfrak{u}}^{\flat}(\kappa)}$ of finite dimensional $\tilde{\mathfrak{u}}^{\flat}(\kappa)$ -modules just like $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$. In analogy to the functor $\hat{Z}_k : \mathfrak{B}_1\mathfrak{T}_k\mathbf{Mod} \to \mathfrak{G}_1\mathfrak{T}_k\mathbf{Mod}$ one has an induction functor $\tilde{Z}_{\kappa} : \mathcal{C}_{\tilde{\mathfrak{u}}^{\flat}(\kappa)} \to \mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ defined by $\tilde{Z}_{\kappa}(M) = \tilde{\mathfrak{u}}^{\flat}(\kappa)\mathbf{Mod}(\tilde{\mathfrak{u}}(\kappa), M)$ [APW2], (1.2). Then

(1)
$$\operatorname{ch} \tilde{Z}_{\kappa}(\lambda) = e(\lambda) \prod_{\alpha \in R^{+}} \frac{1 - e(-\ell \alpha)}{1 - e(-\alpha)} \quad \forall \lambda \in X,$$

and [APW2], (4.10)

(2) the Brauer-Humphreys reciprocity carries over to $C_{\tilde{\mathfrak{u}}(\kappa)}$.

Corollary (cf. [AJS], Corollary 16.23) Assume $\ell \geq h$ and p >> 0 relative to R. Then for each $w, w' \in W_a$ there is $d(w, w') \in \mathbb{N}$ independent of ℓ and p such that

$$[\hat{Z}_k(w \cdot_k 0) : L_k(w' \cdot_k 0)] = d(w, w') = [\tilde{Z}_{\kappa}(w \cdot_{\kappa} 0) : L_{\kappa}(w' \cdot_{\kappa} 0)].$$

In particular, if $p = \ell$, then

$$ch L_k(w \cdot_k 0) = ch L_{\kappa}(w \cdot_{\kappa} 0) \quad \forall w \in W,$$

hence together with the translation principle

$$ch L(\lambda)_k = ch L(\lambda)_{\kappa} \quad \forall \lambda \in X_k = X_{\kappa}.$$

(b6) It follows that the irreducible characters of $\mathfrak{G}_k\mathbf{Mod}$ are obtained from that of $\mathcal{C}_{U(\kappa)}$ if p >> 0. Hence from [KL1, 2], [L4] and [KT] Lusztig's conjectural irreducible character formula in $\mathfrak{G}_k\mathbf{Mod}$ holds if p >> 0 and if R is of type A, D or E.

c° Reformulation of categories

(c1) In order to treat much alike categories $\mathfrak{G}_1\mathfrak{T}_k\mathbf{mod}$ and $\mathcal{C}_{\tilde{\mathfrak{u}}(\kappa)}$ simultaneously, we will reformulate these categories as follows.

Case 1. Let $k[\mathfrak{G}]$ be the Hopf algebra defining \mathfrak{G}_k and \mathfrak{m}_k the augmentation ideal of $k[\mathfrak{G}]$. Let $\mathrm{Dist}(\mathfrak{G}_k) = \underset{n \geq 0}{\underline{\lim}} \mathbf{Mod}_k(k[\mathfrak{G}]/\mathfrak{m}_k^{n+1}, k)$ the algebra of distributions of \mathfrak{G}_k , that inherits the structure of Hopf algebra from $k[\mathfrak{G}]$.

Any \mathfrak{G}_k -module M is a $k[\mathfrak{G}]$ -comodule, hence a $\mathrm{Dist}(\mathfrak{G}_k)$ -module : if $\Delta_M = id_{k[\mathfrak{G}]} \in \mathfrak{G}_k(k[\mathfrak{G}]) : M \to M \otimes_k k[\mathfrak{G}]$ is the comodule map, then each $x \in \mathrm{Dist}(\mathfrak{G}_k)$ acts on M by $(M \otimes_k x) \circ \Delta_M$. Conversely, any finite dimensional $\mathrm{Dist}(\mathfrak{G}_k)$ -module carries a structure of \mathfrak{G}_k -module [J], $(\mathrm{II}.1.20)$.

The Hopf algebra of \mathfrak{G}_1 is $k[\mathfrak{G}]/\mathfrak{m}_k^p$, hence $\mathrm{Dist}(\mathfrak{G}_1) = (k[\mathfrak{G}]/\mathfrak{m}_k^p)^*$. Then $\mathfrak{G}_1\mathbf{Mod} = \mathrm{Dist}(\mathfrak{G}_1)\mathbf{Mod}$: if M is a $\mathrm{Dist}(\mathfrak{G}_1)$ -mod, one gets the comodule map by the commutative diagram

$$m$$
 $M \longrightarrow M \otimes_k k[\mathfrak{G}]/\mathfrak{m}_k^p$
$$\downarrow \qquad \qquad \parallel$$

$$x \mapsto xm \quad \mathbf{Mod}_k(\mathrm{Dist}(\mathfrak{G}_1), M) \stackrel{\sim}{\longrightarrow} M \otimes_k \mathrm{Dist}(\mathfrak{G}_1)^*.$$

Let $\mathfrak{g} = \operatorname{Lie}(\mathfrak{G}_k) = \operatorname{Mod}_k(\mathfrak{m}_k/\mathfrak{m}_k^2, k) \leq \operatorname{Dist}(\mathfrak{G}_k)$, and $\mathfrak{g} = \mathfrak{n}^+ \oplus \mathfrak{h} \oplus \mathfrak{n}^-$ the triangular decomposition with $\mathfrak{h} = \operatorname{Lie}(\mathfrak{T}_k)$. For each $x \in \mathfrak{g}$ one has $x^p \in \mathfrak{g}$ in $\operatorname{Dist}(\mathfrak{G}_k)$ [DG], (II.7.2.3), which we will denote by $x^{[p]}$. In particular [DG], (II.7.2.2), if $x \in \mathfrak{n}^{\pm}$, then $x^{[p]} = 0$ while if $x \in \mathfrak{h}$, then $x^{[p]} = x$.

If $U(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g} , then

$$(1) x^p - x^{[p]} \in Z(U(\mathfrak{g})),$$

where x^p is the p-th power of x in $U(\mathfrak{g})$. One calls $U^{[p]}(\mathfrak{g}) = U(\mathfrak{g})/(x^p - x^{[p]} \mid x \in \mathfrak{g})$ the restricted enveloping algebra of \mathfrak{g} . There is a commutative diagram of k-algebras

$$U(\mathfrak{g}) \xrightarrow{\text{natural}} \text{Dist}(\mathfrak{G}_k)$$

$$\downarrow \qquad \downarrow$$

$$U^{[p]}(\mathfrak{g}) \xrightarrow{\sim} \text{Dist}(\mathfrak{G}_1).$$

Fix a k-basis $(H_{\alpha}, \bar{E}_{\beta} \mid \alpha \in \Sigma, \beta \in R)$ of \mathfrak{g} with $H_{\alpha} = [\bar{E}_{\alpha}, \bar{E}_{-\alpha}]$ obtained from a Chevalley basis. Let $I = (\bar{E}_{\beta}^p \mid \beta \in R) \leq U(\mathfrak{g})$ and set $\bar{U}(\mathfrak{g}) = U(\mathfrak{g})/I$. The adjoint action of \mathfrak{T}_k on $U(\mathfrak{g})$ stabilizes I, hence $\bar{U}(\mathfrak{g})$ comes equipped with an X-gradation given by the \mathfrak{T}_k - action. As $\bar{E}_{\beta}^p \in Z(U(\mathfrak{g}))$, $\bar{U}(\mathfrak{g})$ retains a PBW-type basis $(\bar{E}^m H^r \bar{F}^n \mid m, n \in [0, p-1]^{R^+}, r \in \mathbb{N}^{\Sigma})$ with

$$\bar{E}^m = \prod_{\beta \in R^+} \bar{E}_{\beta}^{m_{\beta}}, H_r = \prod_{\alpha \in \Sigma} H_{\alpha}^{r_{\alpha}} \text{ and } \bar{F}^n = \prod_{\beta \in R^+} \bar{E}_{-\beta}^{n_{\beta}}.$$

The degree of $\bar{E}^m H^r \bar{F}^n$ is $\sum_{\beta \in \mathbb{R}^+} (m_\beta - n_\beta) \beta$.

Case 2. Let U_2 be the De Concini-Kac version [DCK], (1.5) of the quantized enveloping algebra over κ , i.e., the κ -algebra with the generators $E_{\pm\alpha}$, $K_{\alpha}^{\pm 1}$, $\alpha \in \Sigma$, and the same relations as the Drinfeld-Jimbo algebra over $\mathbb{Q}(v)$ with v replaced by ζ . Let U_2^{\pm} (resp. U_2^0) be the κ -subalgebra of U_2 generated by $E_{\pm\alpha}$ (resp. $K_{\alpha}^{\pm 1}$), $\alpha \in \Sigma$. For each $w \in W$ let T_w be the endomorphism of U_2 carried over from [LQG]. If $\beta \in R^+$, choose $w \in W$ with $w^{-1}\beta \in \Sigma$, and set $E_{\beta} = T_w(E_{w^{-1}\beta})$ and $E_{-\beta} = T_w(E_{-w^{-1}\beta})$. In case $\beta \in \Sigma$, the $E_{\pm\beta}$ so defined coincide with the old ones. One can then make U_2 into an X-graded algebra by giving E_{β} , $\beta \in R$ (resp. K_{α} , $\alpha \in \Sigma$), degree β (resp. 0). By [DCK], Corollary 3.1

$$E_{\beta}^{\ell}, K_{\alpha}^{\ell} \in Z(U_2) \quad \forall \beta \in R \text{ and } \alpha \in \Sigma.$$

Let $I^{\pm} = (E_{\beta}^{\ell} \mid \beta \in \pm R^{+}) \leq U_{2}^{\pm}$ and $I = (I^{\pm}) \leq U_{2}$. If $f \in \kappa \mathbf{Alg}(U_{2}, U(\kappa))$ with $E_{\pm \alpha} \mapsto E_{\pm \alpha}$ and $K_{\alpha} \mapsto K_{\alpha}$ for each $\alpha \in \Sigma$, then f induces an isomorphism of κ -algebras

$$U_2/(I, K_{\alpha}^{2\ell} - 1 \mid \alpha \in \Sigma) \simeq \mathfrak{u}(\kappa).$$

Moreover, $I^{\pm} = \ker(f|_{U_2^{\pm}})$, hence I^{\pm} are defined independent of the choice of the T_w 's.

Under a suitable choice of the T_w 's and orderings in the products U_2/I retains a PBW-type κ -basis $(E^mK^rF^n\mid m,n\in[0,\ell-1]^{R^+},r\in\mathbb{Z}^{\Sigma})$ with

$$E^m = \prod_{\beta \in R^+} E_{\beta}^{m_{\beta}}, K_r = \prod_{\alpha \in \Sigma} K_{\alpha}^{r_{\alpha}} \text{ and } F^n = \prod_{\beta \in R^+} E_{-\beta}^{n_{\beta}}.$$

(c2) In order to treat the two cases simultaneously, we will denote (κ, ℓ) also by (k, p) and set

$$(U, U^{\pm}, U^{0}) = \begin{cases} (\bar{U}(\mathfrak{g}), U(\mathfrak{n}^{\pm}) + I/I, U(\mathfrak{h}) + I/I) & \text{in Case 1} \\ (U_{2}/I, U_{2}^{\pm} + I/I, U_{2}^{0} + I/I) & \text{in Case 2.} \end{cases}$$

Hence as k-algebras

 $U^0 \simeq \begin{cases} k[H_\alpha \mid \alpha \in \Sigma] & \text{the polynomial algebra in H_α in Case 1} \\ k[K_\alpha^{\pm 1} \mid \alpha \in \Sigma] & \text{the Laurent polynomial algebra in K_α in Case 2,} \end{cases}$ and U has

- (3) $a \ structure \ of \ k$ -Hopf $algebra \ (nontrivial \ in \ Case \ 2),$
- (4) a triangular decomposition, i.e., $a \text{ k-linear bijection } U^- \otimes_k U^0 \otimes_k U^+ \to U \text{ under the multiplication,}$ and
- (5) an X-gradation, indicated by subscripts, such that $U^0 \subseteq U_0, U^+ \subseteq \coprod_{\nu \geq 0} U_{\nu}, U^- \subseteq \coprod_{\nu \leq 0} U_{\nu}, \text{ and } (U^+)_0 = k \cdot 1 = (U^-)_0.$

Define a group homomorphism $\tilde{}: X \to \mathbf{Alg}_k(U^0, U^0)^{\times}$ by

$$\tilde{\lambda}(H) = H + \lambda(H) \quad \forall H \in \mathfrak{h} \quad \text{in Case 1}$$

$$\tilde{\lambda}(K_{\alpha}) = \zeta^{d_{\alpha}\langle\lambda,\alpha^{\vee}\rangle}K_{\alpha} \quad \forall \alpha \in \Sigma \quad \text{in Case 2.}$$

Then for each $s \in U^0$ and $u \in U_{\lambda}$ one has $su = u\tilde{\lambda}(s)$.

(c3) Let A be a noetherian domain over U^0 with a structure homomorphism $\pi: U^0 \to A$ (the assumption that A be a domain is only for convenience in the present survey). We define a category \mathcal{C}_A as follows. An object of \mathcal{C}_A is a $U \otimes_k A$ -module M, which is as A-module of finite type and X-graded. We regard U and A imbedded in $U \otimes_k A$ as $U \otimes 1$ and $1 \otimes A$, respectively, and write $(u \otimes a)m = uma$. We require

$$(1) U_{\nu}M_{\lambda} \subseteq M_{\lambda+\nu} \quad \forall \nu \in X$$

and

(2)
$$sm = m\pi(\tilde{\lambda}(s)) \quad \forall s \in U^0 \text{ and } m \in M_{\lambda}.$$

A morphism of C_A is a morphism of $U \otimes_k A$ -modules that preserves the X-gradings.

The category C_A is equipped with a duality operation. There is an involutory antiautomorphism τ of U [AJS], (1.6) such that

$$E_{\alpha} \longmapsto E_{-\alpha} \quad \forall \alpha \in \Sigma \quad \text{and} \quad s \longmapsto s \quad \forall s \in U^0.$$

If $M \in \mathcal{C}_A$, define M^{τ} to be $\mathbf{Mod}A(M,A)$ with U acting by $(uf)(m) = f(\tau(u)m)$ and with the X-gradation given by

$$(M^{\tau})_{\lambda} = \{ f \in M^{\tau} \mid f(M_{\mu}) = 0 \quad \forall \mu \neq \lambda \} \simeq \mathbf{Mod}A(M_{\lambda}, A).$$

If M is A-projective, $(M^{\tau})^{\tau} \simeq M$ in \mathcal{C}_A .

Replacing U by U^0U^+ (resp. U^0) one defines likewise the categories $\mathcal{C}_A^{\geq 0}$ and \mathcal{C}_A^0 .

If $M \in \mathcal{C}_A^0$ is projective in the category of right A-modules $\mathbf{Mod}A$, define the character of M by

$$\operatorname{ch} M = \sum_{\lambda \in X} \operatorname{rk}_A(M_\lambda) e(\lambda) \quad \text{in } \mathbb{Z}[X].$$

(c4) Case 1. Take A = k with the structure homomorphism $\pi: U^0 \to k$ annihilating \mathfrak{h} . Then for each $\lambda \in X$ and $u \in \mathfrak{h}$

$$\tilde{\lambda}(u^p) = \tilde{\lambda}(u)^p = \lambda(u)^p = \lambda(u) = \tilde{\lambda}(u).$$

Hence the *U*-module structure on $M \in \mathcal{C}_k$ factors through $U^{[p]}(\mathfrak{g})$. Consequently, M comes equipped with a structure of $\mathrm{Dist}(\mathfrak{G}_1)$ -module. Moreover, the X-gradation on M makes M into a \mathfrak{T}_k -module such that

 $t(xm \otimes 1) = (\operatorname{Ad}(t)(x \otimes 1))t(m \otimes 1)$ in $M \otimes_k A' \quad \forall t \in \mathfrak{T}_k(A'), A' \in \operatorname{Alg}_k$, hence into a $\mathfrak{G}_1\mathfrak{T}_k$ -module. One can thus identify \mathcal{C}_k with $\mathfrak{G}_1\mathfrak{T}_k$ -mod the category of finite dimensional $\mathfrak{G}_1\mathfrak{T}_k$ -modules.

Case 2. Take A = k with $\pi : U^0 \to k$ such that $K_\alpha \mapsto 1 \ \forall \alpha \in \Sigma$. Then for each $\lambda \in X$ and $\alpha \in \Sigma$

$$\tilde{\lambda}(K_{\alpha}^{p}) = \tilde{\lambda}(K_{\alpha})^{p} = \zeta^{pd_{\alpha}\langle\lambda,\alpha^{\vee}\rangle} = 1.$$

Hence together with the X-gradation one can identify C_k with $C_{\tilde{\mathfrak{u}}(k)}$.

- (c5) The forgetful functor gives an equivalence of categories from \mathcal{C}_A^0 to the category of X-graded A-modules of finite type, hence
- (1) C_A^0 has enough projectives.

Define a functor $\Phi_A: \mathcal{C}_A^0 \to \mathcal{C}_A$ by setting $\Phi_A(M) = U \otimes_{U^0} M$, $M \in \mathcal{C}_A^0$, with U acting by the left multiplication on U while A acting as given on M. The X-gradation on $\Phi_A(M)$ is defined by $\Phi_A(M)_{\lambda} = \sum_{\nu \in X} U_{\nu} \otimes_{U^0} M_{\lambda-\nu}$.

Define likewise a functor $\Phi_A^{\geq 0}: \mathcal{C}_A^0 \to \mathcal{C}_A^{\geq 0}$ by $\Phi_A^{\geq 0}(M) = U^0U^+ \otimes_{U^0} M$. Then

- (2) Φ_A (resp. $\Phi_A^{\geq 0}$) is exact and left adjoint to the forgetful functor from \mathcal{C}_A (resp. $\mathcal{C}_A^{\geq 0}$) to \mathcal{C}_A^0 . Hence from (1)
- (3) both C_A and $C_A^{\geq 0}$ have enough projectives.
- (c6) Define likewise a functor $Z_A: \mathcal{C}_A^{\geq 0} \to \mathcal{C}_A$ by setting $Z_A(M) = U \otimes_{U^0U^+} M, \quad M \in \mathcal{C}_A^{\geq 0},$

with the X-gradation on $Z_A(M)$ defined by $Z_A(M)_{\lambda} = \coprod_{\nu \in X} (U^-)_{\nu} \otimes_k M_{\lambda-\nu}$, using an A-linear isomorphism $Z_A(M) \simeq U^- \otimes_k M$. Then

(1) Z_A is exact and left adjoint to the forgetful functor $\mathcal{C}_A \to \mathcal{C}_A^{\geq 0}$

and

$$\Phi_A = Z_A \circ \Phi_A^{\geq 0}.$$

An object of \mathcal{C}_A^0 can be made into an object of $\mathcal{C}_A^{\geq 0}$ through an isomorphism $U^0U^+/\coprod_{\nu>0}(U^0U^+)_{\nu}\simeq U^0$. In particular, if $\lambda\in X$, define $A^\lambda\in\mathcal{C}_A^0$ by

$$(A^{\lambda})_{\nu} = \begin{cases} A & \text{if } \nu = \lambda \\ 0 & \text{otherwise.} \end{cases}$$

Regarding A^{λ} as an object of $\mathcal{C}_{A}^{\geq 0}$, set $Z_{A}(\lambda) = Z_{A}(A^{\lambda})$. Then

(3)
$$\operatorname{ch} Z_A(\lambda) = e(\lambda) \prod_{\beta \in R^+} \frac{1 - e(-p\beta)}{1 - e(-\beta)},$$

that coincides with $\operatorname{ch} \hat{Z}_k(\lambda)$ of §a.

In case A = F is a field

- (4) $Z_F(\lambda)$ has a simple head of highest weight λ , which we will denote by $L_F(\lambda)$. All simples of \mathcal{C}_F arise in this way.
- (c7) A Z-filtration of $M \in \mathcal{C}_A$ is a chain in \mathcal{C}_A with the successive subquotients isomorphic to some $Z_A(\lambda)$, $\lambda \in X$. By (c6)(3)
- (1) the multiplicity of $Z_A(\lambda)$ in a Z-filtration is independent of the choice of the Z-filtrations.

As $\Phi_A = Z_A \circ \Phi_A^{\geq 0}$ and as both Z_A and $\Phi_A^{\geq 0}$ are exact,

(2) any $M \in \mathcal{C}_A$ admits an epi $Q \to M$ in \mathcal{C}

with Q projective having a Z-filtration.

Moreover,

(c8) Lemma (cf. [AJS], Lemma 2.16) If A is local, any direct summand of an object of C_A with a Z-filtration admits a Z-filtration. In particular, any projective of C_A has a Z-filtration.

Proof. One has [AJS], (2.14)

(1)
$$\operatorname{Ext}_{\mathcal{C}_A}^1(Z_A(\lambda), Z_A(\mu)) \neq 0, \ \lambda, \mu \in X, \ then \ \mu > \lambda.$$

Let $M=M'\oplus M''$ in \mathcal{C}_A with M having a Z-filtration. If A=F is a field, the standard argument applies: if λ is a maximal weight of M with $r=\dim_F M_\lambda$, then by (1) there is $V\leq M$ with $V\simeq Z_F(\lambda)^{\oplus_r}$ such that M/V has a Z-filtration with $[M/V:Z_F(\lambda)]=0$. If $m\in M'_\lambda\setminus 0$, let $\hat{m}\in\mathcal{C}_F(Z_F(\lambda),M')$ induced by the adjunction from a morphism $F^\lambda\to M'$ in $\mathcal{C}^{\geq 0}$ such that $1\mapsto m$. Then $\mathrm{im}(\hat{m})\leq V$. Denote by \hat{m}' the morphism $Z_F(\lambda)\to V$ induced from \hat{m} . As $\mathcal{C}_F(Z_F(\lambda),Z_F(\lambda))\simeq \mathcal{C}_F^{\geq 0}(Z_F(\lambda),\lambda)\simeq F$, $\mathcal{C}_F(Z_F(\lambda),Z_F(\lambda))=F\mathrm{id}_{Z_F(\lambda)}$. Hence

(2)
$$\hat{m}'$$
 is a split mono with $\operatorname{coker}(\hat{m}') \simeq Z_F(\lambda)^{\oplus_{r-1}}$.

Then $M'/\text{im}(\hat{m}) \oplus M'' \simeq M/\text{im}(\hat{m}')$ retains a Z_F -filtration. The assertion follows by induction on the length of a Z-filtration on M.

In general, let $\mathfrak{p} \in \operatorname{Spec} A$ with $\kappa(\mathfrak{p})$ the residue field of $A_{\mathfrak{p}}$. As $Z_A(\lambda) \otimes_A \kappa(\mathfrak{p}) \simeq Z_{\kappa(\mathfrak{p})}(\lambda)$ in $\mathcal{C}_{\kappa(\mathfrak{p})}$, it suffices to check by above that

(3) if $L \in \mathcal{C}_A$ is A-free with $L_{\kappa(\mathfrak{p})} = L \otimes_A \kappa(\mathfrak{p})$ admitting a Z-filtration in $\mathcal{C}_{\kappa(\mathfrak{p})}$ for each $\mathfrak{p} \in SpecA$, then L admits a Z-filtration in \mathcal{C}_A .

Let λ be a maximal weight of L. By (1) again if $s = \dim_{\kappa(\mathfrak{p})}(L_{\kappa(\mathfrak{p})})_{\lambda}$, there is $L' \leq L_{\kappa(\mathfrak{p})}$ with $L' \simeq Z_{\kappa(\mathfrak{p})}(\lambda)^{\oplus_s}$ and such that $L_{\kappa(\mathfrak{p})}$ has a Z-filtration with $[L_{\kappa(\mathfrak{p})}/L': Z_{\kappa(\mathfrak{p})}(\lambda)] = 0$. As A is local, L_{λ} remains A-free, say $L_{\lambda} = Ae_1 \oplus \ldots \oplus Ae_s$. If $\hat{e}_1 \in \mathcal{C}_A(Z_A(\lambda), L)$ with $1 \otimes 1 \mapsto e_1$, then as in (2)

(4) $\hat{e}_1 \otimes_A \kappa(\mathfrak{p})$ is injective and $\operatorname{coker}(\hat{e}_1 \otimes_A \kappa(\mathfrak{p}))$ admits a Z-filtration.

On the other hand, using the duality operator τ of (c3) one has a commutative diagram

$$\mathbf{Mod}A(L,A) \otimes_{A} \kappa(\mathfrak{p}) \xrightarrow{(\hat{e}_{1})^{\tau} \otimes_{A} \kappa(\mathfrak{p})} \mathbf{Mod}A(Z_{A}(\lambda),A) \otimes_{A} \kappa(\mathfrak{p})$$

$$\downarrow^{\downarrow} \qquad \qquad \downarrow^{\downarrow}$$

$$\mathbf{Mod}\kappa(\mathfrak{p})(L_{\kappa(\mathfrak{p})},\kappa(\mathfrak{p})) \xrightarrow{(\hat{e}_{1} \otimes_{A} \kappa(\mathfrak{p}))^{\tau}} \mathbf{Mod}\kappa(\mathfrak{p})(Z_{\kappa(\mathfrak{p})}(\lambda),\kappa(\mathfrak{p})).$$

By (4) $(\hat{e}_1 \otimes_A \kappa(\mathfrak{p}))^{\tau}$ is surjective, hence $(\hat{e}_1)^{\tau} \otimes_A A_{\mathfrak{p}}$ is surjective for each $\mathfrak{p} \in \operatorname{Spec} A$ by NAK. Then $(\hat{e}_1)^{\tau}$ is surjective [AM], (3.9). As $Z_A(\lambda)$ is A-free, the short exact sequence in \mathcal{C}_A

$$0 \to \ker((\hat{e}_1)^{\tau}) \to L^{\tau} \xrightarrow{(\hat{e}_1)^{\tau}} Z_A(\lambda)^{\tau} \to 0$$

splits in $\mathbf{Mod}A$. Then $\ker((\hat{e}_1)^{\tau})$ is A-free as A is local.. Hence $(\ker((\hat{e}_1)^{\tau}))^{\tau}$ is A-free in the short exact sequence of \mathcal{C}_A

$$0 \to Z_A(\lambda) \xrightarrow{\hat{e}_1} L \to (\ker((\hat{e}_1)^{\tau}))^{\tau} \to 0.$$

By (4) $(\ker((\hat{e}_1)^{\tau}))^{\tau} \otimes_A \kappa(\mathfrak{p}) \simeq \operatorname{coker}(\hat{e}_1 \otimes_A \kappa(\mathfrak{p}))$ has a Z-filtration in $\mathcal{C}_{\kappa(\mathfrak{p})}$ for each $\mathfrak{p} \in \operatorname{Spec} A$. Then by induction on $\operatorname{rk}_A L$ $(\ker((\hat{e}_1)^{\tau}))^{\tau}$ admits a Z-filtration, and (3) follows.

The second assertion follows from (c7)(2).

- (c9) Define a partitin of X into disjoint subsets, called the blocks over A, by taking a finest partition such that λ and μ belong to the same block if either $\mathcal{C}_A(Z_A(\lambda), Z_A(\mu)) \neq 0$ or $\operatorname{Ext}^1_{\mathcal{C}_A}(Z_A(\lambda), Z_A(\mu)) \neq 0$. Let \mathcal{B}_A be the set of blocks over A. Let \mathcal{D}_A be the full subcategory of \mathcal{C}_A consisting of all objects with a Z-filtration. If b is a block over A, let $\mathcal{D}_A(b)$ be the full subcategory of \mathcal{D}_A consisting of all objects such that the subquotients of a Z-filtration are $Z_A(\lambda)$, $\lambda \in b$. Let $\mathcal{C}_A(b)$ be the full subcategory of \mathcal{C}_A consisting of all that are the images of objects of $\mathcal{D}_A(b)$.
- (c10) **Theorem** (cf. [AJS], **Theorem 6.10**) (i) If b, b' are disjoint blocks over A, then

$$\operatorname{Ext}_{\mathcal{C}_A}(M,M') = 0 \quad \forall M \in \mathcal{C}_A(b) \text{ and } M' \in \mathcal{C}_A(b').$$

- (ii) Each $M \in \mathcal{C}_A$ admits a block decomposition $M = \coprod_{b \in \mathcal{B}_A} M_b$ with M_b the largest subobject of M belonging to $\mathcal{C}_A(b)$.
- (iii) For each block b over A the category $C_A(b)$ is closed under taking homomorphic images, submodules, extensions, and finite direct sums.
- (c11) Relative to the structure homomorphism $\pi: U^0 \to A$, let

$$R_{\pi} = \begin{cases} \{\beta \in R \mid \prod_{j=1}^{p} (\pi(H_{\beta}) + j) \notin A^{\times} \} & \text{in Case 1} \\ \{\beta \in R \mid \prod_{j=1}^{p} (\pi([K_{\beta} : j]) \notin A^{\times} \} & \text{in Case 2,} \end{cases}$$

where $[K_{\beta}:j]={K_{\beta}:j\brack 1}=\frac{K_{\beta}\zeta^{jd_{\beta}}-K_{\beta}^{-1}\zeta^{-jd_{\beta}}}{\zeta^{d_{\beta}}-\zeta^{-d_{\beta}}}\ (\neq {K_{\beta}\brack j})$ and $d_{\beta}=d_{\alpha}$ if $\alpha\in\Sigma$ with $\beta\in W\alpha$. Then R_{π} forms a root system with the Weyl group

 $W_{\pi} = \langle s_{\beta} \mid \beta \in R_{\pi} \rangle$ and a positive system of roots $R_{\pi}^{+} = R_{\pi} \cap R^{+}$. Let $W_{\pi,a} = W_{\pi} \ltimes \mathbb{Z}R_{\pi} \leq W_{a}$. It will be convenient to introduce

$$B = \begin{cases} U^{0} \left[\frac{1}{\prod_{j=1}^{p-1} (H_{\beta} + j)} \mid \beta \in R^{+} \right] & \text{in Case 1} \\ U^{0} \left[\frac{1}{\prod_{j=1}^{p-1} ([K_{\beta} : j])} \mid \beta \in R^{+} \right] & \text{in Case 2.} \end{cases}$$

Proposition (cf. [AJS], Proposition 6.13) Suppose A is a B-algebra. If $b \in \mathcal{B}_A$ and $\lambda \in b$, then $b \subseteq W_{\pi,a} \cdot_k \lambda$.

(c12) Regard k as a U^0 -algebra via the augmentation. For each $E \in \mathcal{C}_k$ and $M \in \mathcal{C}_A$ one can make $E \otimes_k M$ into an object of \mathcal{C}_A by letting U (resp. A) act via the comultiplication (resp. only on M). The gradation is defined by $(E \otimes_k M)_{\lambda} = \coprod_{\nu \in X} E_{\nu} \otimes_k M_{\lambda-\nu}$.

Assume A is a B-algebra. Let W' be a reflexion subgroup of W_a with $W_{\pi,a} \leq W'$. An alcove for W' is a connected component of $X \otimes_{\mathbb{Z}} \mathbb{R}$ with the hyperplanes in W' deleted. Let Ω and Γ be two W'-orbits in X. The closure of an alcove for W' contains exactly one element $\lambda \in \Omega$ and $\mu \in \Gamma$. Then $W(\mu - \lambda)$ is independent of the choice of the alcove. Let ν be the unique dominant weight of $W(\mu - \lambda)$. Choose a simple E of highest weight ν in $\mathfrak{G}_k\mathbf{Mod}$ (resp. $\mathcal{C}_{U(k)}$) in Case 1 (resp. Case 2). Let $\mathcal{C}_A(\Omega) = \coprod_{b\subseteq \Gamma} \mathcal{C}_A(b)$ and $\mathcal{C}_A(\Gamma) = \coprod_{b\subseteq \Gamma} \mathcal{C}_A(b)$. If $\operatorname{pr}_{\Gamma} : \mathcal{C}_A \to \mathcal{C}_A(\Gamma)$ is the functor such that $\operatorname{pr}_{\Gamma} M = \coprod_{b\subseteq \Gamma} M_b$, one gets an exact functor

$$T_{\Omega}^{\Gamma} = pr_{\Gamma} \circ (E \otimes_{k}?) : \mathcal{C}_{A}(\Omega) \longrightarrow_{A}^{C} (\Gamma),$$

called the translation functor from Ω to Γ . In case A = k the functor recovers the translation functor in \mathfrak{G}_k Mod and \mathcal{C}_k . As usual [AJS], (7.6),

(1)
$$T_{\Omega}^{\Gamma}$$
 is both left and right adjoint to T_{Γ}^{Ω} .

Denote the adjunctions by $\operatorname{adj}_1: \mathcal{C}_A(\Omega)(?, T_{\Gamma}^{\Omega}?') \to \mathcal{C}_A(\Gamma)(T_{\Omega}^{\Gamma}?, ?')$ and $\operatorname{adj}_2: \mathcal{C}_A(\Gamma)(?, T_{\Omega}^{\Gamma}?') \to \mathcal{C}_A(\Omega)(T_{\Gamma}^{\Omega}?, ?')$.

(c13) **Lemma** (cf. [AJS], Lemma 7.5) Assume A is a B-algebra. Let $\lambda, \mu \in X$ in the closure of an alcove for W' and $\Omega = W' \cdot_k \lambda$, $\Gamma = W' \cdot_k \mu$. Then $T_{\Omega}^{\Gamma} Z_A(\lambda)$ has a Z-filtration with factors $Z_A(w \cdot_k \mu)$, $w \in$

 $C_{W'}(\lambda)/C_{W'}(\lambda) \cap C_{W'}(\mu)$, each occurring exactly once.

d° Deformations

(d1) Recall that we are after a characteristic free description of $C_k(Q^{[i]}(k), Q^{[j]}(k))$. By (c6)(3) and (c8) we may replace $\hat{Z}_k(?)$ of §a by $Z_k(?)$ in C_k . We will study C_k by deformations.

Let $\mathfrak{m} \in \operatorname{Spec}(U^0)$ be the annihilator of the trivial 1-dimensional representation:

$$\mathfrak{m} = \begin{cases} (H_{\alpha} \mid \alpha \in \Sigma) & \text{in Case 1} \\ (K_{\alpha} - 1 \mid \alpha \in \Sigma) & \text{in Case 2.} \end{cases}$$

Let $\hat{A} = \hat{U}^0$ be the completion of U^0 at \mathfrak{m} , denoted by A(k) in [AJS]. Then \hat{A} is a noetherian complete local domain, flat over U^0 , with maximal ideal $\mathfrak{m}\hat{A}$ and the residue field k. One may regard $\operatorname{Spec}\hat{A}$ as a formal neighbourhood of \mathfrak{m} in $\operatorname{Spec}(U^0)$ (cf. [K], pp. 315-316). Note (cf. [B1], Exercise III.2.27(a)) that \hat{A} is also the completion of B in the $\mathfrak{m}B$ -adic topology.

- (d2) Lemma (cf. [AJS], Lemma 14.2) If A is a noetherian complete local domain, the Krull-Schmidt theorem holds in C_A .
- (d3) Let \mathcal{P}_A be the full subcategory of \mathcal{C}_A consisting of all its projectives.

Theorem (cf. [AJS], Proposition 3.3/Theorem 4.19)) (i) If $P, Q \in \mathcal{P}_A$, then $\mathcal{C}_A(P,Q)$ is projective of finite type in \mathbf{Mod}_A . If A' is a noetherian domain over A, then in $\mathbf{Mod}_{A'}$

$$C_A(P,Q) \otimes_A A' \simeq C_{A'}(P \otimes_A A', Q \otimes_A A').$$

- (ii) If A is local with the residue field F, then $? \otimes_A F : \mathcal{P}_A \to \mathcal{P}_F$ gives a bijection between the isomorphism classes.
- (d4) In particular, $Q^{[i]}(k) \in \mathcal{P}_k$ lifts to

$$Q^{[i]}(\hat{A}) = \Theta_{i_1} \circ \ldots \circ \Theta_{i_r} \circ T^{\Omega_0}_{\Delta_i} Z_{\hat{A}}(\nu_i)$$

of $\mathcal{P}_{\hat{A}}$, where $\nu_i = (p-1)\rho + p(w_i \cdot_k 0)^1$, $\Omega_0 = W_a \cdot_k 0$, $\Delta_i = W_a \cdot_k \nu_i$, $\Theta_{i_j} = \Theta_{s_{i_j}} = T_{\Gamma_{i_j}}^{\Omega_0} \circ T_{\Omega_0}^{\Gamma_{i_j}}$ with $\Gamma_{i_j} = W_a \cdot_k \mu_{s_{i_j}}$ (cf. (a11/12)). We will see

the projectivity of $Z_{\hat{A}}(\nu_i)$ in (d14). Hence we want now a characteristic free description of $\mathcal{C}_{\hat{A}}(Q^{[i]}(\hat{A}), Q^{[j]}(\hat{A}))$.

Let $\hat{A}^{\emptyset} = \hat{A}[\frac{1}{H_{\alpha}} \mid \alpha \in R^{+}]$ and $\hat{A}^{\beta} = \hat{A}[\frac{1}{H_{\alpha}} \mid \alpha \in R^{+} \setminus \{\beta\}], \beta \in R^{+}$, with $H_{\alpha} = [K_{\alpha} : 0]$ in Case 2. Note that \hat{A}^{\emptyset} and all \hat{A}^{β} are naturally B-algebras. Put for simplicity $\mathcal{C}_{\wedge} = \mathcal{C}_{\hat{A}}, \mathcal{C}_{\emptyset} = \mathcal{C}_{\hat{A}^{\emptyset}}, \mathcal{C}_{\beta} = \mathcal{C}_{\hat{A}^{\beta}}$, and $M^{\emptyset} = M \otimes_{\hat{A}} \hat{A}^{\emptyset}, M^{\beta} = M \otimes_{\hat{A}} \hat{A}^{\beta}$ if $M \in \mathcal{C}_{\wedge}$. Let also $Z_{\wedge}(\lambda) = Z_{\hat{A}}(\lambda), Z_{\emptyset}(\lambda) = Z_{\hat{A}^{\emptyset}}(\lambda) \simeq Z_{\wedge}(\lambda)^{\emptyset}$, and $Z_{\beta}(\lambda) = Z_{\hat{A}^{\beta}}(\lambda) \simeq Z_{\wedge}(\lambda)^{\beta}$ for each $\lambda \in X$.

(d5) By our standing hypothesis that $p = \operatorname{ch} k \geq h$ in Case 1, we have

Lemma (cf. [AJS], Lemma 9.1)
$$\hat{A} = \bigcap_{\beta \in R^+} \hat{A}^{\emptyset}$$
.

(d6) Let $P,Q\in\mathcal{P}_{\hat{A}}$. As Q is \hat{A} -flat, one may regard $Q\leq Q^{\beta}\leq Q^{\emptyset}$ for each $\beta\in R^+$. Then

$$\mathcal{C}_{\emptyset}(P^{\emptyset},Q^{\emptyset})$$

 $\simeq \mathcal{C}_{\wedge}(P, Q^{\emptyset}) \simeq \mathcal{C}_{\wedge}(P, Q) \otimes_{\hat{A}} \hat{A}^{\emptyset}$ as \hat{A}^{\emptyset} is flat over \hat{A} (cf. [AJS], Lemma 3.2) $\geq \mathcal{C}_{\wedge}(P, Q^{\beta}) \simeq \mathcal{C}_{\wedge}(P, Q) \otimes_{\hat{A}} \hat{A}^{\beta}$ as \hat{A}^{β} is flat over \hat{A} $\geq \mathcal{C}_{\wedge}(P, Q)$.

As $\mathcal{C}_{\wedge}(P,Q)$ is \hat{A} -flat, one gets from (d5)

(1)
$$\mathcal{C}_{\wedge}(P,Q) = \bigcap_{\beta \in R^{+}} \mathcal{C}_{\beta}(P^{\beta}, Q^{\beta}) \text{ inside } \mathcal{C}_{\emptyset}(P^{\emptyset}, Q^{\emptyset}).$$

(d7) Now \mathcal{C}_{\emptyset} has a simple structure. If $\operatorname{Frac}(\hat{A})$ is the fractional field of \hat{A} , $\mathcal{C}_{\operatorname{Frac}(\hat{A})}$ is semisimple. To explain that, let us resume the general set-up of \mathcal{C}_A .

Let $w \in W$. Twist $\pi: U^0 \to A$ by T_w^{-1} to define another U^0 -algebra A[w] with the structure homomorphism $\pi \circ T_w^{-1}$. If $M \in \mathcal{C}_A$, define $M[w] \in \mathcal{C}_{A[w]}$ to be the A-module M with each $u \in U$ acting by $T_w^{-1}(u)$ and the gradation given by $M[w]_{\nu} = M_{w^{-1}\nu}$. Then the functor $M \mapsto M[w]$ is an equivalence of categories from \mathcal{C}_A to $\mathcal{C}_{A[w]}$. If M is A-projective, then

$$\operatorname{ch}(M[w]) = w(\operatorname{ch} M).$$

Working with the positive system $w(R^+)$ instead of R^+ , define

$$Z_A^w(\lambda) = U \otimes_{U^0T_w(U^+)} A^\lambda \in \mathcal{C}_A \quad \forall \lambda \in X.$$

Then (cf. [AJS], (4.4)(2)) for each $x \in W$

(1)
$$Z_A^x(\lambda)[w] \simeq Z_{A[w]}^{wx}(w\lambda) \text{ in } \mathcal{C}_{A[w]},$$

and (cf. [AJS], Lemma 4.10)

(2)
$$Z_A(\lambda)^{\tau} \simeq Z_A^{w_0}(\lambda - 2(p-1)\rho).$$

In particular (cf. [J], (9.2)),

(3)
$$Z_k^{w_0}(\lambda) \simeq \hat{Z}_k(\lambda + 2(p-1)\rho)$$
 of §a.

- (d8) Fix $\alpha \in \Sigma$ and put $s = s_{\alpha} \in \Sigma_{a}$. Let $U(-\alpha)$ be the subalgebra of U generated by $E_{-\alpha}$, and let $P(\alpha) = U(-\alpha)U^{0}U^{+} \leq U$. Define a full subcategory \mathcal{C}_{A}^{α} of $(P(\alpha) \otimes_{k} A)$ **Mod** just like \mathcal{C}_{A} . Define likewise $Z_{A}^{\alpha}(\lambda) = P(\alpha) \otimes_{U^{0}U^{+}} A^{\lambda}$ and $(Z_{A}^{\alpha})^{s}(\lambda) = P(\alpha) \otimes_{U^{0}T_{s}(U^{+})} A^{\lambda} \in \mathcal{C}_{A}^{\alpha}$ for each $\lambda \in X$. As the multiplication $U(-\alpha) \otimes_{k} U^{0}U^{+} \to P(\alpha)$ is bijective,
- (1) $Z_A^{\alpha}(\lambda)$ (resp. $(Z_A^{\alpha})^s(\lambda)$) is A-free of basis

$$v_i = E_{-\alpha}^{(i)} \otimes 1 \text{ (resp. } v_i' = E_{\alpha}^{(i)} \otimes 1 \text{)},$$

where $E_{-\alpha}^{(i)} = \frac{E_{-\alpha}^i}{i!} \otimes 1$ (resp. $E_{\alpha}^{(i)} = \frac{E_{\alpha}^i}{[i]_{d_{\alpha}}^i} \otimes 1$) in Case 1 (resp. Case 2).

One has (cf. [AJS], (5.4))

(2)
$$P(\alpha) = U(-\alpha)U^{0}U(\alpha) \oplus Q(\alpha) \text{ with } Q(\alpha) = \coprod_{\nu \notin \mathbb{Z}\alpha} P(\alpha)_{\nu},$$

(3) T_s stabilizes all $P(\alpha)$, $U(-\alpha)U^0U(\alpha)$ and $Q(\alpha)$,

and that

(4)
$$Q(\alpha)$$
 annihilates both $Z_A^{\alpha}(\lambda)$ and $(Z_A^{\alpha})^s(\lambda)$.

Hence one can describe the $P(\alpha)$ -action on both $Z_A^{\alpha}(\lambda)$ and $(Z_A^{\alpha})^s(\lambda)$ explicitly (cf. [AJS], (5.5)). In particular, there is unique

(5)
$$\phi_{\alpha} \in \mathcal{C}_{A}^{\alpha}(Z_{A}^{\alpha}(\lambda), (Z_{A}^{\alpha})^{s}(\lambda - (p-1)\alpha))$$
 such that $v_{0} \mapsto v'_{p-1}$.

Then ϕ_{α} forms an A-basis of $\mathcal{C}_{A}^{\alpha}(Z_{A}^{\alpha}(\lambda),(Z_{A}^{\alpha})^{s}(\lambda-(p-1)\alpha))$ and one has (cf. [AJS], (5.6))

(6)
$$\phi_{\alpha}(v_{i}) = \begin{cases} (-1)^{i} v'_{p-1-i} {\binom{\pi(H_{\alpha}) + \langle \lambda, \alpha^{\vee} \rangle}{i}} & \text{in Case 1} \\ (-1)^{i} v'_{p-1-i} \pi({\binom{K_{\alpha}; \langle \lambda, \alpha^{\vee} \rangle}{i}}) & \text{in Case 2.} \end{cases}$$

It follows that

(7) if
$$\alpha \notin R_{\pi}$$
, then ϕ_{α} is bijective.

If $\alpha \in R_{\pi}$, let $n_{\alpha}(\lambda) \in [1, p]$ such that $\pi(H_{\alpha}) + \langle \lambda + \rho, \alpha^{\vee} \rangle = n_{\alpha}(\lambda) \cdot 1$ in Case 1 (resp. $\pi(K_{\alpha})^{2} \zeta^{2d_{\alpha}\langle \lambda + \rho, \alpha^{\vee} \rangle} = \zeta^{2d_{\alpha}n_{\alpha}(\lambda)}$ in Case 2). One has (cf. [AJS], (5.9)) that

(8) if
$$n_{\alpha}(\lambda) = p$$
, then ϕ_{α} is still bijective.

(d9) If $w \in W$, from ϕ_{α} over $A[w^{-1}]$ one gets

(1)
$$\phi \in \mathcal{C}_A(Z_A^w(w\lambda), Z_A^{ws}(w\lambda - (p-1)w\alpha))$$

such that the diagram

$$(U \otimes_{P(\alpha)} Z^{\alpha}_{A[w^{-1}]}(\lambda))[w] \xrightarrow[(U \otimes_{P(\alpha)} \phi_{\alpha})[w]]{} \{U \otimes_{P(\alpha)} (Z^{\alpha}_{A[w^{-1}]})^{s} (\lambda - (p-1)\alpha)\}[w].$$

commutes. As ϕ sends the standard generator of $Z_A^w(w\lambda)$ to an A-basis element of $Z_A^{ws}(w\lambda - (p-1)w\alpha)_{w\lambda}$,

(2)
$$\phi$$
 is an A-basis of $C_A(Z_A^w(w\lambda), Z_A^{ws}(w\lambda - (p-1)w\alpha))$.

One may compare the construction of ϕ with the intertwining homomorphism

$$H^i(\mathfrak{G}_k/\mathfrak{B}_k,\mathcal{L}(s_{\alpha}\cdot_k\nu))\longrightarrow H^{i-1}(\mathfrak{G}_k/\mathfrak{B}_k,\mathcal{L}(\nu))$$

for $\alpha \in \Sigma$ and $\nu \in X$ with $\langle \nu + \rho, \alpha^{\vee} \rangle \geq 0$ in $\mathfrak{G}_k \mathbf{Mod}$ [J], (II.5/6).

Choose a reduced expression $w_0 = s_1 s_2 \dots s_N$ of w_0 . If $w_i = s_1 s_2 \dots s_{i-1}$, $1 \le i \le N+1$, with $w_1 = 1$, and if $\lambda \langle w_i \rangle = \lambda + (p-1)(w_i \rho - \rho)$, one gets an A-basis ϕ_i of $\mathcal{C}_A(Z_A^{w_i}(\lambda \langle w_i \rangle), Z_A^{w_{i+1}}(\lambda \langle w_{i+1} \rangle))$ like ϕ of (1). One gets from (d8)(7)

(3) if
$$R_{\pi} = \emptyset$$
, then $Z_A(\lambda) \simeq Z_A^w(\lambda \langle w \rangle) \ \forall w \in W$,

i.e., the "Borel-Weil-Bott" theorem holds in C_A if $R_{\pi} = \emptyset$.

(d10) Let
$$\Phi = \phi_N \circ \ldots \circ \phi_1 \in \mathcal{C}_A(Z_A(\lambda), Z_A^{w_0}(\lambda - 2(p-1)\rho)).$$

Lemma (cf. [AJS], Lemma 5.13) The morphism Φ is nonzero and forms an A-basis of $C_A(Z_A(\lambda), Z_A^{w_0}(\lambda - 2(p-1)\rho))$.

- (d11) Lemma (cf. [AJS], Lemma 4.9) If A = F is a field, then $L_F(\lambda) = \operatorname{im} \Phi = \operatorname{soc}_{C_F} Z_F^{w_0}(\lambda 2(p-1)\rho).$
- (d12) For each $\beta \in R_{\pi}$ define $n_{\beta} \in [1, p]$ as in (d8). One now obtains

Lemma (cf. [AJS], Lemma 6.3) Assume A = F is a field with the structure homomorphism π .

- (i) If $\lambda \in X$ with $n_{\beta}(\lambda) = p$ for each $\beta \in R_{\pi}^+$, then $Z_F(\lambda) \simeq L_F(\lambda) \simeq Q_F(\lambda)$ in C_F .
- (ii) If $R_{\pi}^+ = \phi$, then $Z_F(\lambda) \simeq L_F(\lambda) \simeq Q_F(\lambda)$ for each $\lambda \in X$, i.e., C_F is a semisimple category.

Proof. As ϕ is bijective, $L_F(\lambda) \simeq Z_F(\lambda)$ for each $\lambda \in X$ by (d11). If $\mu \in X$, then (cf. [AJS], Proposotion 4.6)

$$\operatorname{Ext}^1_{\mathcal{C}_F}(L_F(\lambda), L_F(\mu)) \simeq \operatorname{Ext}^1_{\mathcal{C}_F}(L_F(\mu), L_F(\lambda)) \quad \text{using the duality } \tau$$
$$\simeq \mathcal{C}_F(\operatorname{rad}_{\mathcal{C}_F} Z_F(\lambda), L_F(\mu)) \quad \text{if } \mu \not> \lambda$$
$$= 0.$$

Hence $L_F(\lambda)$ is both projective and injective in C_F .

- (d13) Proposition (cf. [AJS], Corollary 3.5) Let $M \in \mathcal{C}_A$ with a Z-filtration. Then M is projective in \mathcal{C}_A iff $M \otimes_A (A/\mathfrak{m})$ is projective in $\mathcal{C}_{A/\mathfrak{m}}$ for each maximal ideal \mathfrak{m} of A.
- (d14) We conclude from (d12/13) that for each $\lambda \in X$

(1)
$$Z_A((p-1)\rho + p\lambda)$$
 is projective in C_A ,

(2) the block of
$$\lambda$$
 over \hat{A}^{\emptyset} is a singleton $\{\lambda\}$,

and that

(3)
$$Z_{\emptyset}(\lambda)$$
 is a progenerator of $C_{\emptyset}(\{\lambda\})$.

Back to $P, Q \in \mathcal{P}_{\hat{A}}$, one can write $P^{\emptyset} = \coprod_{\lambda \in X} Z_{\emptyset}(\lambda)^{p_{\lambda}}$ and $Q^{\emptyset} = \coprod_{\lambda \in X} Z_{\emptyset}(\lambda)^{q_{\lambda}}$ with $p_{\lambda}, q_{\lambda} \in \mathbb{N}$. Then

$$\mathcal{C}_{\emptyset}(P^{\emptyset}, Q^{\emptyset}) \simeq (\hat{A}^{\emptyset})^{\sum_{\lambda \in X} p_{\lambda} q_{\lambda}}$$

In particular, if $P^{\emptyset} = Q^{[i]}(\hat{A}^{\emptyset}) = Q^{[i]}(\hat{A})^{\emptyset}$ and $Q^{\emptyset} = Q^{[j]}(\hat{A}^{\emptyset}) = Q^{[j]}(\hat{A})^{\emptyset}$, p_{λ} (resp. q_{λ}) are determined independent of k, hence

(4)
$$C_{\emptyset}(Q^{[i]}(\hat{A}^{\emptyset}), Q^{[j]}(\hat{A}^{\emptyset}))$$
 is described independent of k .

(d15) More generally,

Lemma (cf. [AJS], E.4) Let $\lambda \in X$. For each $M, N \in \mathcal{C}_{\emptyset}(\{\lambda\})$ one has an isomorphism of \hat{A}^{\emptyset} - modules

$$\mathcal{C}_{\emptyset}(M,N) \longrightarrow \mathbf{Mod}_{\hat{A}^{\emptyset}}(\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda),M),\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda),N)) \quad via \quad f \longmapsto f \circ ?.$$

Proof. Put $P = Z_{\emptyset}(\lambda)$ and $M(\lambda) = C_{\emptyset}(Z_{\emptyset}(\lambda), M)$, likewise $N(\lambda)$. Consider first the case $M = P^m$ and $N = P^n$ for $m, n \in \mathbb{N}^+$. If $\pi_s : P^m \to P$ (resp. $i_r : P \to P^n$) is the projection onto the s-th (resp. injection from the r-th) component, one has a commutative diagram

$$\mathcal{C}_{\emptyset}(P^{m}, P^{n}) \longrightarrow \mathbf{Mod}_{\hat{A}^{\emptyset}}(P^{m}(\lambda), P^{n}(\lambda))$$

$$\mathcal{C}_{\emptyset}(P^{m}, i_{r}) \uparrow \qquad \qquad \uparrow \mathbf{Mod}_{\hat{A}^{\emptyset}}(P^{m}(\lambda), \mathcal{C}_{\emptyset}(P, i_{r}))$$

$$\mathcal{C}_{\emptyset}(P^{m}, P) \qquad \mathbf{Mod}_{\hat{A}^{\emptyset}}(P^{m}(\lambda), P(\lambda))$$

$$\mathcal{C}_{\emptyset}(\pi_{s}, P) \uparrow \qquad \qquad \uparrow \mathbf{Mod}_{\hat{A}^{\emptyset}}(\mathcal{C}_{\emptyset}(P, \pi_{s}), P(\lambda))$$

$$\mathcal{C}_{\emptyset}(P, P) \longrightarrow \mathbf{Mod}_{\hat{A}^{\emptyset}}(P(\lambda), P(\lambda))$$

$$f \longmapsto f \circ ?$$

with the bottom horizontal map bijective as $P(\lambda) = \mathcal{C}_{\emptyset}(P, P) \simeq \hat{A}^{\emptyset}$. Hence

(1) the assertion holds with $M = P^m$ and $N = P^n$.

If N is arbitrary, as P is a generator of $\mathcal{C}_{\emptyset}(\{\lambda\})$, N admits a finite presentation in $\mathcal{C}_{\emptyset}(\{\lambda\}): P^{n'} \longrightarrow P^n \to N \to 0$ exact. Then $P^{n'}(\lambda) \to P^n(\lambda) \to N(\lambda) \to 0$ remains exact as $?(\lambda)$ is exact, hence one gets a commutative diagram

As P^m (resp. $P^m(\lambda) \simeq (\hat{A}^{\emptyset})^m$) is a projective of \mathcal{C}_{\emptyset} (resp. $\mathbf{Mod}_{\hat{A}^{\emptyset}}$), the left and the right vertical sequences are both exact. By (1) the top and the middle horizontal maps are bijective, hence also the bottom by the 5-lemma, i.e.,

(2) the assertion holds if
$$M = P^m$$
.

Finally, write $P^{m'} \to P^m \to M \to 0$ exact in \mathcal{C}_{\emptyset} . One then gets a commutative diagram of exact columns

As the middle and the bottom horizontal maps are bijective by (2), the top horizontal map is bijective by the 5-lemma again, hence the assertion.

(d16) More detailed examination of the ϕ_i and Φ shows that \mathcal{C}_{β} behaves like \mathfrak{sl}_2 - category. If $\lambda \in X$, $\beta \in \mathbb{R}^+$, and if $n \in \mathbb{N}$ minimal with $\langle \lambda + \rho, \beta^{\vee} \rangle \equiv -n \mod p$, put $\beta \uparrow \lambda = \lambda + n\beta$.

Theorem (cf. [AJS], Proposition 8.6/Corollary 8.7) Let $\lambda \in X$ and $\beta \in \mathbb{R}^+$.

- (i) If $\beta \uparrow \lambda = \lambda$, then $Z_{\beta}(\lambda)$ is a projective of C_{β} .
- (ii) Suppose $\beta \uparrow \lambda > \lambda$. Then

$$\operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda)) \simeq \hat{A}^{\beta}/H_{\beta}\hat{A}^{\beta} \quad \text{in } \mathbf{Mod}_{\hat{A}^{\beta}}.$$

Given a short exact sequence $0 \to Z_{\beta}(\beta \uparrow \lambda) \to Q \to Z_{\beta}(\lambda) \to 0$ in C_{β} , Q is projective in C_{β} iff the sequence generates $\operatorname{Ext}^1_{C_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda))$ over \hat{A}^{β} .

e° Combinatorial categories

(e1) In order to glue together all the \mathfrak{sl}_2 -categories \mathcal{C}_β to recover $\mathcal{C}_\wedge = \mathcal{C}_{\hat{A}^\emptyset}$, we introduce a combinatorial category $\mathcal{K}(\Omega)$ for each W_a -orbit Ω . An object of $\mathcal{K}(\Omega)$ is a family $(\mathcal{M}(\lambda))_{\lambda \in \Omega}$ of \hat{A}^\emptyset -modules of finite type, only finitely many nonzero members, together with \hat{A}^β -submodules $\mathcal{M}(\lambda,\beta)$ of finite type for each $\lambda \in \Omega$ and $\beta \in \mathbb{R}^+$ of $\mathcal{M}(\lambda) \oplus \mathcal{M}(\beta \uparrow \lambda)$ if $\beta \uparrow \lambda > \lambda$ (resp. $\mathcal{M}(\lambda)$ if $\beta \uparrow \lambda = \lambda$). A morphism of $\mathcal{K}(\Omega)$ is $(\psi_{\lambda})_{\lambda \in \Omega} \in \prod_{\lambda \in \Omega} \mathcal{C}_{\emptyset}(\mathcal{M}(\lambda), \mathcal{M}'(\lambda))$ such that for each $\lambda \in \Omega$ and $\beta \in \mathbb{R}^+$

$$(\psi_{\lambda} \oplus \psi_{\beta\uparrow\lambda})\mathcal{M}(\lambda,\beta) \subseteq \mathcal{M}'(\lambda,\beta) \quad \text{if } \beta \uparrow \lambda > \lambda$$
$$\psi_{\lambda}\mathcal{M}(\lambda,\beta) \subseteq \mathcal{M}'(\lambda,\beta) \quad \text{if } \beta \uparrow \lambda = \lambda.$$

(e2) We define a functor $\mathcal{V}_{\Omega}: \mathcal{C}_{\wedge}(\Omega) \to \mathcal{K}(\Omega)$, that depends on the choice of $e^{\beta}(\lambda) \in \operatorname{Ext}^{1}_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda))$ for $\lambda \in \Omega$ and $\beta \in R^{+}$ with $\beta \uparrow \lambda > \lambda$. If $M \in \mathcal{C}_{\wedge}(\Omega)$, set $(\mathcal{V}_{\Omega}M)(\lambda) = \mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda), M^{\emptyset})$, and if $\beta \uparrow \lambda = \lambda$, let $(\mathcal{V}_{\Omega}M)(\lambda, \beta) = \mathcal{C}_{\beta}(Z_{\beta}(\lambda), M^{\beta})$. If $\beta \uparrow \lambda > \lambda$, represent $e^{\beta}(\lambda)$ by a short exact sequence in \mathcal{C}_{β}

$$0 \longrightarrow Z_{\beta}(\beta \uparrow \lambda) \longrightarrow Q^{\beta}(\lambda) \longrightarrow Z_{\beta}(\lambda) \longrightarrow 0.$$

Tensoring with \hat{A}^{\emptyset} , the sequence splits uniquely to yield an isomorphism $Q^{\beta}(\lambda)^{\emptyset} \simeq Z_{\emptyset}(\beta \uparrow \lambda) \oplus Z_{\emptyset}(\lambda)$. We set $(\mathcal{V}_{\Omega}M)(\lambda, \beta)$ to be the image of the composite of the natural maps

$$\mathcal{C}_{\beta}(Q^{\beta}(\lambda), M^{\beta}) \longrightarrow \mathcal{C}_{\emptyset}(Q^{\beta}(\lambda)^{\emptyset}, M^{\emptyset}) \\
\stackrel{\tilde{-}}{\longrightarrow} \mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda) \oplus Z_{\emptyset}(\beta \uparrow \lambda), M^{\emptyset}) \stackrel{\tilde{-}}{\longrightarrow} (\mathcal{V}_{\Omega}M)(\lambda) \oplus (\mathcal{C}_{\Omega}M)(\beta \uparrow \lambda).$$

(e3) Let $\mathcal{FC}_{\wedge}(\Omega)$ be the full subcategory of $\mathcal{C}_{\wedge}(\Omega)$ consisting of all \hat{A} -flat objects.

Theorem (cf. [AJS], Proposition 9.4) Choose all $e^{\beta}(\lambda)$ as generators of $Ext^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda))$. Then $\mathcal{V}_{\Omega} : \mathcal{FC}_{\wedge}(\Omega) \to \mathcal{K}(\Omega)$ is fully faithful.

Proof. Let $M, N \in \mathcal{FC}_{\wedge}(\Omega)$. One must show

$$(\mathcal{V}_{\Omega})_{M,N}: \mathcal{C}_{\wedge}(M,N) \longrightarrow \mathcal{K}(\Omega)(\mathcal{V}_{\Omega}M,\mathcal{V}_{\Omega}N)$$

is an isomorphism. By (c10) and (d14)(2)

$$\mathcal{C}_{\emptyset}(M^{\emptyset}, N^{\emptyset}) = \mathcal{C}_{\emptyset}(\coprod_{\lambda \in \Omega} (M^{\emptyset})_{\{\lambda\}}, \coprod_{\lambda \in \Omega} (N^{\emptyset})_{\{\lambda\}})
\simeq \prod_{\lambda} \mathcal{C}_{\emptyset}((M^{\emptyset})_{\{\lambda\}}, \coprod_{\mu \in \Omega} (N^{\emptyset})_{\{\mu\}}) \simeq \prod_{\lambda} \mathcal{C}_{\emptyset}((M^{\emptyset})_{\{\lambda\}}, (N^{\emptyset})_{\{\lambda\}})
\simeq \prod_{\lambda} \mathbf{Mod}_{\hat{A}^{\emptyset}}(\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda), (M^{\emptyset})_{\{\lambda\}}), \mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda), (N^{\emptyset})_{\{\lambda\}})) \text{ by (d15)}
\simeq \prod_{\lambda} \mathbf{Mod}_{\hat{A}^{\emptyset}}(\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda), M^{\emptyset}), \mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda), N^{\emptyset})).$$

Hence $(\mathcal{V}_{\Omega})_{M,N}$ is injective:

$$\begin{array}{cccc}
\mathcal{C}_{\wedge}(M,N) & \xrightarrow{(\mathcal{V}_{\Omega})_{M,N}} & \mathcal{K}(\Omega)(\mathcal{V}_{\Omega}M,\mathcal{V}_{\Omega}N) \\
\wedge | & \wedge | \\
\mathcal{C}_{\wedge}(M,N^{\emptyset}) & & \Pi_{\lambda\in\Omega}\operatorname{\mathbf{Mod}}_{\hat{A}^{\emptyset}}((\mathcal{V}_{\Omega}M)(\lambda),(\mathcal{V}_{\Omega}N)(\lambda)) \\
\downarrow | & | | \\
\mathcal{C}_{\emptyset}(M^{\emptyset},N^{\emptyset}) & \xrightarrow{\sim} & \Pi_{\lambda}\operatorname{\mathbf{Mod}}_{\hat{A}^{\emptyset}}(\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda),M^{\emptyset}),\mathcal{C}_{\emptyset}(Z_{\emptyset}(\lambda),N^{\emptyset})) \\
h & \longmapsto & h \circ ?.
\end{array}$$

To see the surjectivity, let $\psi \in \mathcal{K}(\Omega)(\mathcal{V}_{\Omega}M, \mathcal{V}_{\Omega}N)$. By (1) there is $h \in \mathcal{C}_{\emptyset}(M^{\emptyset}, N^{\emptyset})$ such that for each $\lambda \in \Omega$

$$\psi_{\lambda} = h \circ ? \text{ in } \mathbf{Mod}_{\hat{A}^{\emptyset}}((\mathcal{V}_{\Omega}M)(\lambda), (\mathcal{V}_{\Omega}N)(\lambda)).$$

Let $\beta \in R^+$. For $\lambda \in \Omega$ let $Q^{\beta}(\lambda)$ be the middle term of the short exact sequence representing $e^{\beta}(\lambda)$ if $\beta \uparrow \lambda > \lambda$ (resp. $Z^{\beta}(\lambda)$ if $\beta \uparrow \lambda = \lambda$). If $\beta \uparrow \lambda > \lambda$, one gets a commutative diagram

hence each $h \circ u$, $u \in \mathcal{C}_{\beta}(Q^{\beta}(\lambda), M^{\beta})$ factors through N^{β} . Likewise if $\beta \uparrow \lambda = \lambda$.

On the other hand, one can write by definition $\coprod Z_{\beta}(\lambda_i) \twoheadrightarrow M^{\beta}$ with the coproduct running over some $\lambda_i \in \Omega$, hence $\coprod Q^{\beta}(\lambda_i) \twoheadrightarrow M^{\beta}$, i.e., there are $u_i \in \mathcal{C}_{\beta}(Q^{\beta}(\lambda_i), M^{\beta})$ such that $M^{\beta} = \sum \operatorname{im}(u_i)$. Then

$$h(M^{\beta}) = h \sum \operatorname{im}(u_i) = \sum \operatorname{im}(h \circ u_i) \subseteq N^{\beta}.$$

Hence $h(M) = h(\bigcap_{\beta \in R^+} M^{\beta}) \leq \bigcap_{\beta \in R^+} h(M^{\beta}) \leq \bigcap_{\beta} N^{\beta} = N$, the last equality following from (d5). Consequently, h arises from $\mathcal{C}_{\wedge}(M, N)$ with $(\mathcal{V}_{\Omega})_{M,N}(h) = \psi$, as desired.

(e4) To get a characteristic free description of $\mathcal{C}_{\wedge}(Q^{[i]}(\hat{A}), Q^{[j]}(\hat{A}))$, it is now enough to find a characteristic free description of

$$\mathcal{K}(\Omega_0)(\mathcal{V}_{\Omega_0}(Q^{[i]}(\hat{A})), \mathcal{V}_{\Omega_0}(Q^{[j]}(\hat{A})))$$

with $\Omega_0 = W_a \cdot_k 0$. Define $\mathcal{Z}_{\nu_i}(\hat{A}) \in \mathcal{K}(\Delta_i)$ by setting for each $\mu \in \Delta_i =$

 $W_a \cdot_k \nu_i$

$$\mathcal{Z}_{\nu_i}(\hat{A})(\mu) = \begin{cases} \hat{A}^{\emptyset} & \text{if } \mu = \nu_i \\ 0 & \text{otherwise,} \end{cases}$$

and for each $\beta \in \mathbb{R}^+$

$$\mathcal{Z}_{\nu_i}(\hat{A})(\mu,\beta) = \begin{cases} \hat{A}^{\beta} & \text{if } \mu = \nu_i \\ 0 & \text{otherwise.} \end{cases}$$

Then

(1)
$$\mathcal{V}_{\Delta_i}(Z_{\wedge}(\nu_i)) \simeq \mathcal{Z}_{\nu_i}(\hat{A}).$$

(e5) We want next to construct a translation functor $\mathcal{T}: \mathcal{K}(\Omega) \to \mathcal{K}(\Gamma)$ for W_a -orbits Ω and Γ such that $\mathcal{V}_{\Gamma} \circ T_{\Omega}^{\Gamma} \simeq \mathcal{T} \circ \mathcal{V}_{\Omega}$. We will consider only the case that for each $\lambda \in \Omega$ there is a unique $\mu \in \Gamma$ that lies in the closure of the facet of λ , which we will denote by λ_{Γ} .

Put $T = T_{\Omega}^{\Gamma}$ and $T' = T_{\Gamma}^{\Omega}$. For each $\lambda \in \Omega$ choose an isomorphism $f_{\lambda} \in \mathcal{C}_{\wedge}(Z_{\wedge}(\lambda_{\Gamma}), TZ_{\wedge}(\lambda))^{\times}$. Let $\beta \in R^{+}$ with $\beta \uparrow \lambda > \lambda$. Define

$$t[f_{\lambda}, f_{\beta \uparrow \lambda}] : \operatorname{Ext}^{1}_{\mathcal{C}_{\wedge}}(Z_{\wedge}(\lambda), Z_{\wedge}(\beta \uparrow \lambda)) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{C}_{\wedge}}(Z_{\wedge}(\lambda_{\Gamma}), Z_{\wedge}((\beta \uparrow \lambda)_{\Gamma}))$$

by sending each short exact sequence $0 \to Z_{\wedge}(\beta \uparrow \lambda) \to Q \to Z_{\wedge}(\lambda) \to 0$ to the bottom horizontal exact sequence of the commuting diagram

$$0 \longrightarrow TZ_{\wedge}(\beta \uparrow \lambda) \longrightarrow TQ \longrightarrow TZ_{\wedge}(\lambda) \longrightarrow 0$$

$$f_{\beta \uparrow \lambda} \uparrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \uparrow_{f_{\lambda}}$$

$$0 \longrightarrow Z_{\wedge}((\beta \uparrow \lambda)_{\Gamma}) \longrightarrow TQ \longrightarrow Z_{\wedge}(\lambda_{\Gamma}) \longrightarrow 0,$$

where the top horizontal sequence is the one obtained by hitting T on the first exact sequence.

Assume first $\beta \uparrow \lambda_{\Gamma} > \lambda_{\Gamma}$, so that $(\beta \uparrow \lambda)_{\Gamma} = \beta \uparrow \lambda_{\Gamma}$. Let $W_{\beta} = \langle s_{\beta} \rangle \ltimes \mathbb{Z}\beta \leq W_{a}$ and let $T_{0} = T_{W_{\beta} \cdot k}^{W_{\beta} \cdot k} \lambda_{\Gamma}$, $T'_{0} = T_{W_{\beta} \cdot k}^{W_{\beta} \cdot k} \lambda_{\Gamma}$. As $\beta \uparrow \lambda_{\Gamma} > \lambda_{\Gamma}$,

$$T_0'Z_\beta(\lambda_\Gamma) \simeq Z_\beta(\lambda)$$
 and $T_0'Z_\beta(\beta \uparrow \lambda_\Gamma) \simeq Z_\beta(\beta \uparrow \lambda)$.

Let $f'_{\lambda} = \operatorname{adj}_{1}^{-1}(f_{\lambda}^{-1}) \in \mathcal{C}_{\beta}(Z_{\beta}(\lambda), T'_{0}Z_{\beta}(\lambda_{\Gamma}))^{\times}$ using the adjunction adj_{1} with respect to T_{0} and T'_{0} , and likewise $f'_{\beta\uparrow\lambda}$. Define

$$t[f'_{\lambda}, f'_{\beta\uparrow\lambda}] : \operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda_{\Gamma}), Z_{\beta}((\beta\uparrow\lambda)_{\Gamma})) \longrightarrow \operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta\uparrow\lambda))$$

just like $t[f_{\lambda}, f_{\beta\uparrow\lambda}]$ replacing T by T'_0 . Then (cf. [AJS], (10.6)(1))

(1)
$$t[f_{\lambda}, f_{\beta\uparrow\lambda}] \circ t[f'_{\lambda}, f'_{\beta\uparrow\lambda}] = \mathrm{id}_{\mathrm{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda_{\Gamma}), Z_{\beta}((\beta\uparrow\lambda)_{\Gamma}))}.$$

Suppose we have chosen an \hat{A}^{β} -generator $e^{\beta}(\lambda)$ (resp. $e^{\beta}(\lambda_{\Gamma})$) of

$$\operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda)) \quad (\text{resp. } \operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda_{\Gamma}), Z_{\beta}((\beta \uparrow \lambda)_{\Gamma}))).$$

Then one can write with some a_{λ}^{β} and $b_{\lambda}^{\beta} \in \hat{A}^{\beta}$

$$t[f_{\lambda}, f_{\beta\uparrow\lambda}]e^{\beta}(\lambda) = a_{\lambda}^{\beta}e^{\beta}(\lambda_{\Gamma}) \quad \text{and} \quad t[f_{\lambda}', f_{\beta\uparrow\lambda}']e^{\beta}(\lambda_{\Gamma}) = b_{\lambda}^{\beta}e^{\beta}(\lambda).$$

By (1) and (d16)

(2)
$$a_{\lambda}^{\beta}b_{\lambda}^{\beta} \in 1 + H_{\beta}\hat{A}^{\beta} \quad \text{in } \hat{A}^{\beta}/H_{\beta}\hat{A}^{\beta}.$$

Assume next $\beta \uparrow \lambda_{\Gamma} = \lambda_{\Gamma} = (\beta \uparrow \lambda)_{\Gamma}$. Define an isomorphism

$$\theta[f_{\lambda}, f_{\beta \uparrow \lambda}] \in \mathbf{Mod}_{\hat{A}^{\beta}}(\mathrm{Ext}^{1}_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda)), \hat{A}^{\beta}H_{\beta}^{-1}/\hat{A}^{\beta})^{\times}$$

as follows (cf. [AJS], Proposition 8.14). Let $e \in \operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda))$ represented by a short exact sequence

$$0 \longrightarrow Z_{\beta}(\beta \uparrow \lambda) \stackrel{i}{\longrightarrow} Q \stackrel{j}{\longrightarrow} Z_{\beta}(\lambda) \longrightarrow 0.$$

As $eH_{\beta} = 0$ in $\operatorname{Ext}^1_{\mathcal{C}_{\beta}}(Z_{\beta}(\lambda), Z_{\beta}(\beta \uparrow \lambda))$ by (d16), there is a unique $j' \in \mathcal{C}_{\beta}(Z_{\beta}(\lambda), Q)$ such that $j \circ j' = H_{\beta} \operatorname{id}_{Z_{\beta}(\lambda)}$ (cf. [B2], (X.119) Proposition 4/ (X.120) Corollary 3(ii)): one has a commutative diagram of short exact sequences with the top sequence representing eH_{β}

$$0 \longrightarrow Z_{\beta}(\beta \uparrow \lambda) \longrightarrow Z_{\beta}(\beta \uparrow \lambda) \oplus Z_{\beta}(\lambda) \longrightarrow Z_{\beta}(\lambda) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow_{H_{\beta}}$$

$$0 \longrightarrow Z_{\beta}(\beta \uparrow \lambda) \longrightarrow \qquad Q \longrightarrow Z_{\beta}(\lambda) \longrightarrow 0.$$

As $TZ_{\beta}(\lambda) \simeq Z_{\beta}(\lambda_{\Gamma}) \simeq TZ_{\beta}(\beta \uparrow \lambda)$, Te splits by (d16) to yield $i' \in \mathcal{C}_{\beta}(TQ, TZ_{\beta}(\beta \uparrow \lambda))$ such that $i' \circ Ti = \mathrm{id}_{TZ_{\beta}(\beta \uparrow \lambda)}$. Then one can write

$$f_{\beta\uparrow\lambda}^{-1} \circ i' \circ Tj' \circ f_{\lambda} = a \operatorname{id}_{Z_{\beta}(\lambda_{\Gamma})}$$
 for some $a \in \hat{A}^{\beta}$.

One can check a is independent of the choice of the representative of e (cf. [AJS], (8.13)). Set

$$\theta[f_{\lambda}, f_{\beta\uparrow\lambda}]e = a.$$

Then one can write with some $\bar{a}^{\beta}_{\lambda} \in \hat{A}^{\beta}H_{\beta}^{-1}$ and $\bar{b}^{\beta}_{\lambda} \in \hat{A}^{\beta}H_{\beta}$

$$\theta[f_{\lambda}, f_{\beta\uparrow\lambda}]e^{\beta}(\lambda) = \bar{a}_{\lambda}^{\beta} + \hat{A}^{\beta} \quad \text{and} \quad \theta[f_{\lambda}, f_{\beta\uparrow\lambda}]^{-1}(\frac{1}{H_{\beta}} + \hat{A}^{\beta}) = \bar{b}_{\lambda}^{\beta}\frac{1}{H_{\beta}}e^{\beta}(\lambda),$$

in which case $\bar{a}_{\lambda}^{\beta}\bar{b}_{\lambda}^{\beta} \in 1 + \hat{A}^{\beta}H_{\beta}$ in $\hat{A}^{\beta}/\hat{A}^{\beta}H_{\beta}$.

Define now $\mathcal{T}: \mathcal{K}(\Omega) \to \mathcal{K}(\Gamma)$ and $\mathcal{T}': \mathcal{K}(\Gamma) \to \mathcal{K}(\Omega)$ as follows. If $\mathcal{M} \in \mathcal{K}(\Omega)$, set

$$(\mathcal{TM})(\mu) = \coprod_{\substack{\lambda \in \Omega \\ \lambda_{\Gamma} = \mu}} \mathcal{M}(\lambda) \quad \forall \mu \in \Gamma,$$

and for each $\beta \in \mathbb{R}^+$ set $(\mathcal{TM})(\mu, \beta) =$

$$\begin{cases} \coprod_{\substack{\lambda \in \Omega, \beta \uparrow \lambda = \lambda \\ \lambda_{\Gamma} = \mu}} \mathcal{M}(\lambda, \beta) \oplus \coprod_{\substack{\lambda \in \Omega, \beta \uparrow \lambda > \lambda \\ \lambda_{\Gamma} = \mu = (\beta \uparrow \lambda)_{\Gamma}}} ((\bar{b}_{\lambda}^{\beta}, 1) \mathcal{M}(\lambda, \beta) + H_{\beta} \mathcal{M}(\lambda)_{\beta}) & \text{if } \beta \uparrow \mu = \mu \\ \coprod_{\substack{\lambda \in \Omega \\ \lambda_{\Gamma} = \mu}} ((b_{\lambda}^{\beta}, 1) \mathcal{M}(\lambda, \beta) + H_{\beta} \mathcal{M}(\lambda)_{\beta}) & \text{if } \beta \uparrow \mu > \mu, \end{cases}$$

where $\mathcal{M}(\lambda)_{\beta} = \mathcal{M}(\lambda) \cap \mathcal{M}(\lambda, \beta)$. If $\mathcal{N} \in \mathcal{K}(\Gamma)$, set

$$(\mathcal{T}'\mathcal{N})(\lambda) = \mathcal{N}(\lambda_{\Gamma}) \quad \forall \lambda \in \Omega,$$

and for each $\beta \in R^+$ set $(\mathcal{T}'\mathcal{N})(\lambda, \beta) =$

$$\begin{cases} \mathcal{N}(\lambda_{\Gamma}, \beta) & \text{if } \beta \uparrow \lambda = \lambda \\ (a_{\lambda}^{\beta}, 1) \mathcal{N}(\lambda_{\Gamma}, \beta) + \mathcal{N}(\lambda_{\Gamma})_{\beta} & \text{if } \beta \uparrow \lambda_{\Gamma} > \lambda_{\Gamma} \\ \mathcal{N}(\lambda_{\Gamma}, \beta) \oplus \mathcal{N}(\lambda_{\Gamma} + p\beta, \beta) & \text{if } (\beta \uparrow \lambda)_{\Gamma} = \lambda_{\Gamma} + p\beta \\ \{(x + \bar{a}_{\lambda}^{\beta} y, y) \mid x, y \in \mathcal{N}(\lambda_{\Gamma}, \beta)\} & \text{if } (\beta \uparrow \lambda)_{\Gamma} = \lambda_{\Gamma} \text{ and } \beta \uparrow \lambda > \lambda. \end{cases}$$

Although \mathcal{T} and \mathcal{T}' depend on the choices of a_{λ}^{β} , b_{λ}^{β} , and $\bar{a}_{\lambda}^{\beta}$ in their classes modulo \hat{A}^{β} , and $\bar{b}_{\lambda}^{\beta}$ modulo $\hat{A}^{\beta}H_{\beta}^{2}$, the restriction of \mathcal{T} (resp. \mathcal{T}') to the image of \mathcal{V}_{Ω} (resp. \mathcal{V}_{Γ}) is independent of those choices (cf. [AJS], Remark 10.10).

(e6) Proposition (cf. [AJS], Proposition 10.11) One has natural isomorpisms

$$\mathcal{V}_{\Gamma} \circ T \simeq \mathcal{T} \circ \mathcal{V}_{\Omega} \quad and \quad \mathcal{V}_{\Omega} \circ T' = \mathcal{T}' \circ \mathcal{V}_{\Gamma}.$$

(e7) Let \mathcal{H} be the set of reflexion hyperplanes for the \cdot_k -action of W_a on

 $X \otimes_{\mathbb{Z}} \mathbb{R}$. If $H = \{ \nu \in X \otimes_{\mathbb{Z}} \mathbb{R} \mid \langle \nu + \rho, \gamma^{\vee} \rangle = mp \}, \ \gamma \in \mathbb{R}^+ \text{ and } m \in \mathbb{Z}$, then we set $\gamma = \alpha(H)$. Also we will write for each $\nu \in X \otimes_{\mathbb{Z}} \mathbb{R}$

$$\nu \geqslant H$$
 iff $\langle \nu + \rho, \gamma^{\vee} \rangle \geqslant mp$.

If $\beta \in R^+$, let $\mathcal{H}(\beta) = \{ H \in \mathcal{H} \mid s_{\beta}(\alpha(H)) < 0 \}$. If $\lambda, \mu \in X$ with μ lying in the closure of the facet of λ , set in the fractional field $\operatorname{Frac}(\hat{A})$ of \hat{A}

$$C^{\beta}(\lambda,\mu) = \prod_{\substack{H \in \mathcal{H}(\beta) \\ \mu \in H, \lambda > H}} h_{-\alpha(H)} \prod_{\substack{H \in \mathcal{H}(\beta) \\ \mu \in H, \lambda < H}} \frac{1}{h_{\alpha(H)}},$$

where $h_{\alpha} = d_{\alpha}H_{\alpha}$ in Case 1 (resp. $\log K_{\alpha} = \sum_{j\geq 1} \frac{(-1)^{j+1}}{j} (K_{\alpha} - 1)^{j}$ in Case 2) for each $\alpha \in R$. If $H_{\beta}^{\mu} \in \mathcal{H}$ with $\alpha(H_{\beta}^{\mu}) = \beta$ and $\mu \in H_{\beta}^{\mu}$, then

$$C^{\beta}(\lambda,\mu) \in \begin{cases} (\hat{A}^{\beta})^{\times} & \text{if } \beta \uparrow \mu > \mu \\ \frac{1}{h_{\beta}}(\hat{A}^{\beta})^{\times} & \text{if } \beta \uparrow \mu = \mu \text{ and } \lambda < H^{\mu}_{\beta} \\ h_{\beta}(\hat{A}^{\beta})^{\times} & \text{if } \beta \uparrow \mu = \mu \text{ and } \lambda > H^{\mu}_{\beta}. \end{cases}$$

(e8) Let $s \in \Sigma_a$, $\mu_s \in X \cap \overline{\mathfrak{A}}_k$ with $C_{W_a}(\mu_s) = \{1, s\}$, and $\Gamma_s = W_a \cdot_k \mu_s$. Let $\mathcal{G} = \{\Gamma_s, \Delta_i \mid s \in \Sigma_a, i \in [1, n_0]\}$. We can now state a highlight of [AJS], difficult

Theorem of good choice (cf. [AJS], Theorem 13.4) For $\lambda \in \Omega_0$ let $\lambda_{\Gamma} \in \Gamma$ in the closure of the alcove of λ , $\Gamma \in \mathcal{G}$. One can simultaneously choose \hat{A}^{β} -generators $e^{\beta}(\mu)$ of $\operatorname{Ext}_{\mathcal{C}_{\beta}}^{1}(Z_{\beta}(\mu), Z_{\beta}(\beta \uparrow \mu))$ for each $\mu \in \Omega_0 \cup (\cup_{\Gamma \in \mathcal{G}} \Gamma)$ and $\beta \in \mathbb{R}^+$ with $\beta \uparrow \mu > \mu$, and $f_{\lambda} \in \mathcal{C}_{\wedge}(Z_{\wedge}(\lambda_{\Gamma}), TZ_{\wedge}(\lambda))^{\times}$ for each $\lambda \in \Omega_0$ and $\Gamma \in \mathcal{G}$ such that for each $\lambda \in \Omega_0$, $\beta \in \mathbb{R}^+$ and $\Gamma \in \mathcal{G}$

$$t[f_{\lambda}, f_{\beta \uparrow \lambda}]e^{\beta}(\lambda) = C^{\beta}(\lambda, \lambda_{\Gamma})e^{\beta}(\lambda_{\Gamma}) \quad \text{if } \beta \uparrow \lambda_{\Gamma} > \lambda_{\Gamma},$$

and

$$\theta[f_{\lambda}, f_{\beta\uparrow\lambda}]e^{\beta}(\lambda) = C^{\beta}(\lambda, \lambda_{\Gamma}) + \hat{A}^{\beta} \quad \text{if } \beta \uparrow \lambda_{\Gamma} = \lambda_{\Gamma} = (\beta \uparrow \lambda)_{\Gamma}.$$

(e9) With the good choices of the $e^{\beta}(\lambda)$'s redefine functors \mathcal{V}_{Ω_0} , \mathcal{V}_{Δ_i} , $i \in [1, n_0]$, \mathcal{V}_{Γ_s} , $s \in \Sigma_a$, so that the combinatorial functors \mathcal{T}_s , \mathcal{T}'_s , and \mathcal{T}'_i corresponding to $T^{\Gamma_s}_{\Omega_0}$, $T^{\Omega_0}_{\Gamma_s}$, and $T^{\Omega_0}_{\Delta_i}$, respectively, involve only the constants

 $C^{\beta}(\lambda, \lambda_{\Gamma}), \ \lambda \in \Omega_0, \ \Gamma \in \mathcal{G}.$ If we set $\mathcal{Q}^{[i]}(\hat{A}) = \mathcal{T}_{i_1} \mathcal{T}'_{i_1} \dots \mathcal{T}_{i_r} \mathcal{T}'_{i_r} \mathcal{T}'_{i_r} \mathcal{Z}_{\nu_i}(\hat{A})$ with $\mathcal{T}_{i_j} = \mathcal{T}_{s_{i_j}}$ and $\mathcal{T}'_{i_j} = \mathcal{T}'_{s_{i_j}}$ (cf. (d4)), then

$$Q^{[i]}(\hat{A}) \simeq \mathcal{V}_{\Omega_0}(Q^{[i]}(\hat{A})) \quad \text{in } \mathcal{K}(\Omega_0).$$

(e10) Let $S = S(\mathbb{Z}R)$ the symmetric algebra of $\mathbb{Z}R$. Put $S_k = S \otimes_{\mathbb{Z}} k$. Recall the h_{α} from (e7). If \hat{S}_k is the completion of S_k with respect to the maximal ideal generated by all $\alpha \in R$, one has a k-algebra isomorphism

$$\hat{S}_k \longrightarrow \hat{A} \quad \text{via} \quad \alpha \longmapsto h_\alpha \quad \forall \alpha \in R.$$

Through the isomorphism one can regard $C^{\beta}(\lambda, \lambda_{\Gamma})$ living in Frac(S) for each $\lambda \in \Omega_0$ and $\Gamma \in \mathcal{G}$. Hence one can define combinatorial categories $\mathcal{K}(\Omega_0, S)$, $\mathcal{K}(\Gamma_s, S)$, $\mathcal{K}(\Delta_i, S)$, combinatorial translation functors \mathcal{T}_s , \mathcal{T}'_s , \mathcal{T}'_s between them, and $\mathcal{Z}_{\nu_i}(S)$, $\mathcal{Q}^{[i]}(S)$ by copying the definitions of $\mathcal{K}(\Omega_0)$, etc., with \hat{A} replaced by S and with $S^{\emptyset} = S[\frac{1}{\alpha} \mid \alpha \in R^+]$ and $S^{\beta} = S[\frac{1}{\alpha} \mid \alpha \in R^+ \setminus \{\beta\}]$. Note that $h_{\alpha} \in H_{\alpha}\hat{A}^{\times}$.

More generally, let $A \in \mathbf{Alg}_S$ with $\alpha \neq 0$ in A for any $\alpha \in R$. For a W_a -orbit Ω define $\mathcal{K}(\Omega, A)$ likewise. If $A' \in \mathbf{Alg}_A$ with $\alpha \neq 0$ in A' for all $\alpha \in R$, define a functor of extension of scalars $\mathcal{K}(\Omega, A) \to \mathcal{K}(\Omega, A')$, written $\mathcal{M} \mapsto \mathcal{M}_{A'}$, by

$$\mathcal{M}_{A'}(\lambda) = \mathcal{M}(\lambda) \otimes_{A^{\emptyset}} A'^{\emptyset} \simeq \mathcal{M}(\lambda) \otimes_A A' \quad \forall \lambda \in \Omega$$

and for each $\beta \in \mathbb{R}^+$ by setting $\mathcal{M}_{A'}(\lambda, \beta)$ equal to the image of

$$\mathcal{M}(\lambda, \beta) \otimes_{A^{\beta}} A'^{\beta} \simeq \mathcal{M}(\lambda, \beta) \otimes_A A'$$

in $\mathcal{M}_{A'}(\lambda) \oplus \mathcal{M}_{A'}(\beta \uparrow \lambda)$ if $\beta \uparrow \lambda > \lambda$ (resp. $\mathcal{M}_{A'}(\lambda)$ if $\beta \uparrow \lambda = \lambda$). The translation functors \mathcal{T}_s , \mathcal{T}'_s , \mathcal{T}'_i commute with functors of extension of scalars. In particular,

(2)
$$\mathcal{Q}^{[i]}(S)_{S_k} \simeq \mathcal{Q}^{[i]}(S_k) \quad \text{and} \quad \mathcal{Q}^{[i]}(S)_{\hat{A}} \simeq \mathcal{Q}^{[i]}(\hat{A}).$$

Note that

(3)
$$\mathcal{K}(\Omega, A)$$
 is independent of k .

For let $\mu \in \Omega \cap \bar{\mathfrak{A}}_k$ and $W_{\Omega} = C_{W_a}(\mu)$. Define a category $\mathcal{K}(W_a/W_{\Omega}, A)$ just like $\mathcal{K}(\Omega, A)$. An object of $\mathcal{K}(W_a/W_{\Omega}, A)$ is a family of A^{\emptyset} -modules $(\mathcal{M}(wW_{\Omega}))_{wW_{\Omega} \in W_a/W_{\Omega}}$, almost all members 0, together with A^{β} -submodules

 $\mathcal{M}(wW_{\Omega}, \beta)$, $wW_{\Omega} \in W_a/W_{\Omega}$ and $\beta \in R^+$, of $\mathcal{M}(wW_{\Omega}) \oplus \mathcal{M}((\beta \uparrow w)W_{\Omega})$ if $(\beta \uparrow w)W_{\Omega} \neq wW_{\Omega}$ (resp. $\mathcal{M}(wW_{\Omega})$ if $(\beta \uparrow w)W_{\Omega} = wW_{\Omega}$), where $\beta \uparrow w \in W_a$ such that $(\beta \uparrow w) \cdot_k 0 = \beta \uparrow (w \cdot_k 0)$. Then one has an isomorphism

$$\mathcal{K}(\Omega, A) \longrightarrow \mathcal{K}(W_a/W_{\Omega}, A)$$
 via $\mathcal{M} \longmapsto \mathcal{M}'$

with $\mathcal{M}'(wW_{\omega}) = \mathcal{M}(w \cdot_k \mu)$ and $\mathcal{M}'(wW_{\Omega}, \beta) = \mathcal{M}(w \cdot_k \mu, \beta)$ for each $w \in W_a$ and $\beta \in R^+$.

(e11) Lemma (cf. [AJS], Lemma 14.8) If A' is flat over A, then for each $\mathcal{M}, \mathcal{N} \in \mathcal{K}(\Omega, A)$

$$\mathcal{K}(\Omega, A)(\mathcal{M}, \mathcal{N}) \otimes_A A' \simeq \mathcal{K}(\Omega, A')(\mathcal{M}_{A'}, \mathcal{N}_{A'}).$$

(e12) **Theorem** (cf. [AJS], Lemma 14.9) Assume p >> 0 in Case 1. Then for each $i, j \in [1, n_0]$,

$$\mathcal{K}(\Omega_0, S)(\mathcal{Q}^{[i]}(S), \mathcal{Q}^{[j]}(S)) \otimes_S S_k \simeq \mathcal{K}(\Omega_0, S_k)(\mathcal{Q}^{[i]}(S_k), \mathcal{Q}^{[j]}(S_k)).$$

Proof. We first rewrite the left hand side as $\mathcal{K}(\Omega_0, S)(\mathcal{Q}^{[i]}(S), \mathcal{Q}^{[j]}(S)) \otimes_{\mathbb{Z}} k$. For each $\lambda \in \Omega_0$ and $\beta \in \mathbb{R}^+$ let

$$\mathcal{Q}^{[i]}(S)(\lambda,\beta)^{0} = \begin{cases} (\mathcal{Q}^{[i]}(S)(\lambda) \oplus \mathcal{Q}^{[i]}(S)(\beta\uparrow\lambda))/\mathcal{Q}^{[i]}(\lambda,\beta) & \text{if } \beta\uparrow\lambda > \lambda\\ \mathcal{Q}^{[i]}(S)(\lambda)/\mathcal{Q}^{[j]}(S)(\lambda,\beta) & \text{if } \beta\uparrow\lambda = \lambda. \end{cases}$$

One has (cf. [AJS], Lemma 14.15(b)/(14.16)) for each $\lambda \in \Omega_0$ and $\beta \in \mathbb{R}^+$

(1)
$$Q^{[i]}(S)(\lambda)$$
 is S^{\emptyset} -free of finite rank,

(2)
$$Q^{[i]}(S)(\lambda,\beta)$$
 is S^{β} -free of finite rank,

and

(3)
$$Q^{[i]}(S)(\lambda,\beta)^0$$
 has no p-torsion.

Consider a natural map

$$\psi:\coprod_{\lambda\in\Omega_0}\mathbf{Mod}_{S^\emptyset}(\mathcal{Q}^{[i]}(S)(\lambda),\mathcal{Q}^{[j]}(S)(\lambda))\longrightarrow \ \coprod_{\lambda\in\Omega_0}\coprod_{eta\in\Omega_1}\mathbf{Mod}_{S^eta}(\mathcal{Q}^{[i]}(S)(\lambda,eta),\mathcal{Q}^{[j]}(S)(\lambda,eta)^0).$$

Then $\mathcal{K}(\Omega_0, S)(\mathcal{Q}^{[i]}(S), \mathcal{Q}^{[j]}(S)) = \ker \psi$. By (3) the codomain of ψ has no p-torsion, hence $\operatorname{im} \psi$ has no p-torsion. Then $\operatorname{Tor}_1^{\mathbb{Z}}(\operatorname{im} \psi, k) = 0$. On the other hand, for each $\lambda \in \Omega_0$

$$\mathbf{Mod}_{S_k^{\emptyset}}(\mathcal{Q}^{[i]}(S_k)(\lambda), \mathcal{Q}^{[j]}(S_k)(\lambda))$$

$$\simeq \mathbf{Mod}_{S_k^{\emptyset}}(\mathcal{Q}^{[i]}(S)(\lambda) \otimes_{S^{\emptyset}} S_k^{\emptyset}, \mathcal{Q}^{[j]}(S)(\lambda) \otimes_{S^{\emptyset}} S_k^{\emptyset}) \quad \text{by (e10)(2)}$$

$$\simeq \mathbf{Mod}_{S^{\emptyset}}(\mathcal{Q}^{[i]}(S)(\lambda), \mathcal{Q}^{[j]}(S)(\lambda)) \otimes_{S^{\emptyset}} S_k^{\emptyset} \quad \text{by (1)}$$

$$\simeq \mathbf{Mod}_{S^{\emptyset}}(\mathcal{Q}^{[i]}(S)(\lambda), \mathcal{Q}^{[j]}(S)(\lambda)) \otimes_{\mathbb{Z}} k.$$

Hence if ψ_k is the analogue of ψ over S_k , one gets a commutative diagram of short exact sequences

$$0 \longrightarrow (\ker \psi) \otimes_{\mathbb{Z}} k \longrightarrow \coprod_{\lambda \in \Omega_{0}} \mathbf{Mod}_{S^{\emptyset}}(\mathcal{Q}^{[i]}(S)(\lambda), \mathcal{Q}^{[j]}(S)(\lambda)) \otimes_{\mathbb{Z}} k$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad$$

Consequently,

(5)
$$\mathcal{K}(\Omega, S)(\mathcal{Q}^{[i]}(S)(\lambda), \mathcal{Q}^{[j]}(S)(\lambda)) \otimes_{\mathbb{Z}} k$$
 injects into
$$\mathcal{K}(\Omega, S_k)(\mathcal{Q}^{[i]}(S_k)(\lambda), \mathcal{Q}^{[j]}(S_k)(\lambda)).$$

Suppose $\operatorname{Tor}_1^{\mathbb{Z}}(\operatorname{coker} \psi, k) = 0$. Then from (2) one gets as in (4) a commutative diagram of exact sequences

As the left vertical arrow is surjective by (4), $(\operatorname{im} \psi) \otimes_{\mathbb{Z}} k \simeq \operatorname{im} (\psi_k)$. Then the 5-lemma applied to (4) yields $(\ker \psi) \otimes_{\mathbb{Z}} k \simeq \ker(\psi_k)$, i.e., the bijectivity in (5).

Finally, $\operatorname{Tor}_{1}^{\mathbb{Z}}(\operatorname{coker}\psi, k) = 0$ automatically in Case 2. In Case 1 $\operatorname{coker}\psi$ is of finite type in $\operatorname{\mathbf{Mod}}_{S}$, hence (cf. [M], Theorem 6.5) | $\operatorname{Ass}(\operatorname{coker}\psi)$ | $< \infty$. Also (cf. [M], Theorem 6.1) $\operatorname{coker}\psi$ has a p-torsion iff $p \in \bigcup_{\mathfrak{p} \in \operatorname{Ass}(\operatorname{coker}\psi)} \mathfrak{p}$. As each \mathfrak{p} contains a unique prime of \mathbb{Z} , $\operatorname{coker}\psi$ has no p-torsion for p >> 0, in which case $\operatorname{Tor}_{1}^{\mathbb{Z}}(\operatorname{coker}\psi, k) = 0$.

- (e13) **Remark** Theorem e.12 holds, in fact, for $p \geq h$ (cf. [AJS], Theorem 16.7). Its proof, however, requires introduction of \mathbb{Z} -graded combinatorial categories $\tilde{\mathcal{K}}(\Omega_0, S)$ and $\tilde{\mathcal{K}}(\Omega_0, S_k)$ (cf. [AJS], Lemma 16.6), that are also relevant to the question of the Koszulity of $U^{[p]}(\mathfrak{g})$ and $\mathfrak{u}(k)$ in [AJS], §§17/18.
- (e14) Regarding \mathbb{Z} as S-algebra via $\alpha \mapsto 0$ for each $\alpha \in \Sigma$, let $\mathcal{E}_{[i],[j]}(\mathbb{Z}) = \mathcal{K}(\Omega_0, S)(\mathcal{Q}^{[i]}(S), \mathcal{Q}^{[j]}(S)) \otimes_S \mathbb{Z}$.

Corollary Let $i, j \in [1, n_0]$.

- (i) $\mathcal{E}_{[i],[j]}(\mathbb{Z})$ is independent of k.
- (ii) One has a k-linear isomorphism $\mathcal{E}_{[i],[j]}(\mathbb{Z}) \otimes_{\mathbb{Z}} k \simeq \mathcal{C}_k(Q^{[i]}(k),Q^{[j]}(k))$.

Proof. (i) follows from (e10)(3). The left hand side of (ii) is isomorphic to

$$\mathcal{K}(\Omega_0, S)(\mathcal{Q}^{[i]}(S), \mathcal{Q}^{[j]}(S)) \otimes_S S_k \otimes_{S_k} \hat{A} \otimes_{\hat{A}} k$$

$$\simeq \mathcal{K}(\Omega_0, S_k)(\mathcal{Q}^{[i]}(S_k), \mathcal{Q}^{[j]}(S_k)) \otimes_{S_k} \hat{A} \otimes_{\hat{A}} k$$
 by (e12/13)

$$\simeq \mathcal{K}(\Omega_0, S_k)(\mathcal{Q}^{[i]}(S_k)_{\hat{A}}, \mathcal{Q}^{[j]}(S_k)_{\hat{A}}) \otimes_{\hat{A}} k$$
 by (e11) as $\hat{A} \simeq \hat{S}_k$ is flat over S_k

$$\simeq \mathcal{K}(\Omega_0, \hat{A})(\mathcal{Q}^{[i]}(\hat{A}), \mathcal{Q}^{[j]}(\hat{A})) \otimes_{\hat{A}} k$$
 by (e10)(2)

$$=\mathcal{K}(\Omega_0)(\mathcal{Q}^{[i]}(\hat{A}),\mathcal{Q}^{[j]}(\hat{A}))\otimes_{\hat{A}}k$$

$$\simeq \mathcal{K}(\Omega_0)(\mathcal{V}_{\Omega_0}(Q^{[i]}(\hat{A})), \mathcal{V}_{\Omega_0}(Q^{[j]}(\hat{A}))) \otimes_{\hat{A}} k$$

$$\simeq \mathcal{C}_{\wedge}(Q^{[i]}(\hat{A}), Q^{[j]}(\hat{A})) \otimes_{\hat{A}} k$$
 by (e3)

$$\simeq \mathcal{C}_k(Q^{[i]}(\hat{A}) \otimes_{\hat{A}} k, Q^{[j]}(\hat{A}) \otimes_{\hat{A}} k)$$
 by (d3) as $Q^{[i]}(\hat{A})$ is projective

$$\simeq \mathcal{C}_k(Q^{[i]}(k), Q^{[j]}(k)).$$

Acknowledgement

I studied a preprint version of [AJS] with UEDA(SUGAI) Ryotaro, that has been very helpful to prepare the present survey. I greatly appreciate his contribution. I am also grateful to H.H. Andersen for reminding me of [APW1], (5.13) in the proof of (c8).

References

- [A1] Andersen, H.H., Finite dimensional representations of quantum groups, 1-18 in Proc. Symp. Pure Math. **56** 1994 (AMS)
- [A2] Andersen, H.H., The irreducible characters for semi-simple algebraic groups and for quantum groups, Proc. ICM 1994 at Zürich (to appear)
- [AJS] Andersen, H.H., Jantzen, J.C. and Soergel, W., Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: independence of p, Astérisque 220, 1994
- [APW1] Andersen, H.H., Polo, P. and Wen K., Representations of quantum algebras, Inv. Math. 104 (1991), 1-53
- [APW2] Andersen, H.H., Polo, P. and Wen K., Injective modules for quantum groups, Amer. J. Math. 114 (1992), 571-604
- [AW] Andersen, H.H. and Wen K., Representations of quantum algebras The mixed case, J. reine angew. Math. 427 (1992), 35-50
- [AM] Atiyah, M. and Macdonald, I.G., Introduction to commutative algebra, Reading 1969 (Addison-Wesley)
- [B1] Bourbaki, N., Algèbre commutative, Paris 1961/62/64/65 (Hermann)
- [B2] Bourbaki, N., Algèbre Ch. X, Paris 1980 (Hermann)
- [DCK] De Concini, C. and Kac, V.G., Representations of quantum groups at roots of 1, 471-506 in A. Conne et al (ed.), Operator algebras, unitary representations, enveloping algebras, and invariant theory (Colloq. Dixmier) PM 92, Boston 1990 (Birkhäuser)
- [DG] Demazure, M. and Gabriel, P., Groupes algébriques I, Paris 1970 (Masson)

- [H] Hotta R., this volume
- [J] Jantzen, J.C., Representations of algebraic groups, Orlando 1987 (Academic Press)
- [KT] Kashiwara M. and Tanisaki T., Kazhdan-Lusztig conjecture for affine Lie algebras with negative level, Duke Math. J. bf 77 (1995), 21-62
- [KL1] Kazhdan, D. and Lusztig, G., Tensor structures arising from affine Lie algebras I, II, J. AMS 6 (1993), 905-1011
- [KL1] Kazhdan, D. and Lusztig, G., Tensor structures arising from affine Lie algebras III, IV, J. AMS 7 (1994), 335-453
- [K] Kempf, G., The Grothendieck-Cousin complex of an induced representation, Adv. Math. 29 (1978), 310-396
- [L1] Lusztig, G., Some problems in the representation theory of finite Chevalley groups, 313-317 in Proc. Symp. Pure Math. AMS 37 1980 (AMS)
- [L2] Lusztig, G., Modular representations and quantum groups, 59-77 in Contemp. Math. 82, Providence 1989 (AMS)
- [L3] Lusztig, G., Quantum groups at roots of 1, Geom. Ded. **35** (1990), 89-114
- [L4] Lusztig, G., Monodromic systems on affine flag manifolds, Proc. R. Soc. London A 445 (1994), 231-246
- [M] Matsumura H., Commutative ring theory, Cambridge 1990 (Cambridge Univ. Press)
- [NT] Nagao H. and Tsushima Y., Representations of finite groups, Orlando 1989 (Academic Press)
- [S1] Soergel, W., Roots of unity and positive characteristic, Canadian Math. Soc. Proc., to appear
- [S2] Soergel, W., Conjectures de Lusztig, Sém. Bourbaki 47ème ann. 1994-1995 n° **793**, to appear