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This is a survey of the work [AJS] by H.H. Andersen, J.C. Jantzen and W.
Soergel. There are also excellent expositions by the authors [A2], [S1], [S2],
of which [A2] includes the entire aspect of Lusztig’s program.

During the AMS Summer Institute 1986 at Arcata I had an opportunity
to ask G. Lusztig how he had come to his conjectural formula [L1] that
should describe the irreducible characters of simple F,-groups in terms of
the Kazhdan-Lusztig polynomials. He kindly explained me the idea, that is
in [H], and said it would be easier to relate the conjecture to his analogous
conjecture for affine Kac-Moody Lie algebras than to derive the exact for-
mula in the category of modules for the F,-groups or for their infinitesimal
subgroups.

Meanwhile, quantized enveloping algebras were discovered by V. G. Drin-
feld and Jimbo M. Their representation theory at roots of 1 has subsequently
been related to that of affine Kac-Moody Lie algebras by D. Kazhdan and
Lusztig [KL1, 2] and [L4], to the former [AJS] has related the representa-
tion theory of simple F,-groups, and Lusztig’s conjectural formula for affine
Kac-Moody Lie algebras has been verified by Kashiwara M. and Tanisaki
T. [KT]. Altogether Lusztig’s conjectural modular irreducible character for-
mula, is now proved to hold for large p and in type A, D, and E.

The morphism spaces of modules for simple F,-groups are [Fj-linear
whereas those for quantized enveloping algebras over cyclotomic fields Q(¢)
are Q(¢)-linear, hence one cannot hope to have an equivalence between these
categories. Neither is I, flat over Z. In order to overcome the difficulties,
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[AJS] works not over F,, Q({) or Z, but over various localizations of the
completions of the Cartan part of the universal enveloping algebra of the Lie
algebra of the F,-group and of the quantized enveloping algebra over Q(¢),
introduces certain combinatorial categories over these algebras and finally
over the symmetric algebra of the root lattice, then applies some standard
techniques of finite dimensional algebras.

a° The problem

(al) Let us first fix the notations.

R an irreducible root system with the set of coroots RV‘
R* a positive system of R
¥ the simple system of Rt
X the weight lattiée of R
X the set of dominant weights of X
> the standard partial order on X such that A > u 1ff A — i € Yaer+ Na
w the Weyl group of R
W, = W X Z the affine group of W
P =5 Tach+
o the dominant short root of R
= (p, o) + 1 the Coxeter number of R , ‘
(d )aes € {1,2,3}* minimal such that [(d (8, " ))] e 1s symmetric

(a2) Let k = F, the prime field of characteristic p > 0, and & the sim-
ply connected simple k-group with a maximal torus ¥; split over Z and
the associated root system R. We will 1dent1fy X with the weight group
Grpk (@k, @El) of ‘Ik

If M is a Tg-module, M adrﬂits a weight space decomposition M = /\LI M,
ex

with My ={m e M |t(tm®1)=m@A(t)in M ® AVA € Alg; and t €
Tr(A)}, where Algy denotes the category of commutative k-algebras. One



82

calls A € X a weight of M iff My # 0. Set chM = T cx(dim M))e(N),
called the character of M, in the group algebra Z[X|] of X with the natural
basis e(A), A € X. |

There is a bijection, due to C. Chevalley [J], (I1.2.4), between X* and
the set of the isomorphism classes of the simple &;-modules such that
(1) A+— L(\); simple of highest weight A.

The fundamental problem in the representation theory of &; has been to
find all chL(\).

(a3) Let §g : &; — & be the Frobenius endomorphism of &;. Let
Xp={peX | (ga")y<p—-1Vae X} If X =20+ pA! with A’ € X;
and A\ € X+, Steinberg’s tensor product theorem says

L)k~ L) @ LOHY in &,Mod,

where L(A1)\! is the composite of the representation L(A!); with Fs. Hence
we have only to find all chL(A)g, A € X.

(ad) Let &; = ker §g the Frobenius kernel of &;. It is an infinitesimal
subgroup of &; defined by the Hopf algebra k[®]/m%, where k[®] is the
Hopf algebra of &; with the augmentation ideal my. Due to C.W. Curtis
[J], (I1.3.15), ,

(1) LMk, A € X, remains simple as &;-module.

In order to keep track of the weights, however, we will work in the category
of &% r-modules.

In &;%Mod the simples are still parametrized by their highest weights,
varying though over the entire X. We will denote the simple of highest
weight 4 € X in &;TxMod by Li(r). Then

(2) Ly(p) ~ L)k @k pu'  with  put = (u)0.

(ab) Let A € X. If By is the Borel subgroup of &, whose roots are —R™*,
regard A as a Bi-module via the projection B, — T, and let

Zv(\) ={fe Schy(®: Tk, A') | f(A)(zb) = (A(A) (1)) F(A)(=)
Vz € B1Tk(A),b € B1Tx(A), A € Alg,},
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that is just the &;%;-module of global sections of the invertible sheaf on
the quotient &;T;/B1%x induced by the B;Ti-module A, where B, is the
Frobenius kernel of 8y and Schy denotes the category of k-schemes. The
®1Tr-module structure is given by zf = f (z717). Regarded as a functor
BT Mod — &% Mod Zk is exact, that makes the representation theory
of &% more algebraic than that of ®;. One has

; 1 — e(~po)
chZp(\) = e(A _—
A=) LT
hence the composition factor multiplicity [Zx(X\) : Lyg(N)] = 1, and all the
other composition factors of Zi(A) have highest weights < A. It follws that

the determination of chL(A) is now reduced to counting the decomposition
numbers [Z(\) : Lg(p)] for all A\, p € X.

(a6) Define a partition of X into disjoint subsets, called the blocks of
®,TrMod, to be the finest partition such that A and u belong to the same
block if Extg ¢, (Lk(X), Li(p)) # 0. The linkage principle [J], (IL6.17) says

(1) each block is contained in a W,-orbit,

where we let W, act on X by yw x A = w(A+p) —p+py, ¥ € ZR, w e W,
and A € X. : ‘

If b is a block of &,TxMod, denote by &;Ty(b) the full subcategory of
B;1TxMod consisting of all modules whose composition factors are of the
form Li(A), A € b. If Q and T" are two W,-orbits in X, one has an exact
functor

Tgl; . H ®1§k(b) — H ijfk(b),

bCQ bCT
called the translation functor from €2 to I', that is both left and rlght adjoint
to the translation functor T [J], (IL.7).

(a”) Let 2, = {r € X @zR | 0 < (z+ p,a) < pVa € RT}. The W,-
translates of Ay are called alcoves. In particular, 2, is called the bottom
dominant alcove. One has

QlkﬂX;é(Z) it 0eU, iff p>h.

Assume from now on that 0 € 2, throughout the rest of the survey.
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Let W={weW,|wt0€ X }and Wy = {w e W, | w0 e X}
Note that both W and W are independent of k.

As Z;()) is indecomposable, one can write by the linkage principle

chLi(N) = ¥ apchZi(w 1 ), aw € Z.

weW,

If 11 belong to the “upper closure” of the alcove of A, then the translation
principle [J], (IL.7.17)(b) yields

(1) chLi(p) = 3 arwchZip(w - p).

weW,
Also Zp(A+ pp) = Zx(\) ® pv Vv € X, hence together with (ad)(2)
(2) [Zk(A+pv) : Li(n +pv)] = [Zk(N) : Li(m)).

As any weight belongs to the upper closure of an alcove, for p > h the
problem is now reduced to counting all

(3) [Zi(w £ 0) : Li(w' 1 0)], we W, o €W.

(a8) One says a &;T;-module admits a ?k—ﬁltration if it has a filtration in
&;TxMod with the factors of the form Zx(v), v € X.

Let Qx(A) be the projective cover of Lig()\), A € X, in &;T,Mod. The
Brauer-Humphreys reciprocity [J], (I1.11.4) says

(1) | Qx()) admits a Zy-filtration
and that the multiplicities in the Zy-filtration are given by
(2) 1@ Ze(w ek M) = [Zi(w ok A) 2 Le(V)),

where the factors of the filtration must be of the form Zk(w & A), wE W,
by the linkage principle. Hence the problem is further reduced to finding
the multiplicities in Z-filtrations ‘

(3) [Qk(w k /\) : Zk(w' ‘k /\)] Yw € Wi, w € w,.

(a9) Let Qo = W, -+ 0 and A € Q. In one case the Z;-filtration of Qr(N)
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is well-understood. The Steinberg module Zx((p — 1)p) = Li((p — 1)p) =
L((p — 1)p)x is a projective indecomposable [J], (I11.10.2), hence also

Zi((p—p+pv) = Zi((p— 1)p) ®kpr Vv € X.
If A lies in the top alcove of the box pA! + X, then [J], (I1.11.10)

(1) Qk()‘) W, k ((p— 1)p+p)\1 Zk((p - 1),0 +p)‘ )

in a Zj-filtration of which all Zk(w kA +p(p—wp+ A1), w € W, appear
exactly once. More generally [J], (II.9.19),

(alO) Lemma. Let A, u € X belonging to the closure of an alcove. Then
TW“ H# Ze(N) has a Zy-filtration with the factors

Zr(w k1), w € Cw,(N)/Cw,(A) N Cw, (1),

each appearing exactly once.

(all) Let X, be the set of reflexions of W, in a wall of 2, that is inde-
pendent of k. If s € Ea, choose p; € X N2y, with Cy, (us) = {1, s}, and set
T, =T, T. =Ty, ,,and O, =T, o T..

For A € () define a sequence I = (s, ... , s,) of elements of ¥, inductively
as follows. If X lies in the top alcove of the box pA! + X, take I = 0.
Otherwise choose s; € ¥, such that A < ws; ;0 if A =w 40, w € W,, and
that ws; -4 0 € pA! + Xi. Now set

Qi) =6,0...00,Q)))

with Q(\) = k((p 1)p+p/\1)Zk(( —1)p + pAl). From (al0) we know the
Zy-filtration of Qk()\) On the other hand, if A = wp -, \° + p(A! +2p),
(1) QN = II Q)™ with me(\\) =1,
veQly
A1 A

where 1 is a partial order on X such that v 1 1)’ if V! =sp-xv+pmB>v
for some § € R* and m € Z [J], (IL.11.6).

As the ch Q(v) are linearly independent, the m(A, v) are uniquely deter-
mined. Then by induction on A — A finding all my (), v) will determine the
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Zfiltration of each Qr(v), v € (.

(al2) The set of w € W, with
0Twx0Twx0T0=2(p—1)p

is finite and independent of k. Enumerate those wy, ..., w,, such that if

wi x0T w;£07 w; %07 w0, then j < 4. Note that

0

W1 _C_ {wl, ca ,wno}.

For each w; 0, ¢ € [1,m], choose a sequence I(i) as in (all) and set
QU(k) = Qi(l)(wi ¢ 0). Then

(1) QU(K) = T1 Qulw; + 0)™U)  with my(i, i) = 1.
j=1

Set Q(k) = 1172, QF!(k) and let |
E (k) = G1TMod(QU(k), QUI(k)),  E(k) = & TuMod(Q(k), Q(k)).

Then £(k) = 11; je[1,no] €jif ;] (k). Under the composition each £(k)p; ;) and
E(k) form finite dimensional k-algebras.

Let 1 = Y,cp, (i) €k (¢) be a decomposition into orthogonal primitive idem-
potents in £(k)y; i, where Ej (i) is an indexing set with e)(z) corresponding
to Qi(w; - 0), i.e., Qk(w; % 0) = ed(1)Q (k). Then 1 = T2 Sep, () €ri)
is a decomposition into orthogonal primitive idempotents in £(k). Now
(2) ep(i) is conjugate to er'(j) in E(k), i.e., there is some u € E(k)™

with e} (1) = uef(§)u™, iff E(k)el(i) ~ E(k)e}(5) in £(k)Mod iff
er(1)Q(k) ~ ef'(7)Q(k) in &1TxMod.
Hence if n # 0, e}(7) is conjugate to some e2(j) for j < i while €2(i) is not
conjugate to any of ef'(j), m € Ex(j) with j < 4. It follows that

(3)  my(4, 1) = #{s € Ex(3) | E§(i) is conjugate to ef(j) in £(k)}.

(al3) By transferring from @;;Mod to ®1TxMod one has obtained finite
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dimensional projectives (in &;Mod there are no finite dimensional injec-
tives nor projectives), and the translations in W, have been reflected in a
simple manner: for each A and v € X,

LA +pv) o Ly(N) @k pv,  Ze(A+pv) ~ Zi(X) ®4 py;
| and Qr(A+pv) ~ Qk(A) &k pv.

In characteristic 0 similar phenomenon occurs with the quantized enveloping
algebra.

Let A = Z[v,v™!] with v an indeterminate and U(A) Lusztig’s A-form
of the Drinfeld-Jimbo quantized enveloping algebra over Q(v) [L3]. Let
¢ € N prime to the nonzero entries of the Cartan matrix of R, ¢ a prim-
itive £-th root of 1 in C, k = Q((), and U(k) = U(A) ® 4 k. Lusztig has
discovered a characteristic 0 analogue of the Frobenius kernel in U(k), that
is an £1%(2¢)®l-dimensional subalgebra u(x) of U(x) generated by Ei,, K,,
a € E. Let Cp) be the category of finite dimensional U (k)-modules with
K’ acting by 1 for each @ € . One has K2 = 1 in U(k). Then (cf.

[APW1], (9.12); if ¢ is not a prime power, one argues as in [AW]) each

M € Cy( admits a weight space decomposition with respect to the Car-
tan subalgebra U°(k) = U°(A) ® 4 k with U%(A) the A-subalgebra of U(A)

da(=i+1) _ gr~1y=da(=i+1)
generated by K= and [Ifr‘:] = ﬁlK"‘” K = R1lL,ae X, meN:
1=

vdai_v—dai

(1) M= I My, with My={meM |um=Au)mVue U’k)},

aeX
where A(K,) = (%0 and M%) = [*9]  with [7], =
m da(r—i+l) _,—da(r—i+1) *
il;Il L vdai_v~dai ]' .

The simples of Cy(,) are parametrized by their highest weights in X* as
in ®;Mod. Let X, ={n € X | (y,a") <£—1Va € X}. If L(\), denotes
the simple of Cyy,) of highest weight A € X* and if A = X° 4 £\! with
A% € X, and A\ € X, then Lusztig’s tensor product theorem [LMR], (7.4)
asserts

(2) LX)k =~ L(’\O)n Ok L(/\l);[el] in Cb(n)’

where L(A)l! is the composite of the simple representation L(A!), of &,
i.e., of the universal enveloping algebra U (Lie(®,)) of the Lie algebra Lie(®,)
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of ®,, with Lusztig’s lift U(x) — U(Lie(®,)) of the Frobenius morphism
[L3], (8.16) such that for each « € ¥ and n € N

(7). Hal
I L A TV N
0 otherwise, n 0 otherwise,

where (Fig, H, va)aezvﬂeR is a basis of Lie(Qﬁ,i) obtained from a Chevalley

basis, and E{) = [E]%ﬁ in U (k) with [r]y_ H H ® 1 while EV), = E%“
in U(Lie(®y)). By [AW], (1.9)
(3) L(X\%),. remains simple as u(k)-module.

Again in order to keep track of the weights, we will consider (k) =
U°(k)u(x) and the category Cyy) of all finite dimensional #(k)-modules ad-
mitting weight space decompositions (1) with K acting by 1 for each o € X.
The category Cy(,) resembles much the categoty &;%ymod of finite dimen-
sional &;T;-modules [APW2], (4.7/4.10) (again if £ is not a prime power,
refer to [AW]). In particular, finding the irreducible characters of Ci(x) 18
reduced for £ > h to the determination of the multiplicity m,(4,7) of the
projective cover Q.(w; - 0) of Ly(w; -, 0) in the projective Q(k) :

(4) QU(k) = I Qu(w; - )™,
J<i
using the notations of (al2) to define Ql(k), where -, is the (-;)-action of

W, on X with p replaced by £. Define &) ;1(x), £(k), and the idempotents
as in (al2) with k replaced by k. Then

(5)  mx(4,9) = #{s € Ex(3) | e}(¢) is conjugate to €2(5) in £(k)}.

(al4) We are not to ask for an equivalence of categories between ;% mod"
and Cy(.), but to expect for p and £ > h

(1) | mk(i7j) = mn(i7j) Vi, J.

Indeed, a morphism space in &;T;mod is finite dimensional over IF, while
that in Cy(.) is finite dimensional over Q(¢).

If p= ¢ < h, however, Andersen and Jantzen have found an example
[A1], (7.9) that ch Ly()\) # ch L.(X) for some ) € X, = X,.
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b° The theorem

(b1) Retain the notations of (al2/13).

Theorem (cf. [AJS], Corollary 16.8) There is a Z-algebra £ of finite
type as Z-module with isomorphisms

ERzk~E(k) inkAlg and EQzr~E(k) inkAlg.

Moreover, € admits a decomposition € = 11; je[1,n,] Elil,[5] SUch that E (1€ ), m]
C 6 jm) for each i,j,m and n, and that the above isomorphisms restrict
to isomorphisms

&) @z k = Ey (k) and  Eyypy) @z k= Eyp(k),
respectively.

(b2) Remark (cf. [AJS], Corollary 16.11) One can realize £ such that
E ®z L[5 is free of finite type over Z[3] with d = (h — 1)\

(b3) For a commutative ring A let us write £4 = £ ®z A. There is a finite
extension field F' of Q that is a splitting field of £y [NT], Theorem 2.3.11.
Let o be the ring of algebraic integers in F' and let 1 = T,cg,q) eR(4),
1 < i< mg and 1 = T2 Srep,qq) €f(¢) be decompositions into orthogo-
nal primitive idempotents in (& ;)r and Ep, respectively. One can find
N € N* such that if 0 = op[+], then (cf. [NT], Lemma 1.13.14)

1

(2) 0 is of finite type as Z| N]-module,
(3)‘ . &, s o-free of finite type,
(4) all e (7) live in 8;,_

i.e., one can write €% (i) = €™(i) ® 1 with idempotents €"(z) in &,, and
(5) €"(3) and e™(j) are conjugate in Ep iff they are so in & Vi, j,n, m.

If m € Max(o), oy, is a DVR as o0 is a Dedekind domain [AM], (9.5). Put
0’ = 0m, M = mo’, and let 6’ be the completion of o’ in the m’-adic topology.
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Then &' is a complete DVR with the maximal ideal & = m'o’ (cf. [B1],
(VL.5.3), Proposition 5) and with ¢’/m’ ~ o’/m’ ~ o/m [AM], (10.16). In
fact, if 0 is the completion of o in the m-adic topology, then 0 ~ o’ [B1],
Exercise I11.2.27(a). As F is a splitting field of £g, the €"(¢) remain primitive
in Eprac(sr), hence in . Also e"(i) and e™(j) are conjugate in & iff they
are so in &y. Hence (cf. [NT], Theorem 1.14.2(ii))

(6) the €"(i) remain primitive in &/,

and (cf. [NT], Theorem 1.14.2(iii))

(7) e"(i) and e™(j) are conjugate in &y iff they are so in &,.

Rearrange the index sets F(i) of the primitive idempotents in &, so that
€%(4) is not conjugate in &, to any of e™(j), m € E(j),j < i.

(b4) As the simples of Cy, are absolutely simple, any indecomposable pro-
jective of Cy() remains indecomposable projective under field extensions.
Hence

(1) my(4,1) = #{s € E(3) | €(4) is conjugate to €°(5) in &,}.

Also if p >> 0 so that p ¢ 0, then considering m € Max(o) with p € m
yields

(2) my(4,1) = #{s € E(3) | €°(4) is conjugate to €°(j) in &,}.
Hence for p >> 0

(3) my(J,4) = mx(J, 7).

(b5) Let u™(k) be the k-subalgebra of u(x) generated by E_,, a € X,
and let ’(k) = u~(k)U°(k). Define a category Cip(s) of finite dimensional
i"(k)-modules just like Ci(r)- In analogy to the functor Zr : B1%Mod —
®;%¥xMod one has an induction functor Z, : Cwx) — Cix) defined by
Z(M) = i®(x)Mod(ii(k), M) [APW2], (1.2). Then

0 ch Z,() = e(n) I 24

VA e X,
ackr 1 —e(—a)

and [APW2], (4.10)

(2) the Brauer-Humphreys reciprocity carries over to Cai(r)-



91

Corollary (cf. [AJS], Corollary 16.23) Assume £ > h and p >> 0 rel-
ative to R. Then for each w,w' € W, there is d(w,w’) € N independent of
¢ and p such that

[Zi(w -1 0) : Li(w' £ 0)] = d(w,w’) = [Ze(w - 0) : Le(w' - 0)].
In particular, if p = £, then | |
chLg(w -, 0) = chLg(w -, 0) YweW,
hence together with the translation principle

chL(\)g = chL(\)s VYA € Xi = X..

(b6) It follows that the irreducible characters of &;Mod are obtained from
that of Cy. if p >> 0. Hence from [KL1, 2], [L4] and [KT] Lusztig’s con-
jectural irreducible character formula in &;Mod holds if p >> 0 and if R
is of type A, D or F.

c® Reformulation of categories

(c1) In order to treat much alike categories ®;Tymod and Cy simulta-
neously, we will reformulate these categories as follows.

Case 1. Let k[®] be the Hopf algebra defining &; and m;, the augmenta-
tion ideal of k[®]. Let Dist(8%) = limMody(k[®]/m}*!, k) the algebra of
n>0
distributions of &, that inherits the structure of Hopf algebra from k[®].

Any &;-module M is a k[®]-comodule, hence a Dist(®;)-module : if
Ay = idye) € Gr(k[®]) : M — M Q k[®] is the comodule map, then
each z € Dist(®;) acts on M by (M ®;, z) o Ayp. Conversely, any finite
dimensional Dist(®})-module carries a structure of &x-module [J], (I1.1.20).

The Hopf algebra of &, is k[®]/m2, hence Dist(®;) = (k[®]/mL)*. Then
&;Mod = Dist(®;)Mod : if M is a Dist(®;)-mod, one gets the comodule
map by the commutative diagram

m M --amemm- » M k[®]/m?

L U

z — zm Mod(Dist(®;), M) —— M ®y Dist(®;)*.
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Let g = Lie(®;) = Modg(mg/m2, k) < Dist(8%), and g=n"@®hdn~ the
triangular decomposition with f = Lie(Tx). For each x € g one has 2P € g
in Dist(®%) [DG], (I1.7.2.3), which we will denote by zPl. In particular
[DG], (11.7.2.2), if € n*, then z!P = 0 while if z € §, then zlPl = z.

If U(g) is the universal enveloping algebra of g, then
(1) 2? — 2 € Z(U(g)),

where zP is the p-th power of z in U(g). One calls UP!(g) = U(g)/(z? —zl?! |
z € g) the restricted enveloping algebra of g. There is a commutative
‘diagram of k-algebras

U(g) natural DiSt(@k)

@ | |

Ull(g) —— Dist(®;).

~

Fix a k-basis (Hy, Eg | @ € 5,8 € R) of g with H, = [E,, E_,] obtained
from a Chevalley basis. Let I = (Ef | § € R) < U(g) and set U(g) =
U(g)/1. The adjoint action of Ty on U(g) stabilizes I, hence U(g) comes
equipped with an X-gradation given by the ;- action. As E’g € Z(U(g)),
U(g) retains a PBW-type basis (E™H"F™ | m,n € [0,p—1]%",r € N%) with

E™= 1] Eg”,H, = [[ Hy and F* = [] E™,
BER* a€x BeR+
The degree of EMH™F™ is % (mg — ng)sB.
_ BERT

Case 2. Let U, be the De Concini-Kac version [DCK], (1.5) of the quan-
tized enveloping algebra over k, i.e., the k-algebra with the generators .,
K*l o € ¥, and the same relations as the Drinfeld-Jimbo algebra over
Q(v) with v replaced by ¢. Let Ui (resp. UQ) be the k-subalgebra of Uy
generated by Ei, (resp. KZI'), o € . For each w € W let T, be the
endomorphism of U, carried over from [LQG]. If 8 € R*, choose w € W
with w™8 € X, and set Eg = T,,(Ey-15) and E_g = T, (E_y-15). In case
B € X, the E1p so defined coincide with the old ones. One can then make
U, into an X-graded algebra by giving Ep, B € R (resp. K,,a € X)), degree
B (resp. 0). By [DCK], Corollary 3.1

ES, K e Z(U,) V8ecRandacey.
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Let I* = (E§ | 8 € £R") S Uy and I = (I*) 4 Us. If f € kAlg(Us, U(k))
with F., — F., and K, — K, for each o € ¥, then f mduces an 1somor-
phism of fc-algebras '

Us/(I, KX = 1] a € 5) ~ u(k). |
Moreover, I* = ker(f | vz), hence I * are defined independent of the choice
of the T,’s.
Under a suitable choice of the T;,’s and orderings in the products Uy/I
retains a PBW-type -basis (E™K"F" | m,n € [0,£ — 1]%",r € Z%) with
— H Emﬂ,Kr: HKZYQ and Fn= H Eﬁ%
BeERT acx BeERt

(c2) In order to treat the two cases mmultaneously, we will denote (n' ?) also
by (k,p) and set :
(U.U%,0°) = (U(g),Um®)+I/I,U(§) +I/I) in Casel

T (U2/1,Us +1/1,U3 +1/1) " in Case 2.
Hence as k-algebras
o, Jk[Ho|a€X] the polynomial algebra in H, in Case 1
~ |k[K* |a€X] the Laurent polynomial algebra in K, in Case 2,
and U has

(3) a structure of k-Hopf algebra (nontrivial in Case 2),

(4) a triangular decomposition, i.e., »
a k-linear bijection U~ ®; U’ @, Ut — U under the multiplication,
and '

(5) an X-gradation, indicated by subscripts, such that
U'CU,UTC U, U CIU, and (UT)g=k-1=(U),.

v>0 v<0
Define a group homomorphism ~: X — Alg(U° U%* by
MH)=H+XH) VHebh inCasel

~

AMKy) = (d"‘(’\’av)Ka Voo € ¥ in Case 2.
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Then for each s € U° and u € Uy one has su = u(s).

(c3) Let A be a noetherian domain over U° with a structure homomorphism
7 : U% — A (the assumption that A be a domain is only for convenience in
the present survey). We define a category C4 as follows. An object of C4
is a U ®x A-module M, which is as A-module of finite type and X-graded.
We regard U and A imbedded in U ®; A as U ® 1 and 1 ® A, respectively,
and write (u ® a)m = uma. We require

(1) UM, C My, YveX
and
(2) sm=mn(\(s)) VseU®and m e M,.

A morphism of C4 is a morphism of U ®; A-modules that preserves the
X-gradings.

The category C4 is equipped with a duality operation. There is an invo-
lutory antiautomorphism 7 of U [AJS], (1.6) such that

E,— E_, YVae¥ and s—s VseU"

If M € Cy4, define M™ to be ModA(M, A) with U acting by (uf)(m) =
f(7(u)m) and with the X-gradation given by

(MT))\ = {f e M | f(MM) =0 V,u 75 )\} ~ MOdA(M)\,A).
If M is A-projective, (M7)" ~ M in Cy.

Replacing U by U o+ (resp. U°) one defines likewise the categories C3°
and CY.

If M € CY is projective in the category of right A-modules ModA, define
the character of M by

chM = Y rks(My)e()) in Z[X].
reX

(c4) Case 1. Take A = k with the structure homomorphism 7 : U® — k
annihilating h. Then for each A € X and u € b

AuP) = Mw)? = Mw)? = A(u) = A(uw).
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Hence the U-module structure on M € Cy, factors through UP!(g). Conse-
quently, M comes equipped with a structure of Dist(®;)-module. Moreover,
the X-gradation on M makes M into a Tj-module such that

tzm®1) = (Ad{t)(z @ ))t(m® 1) in M @ A’ Vt € Th(4), A’ € Alg;,

hence into a &;Ti-module. One can thus identify C; with &;%xmod the
category of finite dimensional &;%T;-modules. .

Case 2. Take A = k with 7 : U° — k such that K, — 1 Va € X.
Then foreach Ae X anda e ¥ '

A(KE) = MKa)p = (P = 1.
Hence together with the X-gradation one can identify Cy with Cy,.

(c5) The forgetful functor gives an equivalence of categories from CY to
the category of X-graded A-modules of finite type, hence

(1) CY has enough projectives.

Define a functor ®4 : C§ — Ca by setting ®4(M) = U ®Ud M, M e CY,

with U acting by the left multiplication on U while A acting as given on

M. The X-gradation on ®4(M) is defined by ®4(M), = ZXUV Quo My_,.
. ve

Define likewise a functor ®3° : C§ — C3° by ®3°(M) = UU™* ®po M.
Then
(2) ®4 (resp. ®3°) is exact and
left adjoint to the forgetful functor from Cy4 (resp. C3') tb‘o cy.
Hence from (1)

(3) both C4 and C3° have enough projectives.

(c6) Define likewise a functor Z, : C5° — C4 by setting
ZA(M) =U Quoy+ M, M eC3°,
with the X-gradation on Z4(M) defined by Z4(M), = ng(U;)y ®k.M,\_,,‘,
using an A-linear isomorphism Z4(M) ~ U~ ®; M. Then
(1)  Za is exact and left adjoint to the forgetful functor C4 — C3°
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and
(2) $yp=Z4007°

An object of C§ can be made into an object of C3° through an isomorphism
U'U+/ HO(U0U+),, ~ U°, In particular, if A € X, define A* € C4 by
v>

0 otherwise.
Regarding A* as an object of C3°, set Z4(\) = Z4(A*). Then
1 - e(=pb)
3 ch Z4(A) = e(A ———
© AW =0 T 72575

that coincides with ch Z(\) of §a.
In case A = F'is a field
(4) Zr(X) has a simple head of highest weight X,
which we will denote by Lr()). All simples of Cr arise in this way.

(c7) A Z-filtration of M € Cy4 is a chain in C4 with the successive sub-
quotients isomorphic to some Z4(\), A € X. By (c6)(3)

(1) the multiplicity of Za()\) in a Z-filtration is
independent of the choice of the Z ﬁltmtzons
Asdy, =740 <I>A and as both Z4 and <I>A are exact,
(2) any M € C4 admits an epi Q — M in C
with Q) projective having a Z-filtration.

Moreover,

(c8) Lemma (cf. [AJS], Lemma 2.16) If A is local, any direct summand
of an object of C4 with a Z-filtration admits a Z-filtration. In particular,
any projective of C4 has a Z -filtration.

Proof. One has [AJS], (2.14)

(1) Bzt (Za(X), Za(w)) #0, \, p € X, then p > A.
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Let M = M’ ® M" in C4 with M having a Z-filtration. If A = F is a
field, the standard argument applies: if A is a maximal weight of M with
r = dimp M), then by (1) there is V < M with V ~ Zp()\)® such that
M/V has a Z-filtration with [M/V : Zp(\)] = 0. If m € Mj \ 0, let
m € Cp(Zp(M), M') induced by the adjunction from a morphism F* — M’
in C=% such that 1 — m. Then im(s) < V. Denote by 7 the morphism
Zp(A) — V induced from . As Cr(Zr()\), Zr(N)) ~ C3°(Zr(N),\) ~ F,
CF(ZF()\), ZF(A)) = FidZF()\). Hence |

(2) ™’ is a split mono with coker(m') ~ Zp(\)®1. |
Then M'/im(rn) @ M" ~ M /im(r') retains a Zp-filtration. The assertion
follows by induction on the length of a Z-filtration on M. '

In general, let p € SpecA with x(p) the residue field of Ay, As
ZA(A) ®4 k() = Zyp)(N) in Cypy, it suffices to check by above that
(3) if L € Ca is A-free with Ly = L ®4 (p) admitting a Z-filtration

in Cy(p) for each p € SpecA, then L admits a Z-filtration in Cg4.

Let A be a maximal weight of L. By (1) again if s = dim,)(Lyp))», there
is L' < Ly with L' o~ Z,,,(A\)® and such that L) has a Z-filtration
with [Ley /L' Zyp)(XN)] = 0. As A is local, Ly remains A-free, say Ly =
Aer @ ... @ Ae;. If é1 € C4(Z4(N),L) with 1 ® 1 + e, then as in (2)

(4) €1 ®4 K(p) is injective and coker(é; ®4 k(p)) admits a Z-filtration.
On the other hand, using the duality operator 7 of (c3) one has a commu-

tative diagram

ModA(L, A) @4 (p) 2240, ModA(Z4(0), A) @4 #(p)

] I
Mod&(p)(Lyg), £(p)) P—— Mod&(p)(Zi) (A), £(p))-

By (4) (é1 ®4 k(p))" is surjective, hence (&;1)” ®4 A, is surjective for each
p € SpecA by NAK. Then (&;)" is surjective [AM], (3.9). As Z4(\) is A-free,
the short exact sequence in Cy4 |

0 — ker((61)") — L7 &5 2,00 — 0
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splits in ModA. Then ker((é;)7) is A-free as A is local.. Hence (ker((é1)7))”
is A-free in the short exact sequence of C4

0 — Za(\) & L — (ker((61)7))” — 0.

By (4) (ker((é1)7))” ®4 k(p) =~ coker(é; ®4 k(p)) has a Z-filtration in Cyy,)
for each p € SpecA. Then by induction on rksL (ker((é;)7))” admits a
Z-filtration, and (3) follows.

The second assertion follows from (c7)(2).

(c9) Define a partitin of X into disjoint subsets, called the blocks over
A, by taking a finest partition such that A and p belong to the same block
if either CA(ZA()\), ZA(,U)) # 0 or EXtéA(ZA()Q, ZA(,U,)) # 0. Let B4 be the
set of blocks over A. Let D4 be the full subcategory of C4 consisting of
all objects with a Z-filtration. If b is a block over A, let D4(b) be the full
subcategory of D4 consisting of all objects such that the subquotients of
a Z-filtration are Z4(\), A € b. Let C4(b) be the full subcategory of Cx
consisting of all that are the images of objects of D4 (b).

(c10) Theorem (cf. [AJS], Theorem 6.10) (i) If b, b’ are disjoint blocks
over A, then

Exte, (M, M') =0 VM € C4(b) and M’ € C4(V).

(ii) Fach M € C4 admits a block decomposition M = b% M, with M, the
€04

largest subobject of M belonging to C4(b).

(iii) For each block b over A the category Ca(b) is closed under taking ho-
momorphic images, submodules, extensions, and finite direct sums.

(c11) Relative to the structure homomorphism 7 : U? — A, let

R. = {BeR|I_(v(Hp) +j) ¢ A*} in Casel
" B eRIML(n([Kp: §]) ¢ A<} in Case 2,
Kp(?%0—K;1¢™9%

where [Kp : j] = [}7] = P g—ty— (# [Y]) and ds = dy if a €

2 with 8 € Wa. Then R, forms a root system with the Weyl group
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W, = (sg | B € Ry) and a positive system of roots Rf = R, N R*. Let
Wy =Wy x ZR, <W,. It will be convenient to introduce

0 + :
B_ U[H__T(I—-.—T——}-_)|’8€R] IHC&SG;I.
UO['I:I——T(——— I B e R+] in Case 2.

Proposition (cf. [AJS], Proposition 6.13) Suppose A is a B- algebm
Ifbe By and A€ b, then b C Wy g A.

(c12) Regard k as a U%algebra via the augmentation. For each E € Cy and
M € C4 one can make E ®; M into an object of C4 by letting U (resp. A)
act via the comultiplication (resp. only on M). The gradation is defined by
(E®r M)y = uIéIXE” Qk Mx—yp.

Assume A is a B-algebra. Let W' be a reflexion subgroup of W, with
Waro < W'. An alcove for W’ is a connected component of X ®z R with
the hyperplanes in W’ deleted. Let Q and I" be two W’ -orbits in X. The
closure of an alcove for W’ contains exactly one element A € Q2 and p € T'.
Then W(u — ) is independent of the choice of the alcove. Let v be the
unique dominant weight of W{(u — ). Choose a simple E of highest weight
v in &;Mod (resp. Cy)) in Case 1 (resp. Case 2). Let C4(Q2) = b([:IQCA(b)

and C4(T") = b]C_IFCA(b). If prr : C4 — C4(T") is the functor such that prr M =

bH M,, one gets an exact functor
cr

Ts = prr o (E®@i?) : C4() —G (1),

called the translation functor from €2 to I'. In case A = k the functor
recovers the translation functor in &;Mod and Ci. As usual [AJS], (7.6),

(1) Tg is both left and right adjoint to TiL.
Denote the adjunctions by adj; : C4(Q)(?, TR?) — Ca(T)(T§7, ?') and
adjp : Ca(T)(?, TE?) — Ca(Q)(TE2, 7).

(c13) Lemma (cf. [AJS], Lemma 7.5) Assume A is a B-algebra. Let
A € X in the closure of an alcove for W' and Q@ = W/ A\, T =
W' x . Then T5Z4()\) has a Z-filtration with factors Z(w - p), w
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Cwi(A)/Cw:(X) N Cwi (1), each occuring exactly once.

d° Deformations

(d1) Recall that we are after a characteristic free description of
Cr(Q(k),QV!(k)). By (c6)(3) and (c8) we may replace Zi(?) of §a by
Zx(?) in Cx. We will study Cy by deformations.

Let m € Spec(U°) be the annihilator of the trivial 1-dimensional repre-
sentation:

o (Hy | a € X) in Case 1

(Ko—1|a€X) in Case 2.
Let A = U° be the completion of U? at m, denoted by A(k) in [AJS]. Then
A is a noetherian complete local domain, flat overAU 0 with maximal ideal
mA and the residue field k. One may regard SpecA as a formal neighbour-

hood of m in SpeAc(UO) (cf. [K], pp. 315-316). Note (cf. [B1], Exercise
II1.2.27(a)) that A is also the completion of B in the mB-adic topology.

(d2) Lemma (cf. [AJS], Lemma 14.2) If A is a noetherian complete
local domain, the Krull-Schmidt theorem holds in C4.

(d3) Let P4 be the full subcategory of C4 consisting of all its projectives.

Theorem (cf. [AJS], Proposition 3.3/Theorem 4.19)) (i) If P,Q €
Py, then C4(P, Q) is projective of finite type in Mod 4. If A’ is a noetherian
doqu’n over A, then in Mody

Ca(P,Q) @4 A ~Ca(PR4 A, Qo4 A).

(ii) If A is local with the residue field F, then 7 @4 F : P4 — P gives a
bijection between the isomorphism classes.

(d4) In particular, Q! (k) € Py lifts to

| QW(A) =0, 0...00;, 0 TR Z;(1s) |
of P;, where v; = (p — 1)p + p(w; x 0)}, Qo = W, -+ 0, A; = W, & v,
O, = 8, =T o To? with Tij = W, - e, (cf. (a1/12)). We will see
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the projectivity of Z4(v;) in (d14). Hence we want now a characteristic free
description of C4(Q(A), QUI(A)).

Let A? = A[H% | @ € R*] and A° ZA[H% |« € RY\ {B}], B € RT, with
H, = [K, : 0] in Case 2. Note that A" and all AP are naturally B-algebras.
Put for simplicity Cn = C4, Cp = Cj4, Cs = C 45, and M = M®AA®, MP =
M ®; AP if M € Ca. Let also Za(N\) = Z;4(N), Zo(N) = Zy(N) =~ Za(N),
and Zg(A\) = Z 35()\) =~ Zx()\)? for each ) € X.

(d5) By our standing hypothesis that p = chk > h in Case 1, we have

A — A0
Lemma (cf. [AJS], Lemma 9.1) A= ng+A :

(d6) Let P,Q € P;. As Q is A-flat, one may regard Q < Q? < QP for each
B € RT. Then

Co(P*, Q") |

~ CA(P, Q") = CA(P,Q) ® 4 A’ as A is flat over A (cf. [AJS], Lemma 3.2)
> Ca(P,Q°) ~ CA(P, Q) ® 4 AP as AP is flat over A

Z C/\(P7 Q)
As CA(P,Q) is A-flat, one gets from (d5)
(1) CA(P, Q) = Nger+Cp(P?, Q) inside Cy(P?, Q).

(d7) Now Cp has a simple structure. If Frac(A) is the fractional field of A,
CFrac( A 18 semisimple. To explain that, let us resume the general set-up of
Ca. |

Let w € W. Twist 7: U — A by T,;! to define another U°-algebra A[w]
with the structure homomorphism 7 o T,;'. If M € Cy, define M[w] € Cyp
to be the A-module M with each v € U acting by 7., (u) and the gradation

given by M(w], = M,-1,. Then the functor M — M|w] is an equivalence
of categories from C4 to Cap,). If M is A-projective, then

ch (M[w]) = w(ch M).
Working with the positive system w(R™) instead of R*, define
Z3(A) = U ®yor, w+) A eC4 VYAEX.
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Then (cf. [AJS], (4.4)(2)) for each z € W

(1) ZZE(Nw] = Zi, (wX) - in Cypy),
and (cf. [AJS], Lemma 4.10)

@) Za" = Z8( - 2(p — 1)p).
In particular (cf. [J], (9.2)),

(3) | Z°(N) = Zy(A +2(p — 1)p) of §a.

(d8) Fix @ € ¥ and put s = s, € ¥, Let U(—a) be the subalgebra of
U generated by E_,, and let P(a) = U(—a)U°U* < U. Define a full
subcategory C§ of (P(a) ® A)Mod just like C4. Define likewise ZG(A) =
P(a) ®poy+ A* and (Z5)*(X) = P(a) ®por,w+) A* € C4 for each A € X. As
the multiplication U(—a) ®; U'UT — P(a) is bijective,

(1) Z%(A) (resp. (Z5)°(X) ) is A-free of basis
vi=EY®1 (resp. v =EP®1 ),
where E®, = %ﬂ ® 1 (resp. EY) = ﬁi— ® 1) in Case 1 (resp. Case 2).
One has (cf. [AJS], (5.4))
(2) P(a) =U(~a)U’U(a) ® Q(a) with Q(a) = I P(e),

viZa
(3) T, stabilizes all P(a), U(—a)UU(c) and Q(c),
and that
(4) Q(«) annihilates both ZG(X\) and (Z3)%(N).

Hence one can describe the P(a)-action on both Z$(A) and (Z%)*()\) ex-
plicitly (cf. [AJS], (5.5)). In particular, there is unique

(5)  ¢a€Ci(Z5(N),(Z23)°(N = (p—1)a)) such that vy +— v, ;.
Then ¢, forms an A-basis of C5(Z%()), (Z%)*(A — (p — 1)a)) and one has
(cf. [AJS], (5.6))

(6) ba(vi) = {

(=1)i),_y_;("HHXD) iy Case 1

("1)%1’0—1—@'”([K"‘;(;\’av>]) in Case 2.
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It follows that
(7) if a & Ry, then ¢4 is bijective.

If o € Ry, let ng(A) € [1,p]7 such that 7(Hy) + (A + p,a’) = na(A) - 1 in
Case 1 (resp. m(K,)2¢2de+pa’) = (2dana(d) in Case 2). One has (cf. [AJS],
(5.9)) that

(8) if ng(A) = p, then ¢, is still bijective.

(d9) If w € W, from ¢, over Alw™!] one gets

(1) ¢ € Ca(ZZ(wA), Z*(wA — (p — Lwa))
such that the diagram
Z8 (wA) — Z95(wA — (p — Dwa)
| |
Z w1 (A) [w] Z (A — (p — Do) [w]

(P —

zl ll |
(U ®p(a) Zipu-y(N) (] Coraoliol {U ®p(o) (Z51)*(X = (p — Da) Huw].
commutes. As ¢ sends the standard generator of Z%(w)) to an A-basis
element of Z¥5(wA — (p — Dwa)yy,
(2) ¢ is an A-basis of C4(Z4(wA), ZY*(wA — (p — Nwa)).
One may compare the construction of ¢ with the intertwining homomor-
phism ‘ _

H (& /By, L(sq 'k V) — Hz—1(®k/%k, L(v))

for o € ¥ and v € X with (v + p,a¥) > 0 in &;Mod [J], (IL.5/6).

Choose a reduced expression wg = $183...8y of wg. If w; = s189...58;_1,
1 <3< N+1, with w; =1, and if AM(w;) = A+ (p — 1)(w;p — p), one gets
an A-basis ¢; of C4(Z’ ()\(wz)) Z4 (Mwiy1))) like ¢ of (1). One gets from
(d8)(7)

(3) if Re =0, then Z4(\) ~ Z5(AMw)) Yw e W,
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i.e., the “Borel-Weil-Bott” theorem holds in C4 if R, = 0.

(d10) Let ® = ¢y o...0¢1 € Ca(Za(N), Z3° (A —2(p — 1)p)).

Lemma (cf. [AJS], Lemma 5.13) The morphism ® is nonzero and forms
an A-basis of CaA(Z4(N), Z3° (A —2(p — 1)p)).

(d11) Lemma (cf. [AJS], Lemma 4.9) If A= F is a field, then
Lr(A) =im® = soce, Z5° (A — 2(p — 1)p).
(d12) For each B € R, define ng € [1,p] as in (d8). One now obtains

Lemma (cf. [AJS], Lemma 6.3) Assume A = F is a field with the
structure homomorphism .

(i) If A € X withng(\) = p for each f € R}, then Zp(X) ~ Lp(A) ~ Qr(N)
m CF.

(i) If Rt = ¢, then Zrp(A\) ~ Lp(A\) ~ Qr(X) for each A € X, i.e., Cr is a
semisimple category.

Proof. As ¢ is bijective, Lrp(A\) ~ Zp()) for each A\ € X by (d11). If p € X,
then (cf. [AJS], Proposotion 4.6)

Extl (Lp()), Lp(y)) ~ Ext} (Lr(u), Lp())) using the duality

~ Cp(radc,Zr(N\), Lr(p)) ifp A
= 0.

Hence Lp()\) is both projective and injective in Cp.
(d13) Proposition (cf. [AJS], Corollary 3.5) Let M € C4 with a Z-

filtration. Then M is projective in C4 iff M ® 4 (A/m) is projective in C/m
for each mazximal ideal m of A.

(d14) ‘Wé conclude from (d12/13) that for each A € X
1 Za((p—1)p+ p)) is projective in Cyq,

(2) ' the block of X over A? is a singleton {\},
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and that |
(3) Zy(A) is a progenerator of Cp({A}).
Back to P,Q € P, one can write P? = /\EXZ@(/\)I’* and Q% = /\L_IXZQ)()\)‘IA
with py, gy € N. Then
C@(P@ Q@) ~ (A@)Exexqu.

In particular, if P = Q[’](Am) Q["]'(/Al) and Q? = QU] ( A@) — QL?]( )
(resp. ¢)) are determined independent of &, hence

(4) Co(QU(A?), QUI(A®)) is described independent of k.

(d15) More generally,

Lemma (cf. [AJS], E. 4) Let A € X. For each M,N € C4({\}) one has
an isomorphism of AP~ modules

c@(M,N)—>Mod@(cmz@(x),M),cw(Z@(A),N))‘ via fr— fo?.

Proof. Put P = Zy(A\) and M(A) = Cy(Zy(N), M), likewise N(A). Consider
ﬁrst the case M = P™ and N = P" for m,n € N*. If nr; : P™ — P (resp.

: P — P™) is the projection onto the s-th (resp. injection from the r-th)
component one has a commutative diagram

Cy(P™, P") — ModAw(P’”( ); P*(A))

Co(P™ i) | [Mod 39 (P™(\),Co(Pir))
Co(P™, P) Mod 4 (P™()), P()))
Co(ne,P) | | [Mod ;o (Co(Pma),P(N)

Co(P,P) —— Mod(P(\), P(\)
f — fo?
with the bottom horizontal map bijective as P()\) = Cy(P, P) ~ A%. Hence
(1) the assertion holds with M = P™ and N = P".
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If N is arbitrary, as P is a generator of Cg({A}), N admits a finite presen-
tation in Cy({\}) : P¥Y — P® —» N — 0 exact. Then P"(\) — P"()\) —
N(A\) — 0 remains exact as 7(\) is exact, hence one gets a commutative
diagram

Co(P™, PY) —— Mod z(P™(A), P (X))

J J

Co(P™, P?) —— Mod (P™(\), P"(\))

Co(P™, N) —— Mod j(P™(\), N(\))

0 0.
As P™ (resp. P™(\) =~ (A"™) is a projective of Cy (resp. Mod 40), the
left and the right vertical sequences are both exact. By (1) the top and the
middle horizontal maps are bijective, hence also the bottom by the 5-lemma,
l.e.,

(2) the assertion holds if M = P™.

Finally, write P™ — P™ — M — 0 exact in Cy. One then gets a commu-
tative diagram of exact columns

0 0

l |

Co(M,N) — Mod ;(M(\), N(\))

C@(P:”,N) —— Mod ;3 (P™(A), N(}))

Co(P™,N) —— Mod 4jo(P™(\), N(\)).

As the middle and the bottom horizontal maps are bijective by (2), the top
horizontal map is bijective by the 5-lemma again, hence the assertion.
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(d16) More detailed examination of the ¢; and ® shows that Cg behaves like
sl- category. If A € X, 3 € R*, and if n € N minimal with (A+p, 8Y) = —n
mod p, put 8T A= A+ng.

Theorem (cf. [AJS], Proposition 8.6/Corollary 8.7) Let A € X and
B €R". ‘

(i) If B 1 A = A, then Zg(A) is a projective of Cg.
(ii) Suppose BT A > A. Then
Exty (Zs(N), Zs(B 1 N)) ~ AP/HgA® in Mod .
Given a short ezact sequence 0 — Zg(B T A) = Q@ — Zg(A) — 0 in Cg,

Q is projective in Cg iff the sequence generates Ext}gﬂ(Zg()\), Zg(B T A))
over AP,

e° Combinatorial categories

(el) In order to glue together all the sly-categories Cg to recover Cp = C 4, we
introduce a combinatorial category IC(2) for each W,-orbit 2. An object of
K(Q) is a family (M(X))xeq of A-modules of finite type, only finitely many
nonzero members, together with AP-submodules M(A, B) of finite type for
each A € Q and B € Rt of M(A) @ M(B T A) if BT A > A (resp. M(N)
if 37 A =X). A morphism of K(2) is (¢¥x)arcq € ,\I;IQC@(M()‘)’M’()\)) such

that for each A € Q and 8 € R*

(¥r ® YA ) M(A, B) S M'(X,B) i BT A> A
DBMOB) S MNP HATA=A
(e2) We define a functor Vo : CA(Q) — K(Q), that depends on the choice
of e#(\) € Extéﬁ(Zg(/\),Zﬂ(ﬁ TA) for e Qand 8 € R" with 5T A > A
If M € CA(Q), set (VaM)(\) = Cp(Zp(\),M?), and if B T A = A, let
(VaM)(X, B) = Cs(Zs()\), MP). If B T X > A, represent e’()\) by a short
exact sequence in Cg

0 — Zs(B 1T A) — Q°(\) — Zg(\) — 0.
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Tensoring with flw, the sequence splits uniquely to yield an isomorphism
Q5(N)? ~ Zy(B T ) @ Zy(\). We set (VaM)(X, B) to be the image of the
composite of the natural maps

Cs(QP(N), MP) — Cy(QP (M), MP)
— Cp(Zp(N) @ Zy(B T A), MP) = (VaM)(X) ® (CaM)(B T N).

(e3) Let FCA(R) be the full subcategory of CA(f) consisting of all A-flat
objects.

Theorem (cf. [AJS], Proposition 9.4) Choose all e®()\) as generators
of E:cté (Zs(A), Zg(B T A)). Then Vg : FCA(Q) — K(R2) is fully faithful.

Proof. Let M, N € FCA()). One must show
(Va)u : CA(M, N) — K(Q2)(VaM, VaN)
is an isomorphism. By (c10) and (d14)(2)
Co(M*,N?) = Cy( IE_[Q(M”){A}, AIGIQ(NO)){A})
I;I ((M@){A}auIEIQ(Nw){u}) = I;ICQ((M(D){/\}a (N)3)
= [1Mod 4o (Co(Zo(Y), (M") ), Co(Zo(N), (N)y) - By (d15)
Il

Mod 4, (Cp(Zp(X), M ) Co(Zp(N), NQ))

12

12

Hence (Vq)um v is injective:

Ca(M, Ny Lo,

K(Q)(VaM,VoN)
| /\| | /\I
CAM,N® 7)) IheaMod j0((VaM)(X), (VaN)(V))
o [

Co(M®, N?) == TxMod 45(Cy(Zy(N), M?), Co(Zy(A), N°))

(3)

h | — ho?.
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To see the surjectivity, let ¥ € K(Q)(VaM,VoN). By (1) there is h €
Cop(M?®, N®) such that for each X € Q

Yr=ho? inMod((VaM)(), VaN)(\).

Let 3 € R*. For A € Q let Q%()\) be the middle term of the short exact
sequence representing e’(A) if 8 T A > X (resp. ZP(\) if BT A= )). If
BT A> A, one gets a commutative diagram

Co(Q°(N), MP)  —-emeem-- » Ca(QF(N), NP)
Al Al
G, M) ——  CQO(N), N
] |2
Co(Q°(N) ® 4 A7, MY) Co(Q°(N) ® 45 A7, NP)

| R
(VaM)(X) & (VaM)(B T A) P VaN)(X) @ (VaN)(B 1T N),

ADYBTA

hence each h o u, u € Cs(QP()\), MP) factors through NP. Likewise if 5 T A
= A

On the other hand, one can write by definition 11 Zg(\;) - M* with the
coproduct running over some A; € {2, hence 11 Q%(\;) —» MP?, i.e., there are
u; € Ca(QP(N\;), MP) such that M? = ¥ im (u;). Then

A(MP) = hY im (u;) = ¥ im (h o u;) € N”.
Hence h(M) = h( N MP) < 50 h(MP) < NgN® = N, the last equality

BER* R+
following from (d5). Consequently, h arises from CA(M, N) with (Vo) pn(h) =

1, as desired.

(ed4) To get a characteristic free description of CA(Q["](A), QU! (fl)), it is now
enough to find a characteristic free description of

K (€0) (Voo (QU(A)), Vo, (Q1)(A)))
with Qy = W, -+ 0. Define Z,,i(A) € K(4A;) by setting for each p € A; =
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Wk v
' AV if =y,
0  otherwise,

Z,(4) (1) = {

and for each 3 € Rt

R AP if =y
Z,(A)(u, B) =
(A, ) {0 otherwise.
Then
(1) Va,(Za(1)) = Z,,(A).

(e5) We want next to construct a translation functor 7 : K(2) — K(T") for
We-orbits  and T such that Vp o T§ ~ T o V. We will consider only the
case that for each A € €2 there is a unique p € T" that lies in the closure of
the facet of A\, which we will denote by Ar.

Put T = T5 and T' = T§. For each A € Q choose an isomorphism
I € CA(ZA(Ar), TZA(N))*. Let B € RY with 1T A > A. Define

t[f, forl  Exte, (ZA(N), Za(B T A)) — Exte, (Za(hr), ZA((B T Ar))

by sending each short exact sequence 0 — Z,(8 T ) — Q — Zx(A) — 0 to
the bottom horizontal exact sequence of the commuting diagram

0 — TZ\(BTA) — TQ — TZ\(\) — 0

W

0 — Z/\((ﬁT)\)F) — TQ - Z/\(AF) — 0,

where the top horizontal sequence is the one obtained by hitting 7" on the
first exact sequence.

Assume first 8 T Ar > Ap, so that (8 T A\)r = 8 1T Ar. Let Wy =
(s8) X Z3 < W, and let Ty = Ty " 5", Ty = Ty " As 1 Ar > Ar,

ToZp(Ar) =~ Zg(A) and TpZs(B T Ar) = Zg(B T ).

Let fi = adji}(fi!) € Cs(Zs(N), Ty Zs(Ar))* using the adjunction adj; with
respect to Tp and Tp, and likewise fg;,. Define '

t[fx ol + Exte,(Zs(hr), Zs((8 1 Nr)) — Exte,(Zs(N), Zs(6 1 X))
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just like [f\, fa12] replacing T by Tj. Then (cf. [AJS], (10.6)(1))
(1) t[fx, foral o tLf3s fan] = idgse 5(Z0x0), Z5((B1V)r)-
Suppose we have chosen an AP-generator e#()\) (resp. e®(Ar)) of
Extd, (Z5(N), Z5(B 1) (resp. Extd,(Z5(Ar), Z5((8 1 N))).
Then one can write with some af and bf c AP
U fonle® (V) = afe’On) and ¢[}, Fprale(hr) = BeP(N).
By (1) and (d16)
@2 ast] € 1+ HyAP in AP/H AP,

Assume next 8 T Ar = Ar = (8 T A)r. Define an isomorphism
0[fx, fora] € Mod 4o (Exte, (Z5(N), Zo(6 T X)), APHg /A%
as follows (cf. [AJS], Proposition 8.14). Let e € Extg,(Zs(A), Zs(B T X))
represented by a short exact sequence
0— Zs(B1 A) -5 Q -1 Z5(0) — 0.

As eHp = 0 in Extg,(Zs()\), Zs(6 1 A)) by (d16), there is a unique j' €
Cs(Zs(N), @) such that j o 5 = Hgidz,n (cf. [B2], (X.119) Proposition
4/ (X.120) Corollary 3(ii)): one has a commutative diagram of short exact
sequences with the top sequence representing eHg

0 — Zg(BTA) — Zs(B1N) ® Zs(N) — Zg(A) — 0

| |
0 — Zs(BTH) — @ —j“‘*Zﬁ()\)—‘."O--.‘

As TZs(\) =~ Zs(Ar) ~ TZs(8 1 A), Te splits by (d16) to yield 7 €
Co(TQ,TZs(B 1 X)) such that i’ o T = idrz,(1)- Then one can write

farotd oTj o fy=aidg,p, for some a € AP.

One can check a is independent of the choice of the representative of e (cf.
[AJS], (8.13)). Set

8[fx, fenle = a.
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Then one can write with some @5 € A°H;' and 5] € A°Hj
— " .1 n 21
0lfx, farle?(\) = @5 + AP and  O[fy, far] 1(Fﬂ + APy = bff_lgeﬁ()\)’

in which case @5b) € 1 + APHg in AP/APHS,.

Define now 7 : £K(2) —» K(T') and 77 : £K(I') — K(Q?) as follows. If
M e K(Q), set
(TM)(w) = I M(N) VueTl,

AeQ
Ar=p

and for each 8 € Rt set (TM)(u, ) =

5 . _
)\eQ,IBIT,\z,\M()\"B) ® ol (B, HM(A, B) + HaM(N)g) i BT p=p
Ar=p Ar=p=(BTA)r
1L (55, DM, B) + HaM(M)s) | it 61 u>p,
LAr=p

where M(A)g = M(A) NM(\ B). f N € K(T), set
(TN)A) =N(xr) Yreq,
and for each 8 € R* set (T'N)(\,8) =

[N (Ar, ) if BT A=\
(a/\, ) ()\[‘ ﬁ) +N(/\r) if 87T Ar>Ar
N(Ar, B) @ N(Ar + pB, B) if (87 A)r=Ar+pB
{(@+a5y,y) |2,y e NOr, B} if (BT Mr=Xrand 512> A\
Although 7 and T " depend on the choices of a)\, b? , and a)‘ in their classes

modulo A, and b modulo AP H?2 5, the restriction of 7 (resp. 7') to the

image of Vq (resp. Vr) is independent of those choices (cf. [AJS], Remark
10.10).

(e6) Proposition (cf. [AJS], Proposition 10.11) One has natural iso-
MOoTrpisms

VroT~ToVq and VqoT =T'oVr.

(e7) Let H be the set of reflexion hyperplanes for the -;z-action of W, on
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X@zR. If H={ve X®zR | (v+p,7') = mp}, y € Rt and m € Z, then
we set v = a(H). Also we will write for each v € X @z R

vz H iff (v+p,9") 2 mp.
If 3 € R, let H(B) = {H € H| sp(a(H)) < 0}. If \,p € X with p lying
in the closure of the facet of )\, set in the fractional field Frac(A) of A

' 1
Conp)= T hea —
, HeH(B) HeH(B) "ba(H)
HweEH A>H peH A A<H

where hy = doH, in Case‘ 1 (resp. log Ky = é}lﬁ“—ljﬂ(l(a — 1) in Case 2)
. Jjz
for each o € R. If H5 € H with a(Hp) = 8 and p € Hg, then

(AP BT pu>p
CP(\p) € {i(AP)* if T p=pand A < Hf
hg(AP)< if 81 p=pand A > Hj.

(e8) Let s € X, s € X N2Ay with Cw, (us) = {1,s}, and I's = W, -kps. Let
G = {Ts,Ai | s € Bg,i € [1,n0]}. We can now state a highlight of [AJS],
difficult

Theorem of good choice (cf. [AJS], Theorem 13.4) For A €
let A\r € T in the closure of the alcove of \, T € G. One can simulta-
neously choose AP-generators e®(p) of Extl (Zp(p), Zp(B T 1)) for each p €
Q0 U (Uregl) and 8 € R* with B 1 p > 1, and f € CA(Za(Ar), TZA(V))*
for each XA € Qg and T € G such that for each X € Qy, BE Rt andT € G

t[f, fanle? () = CP (A Ar)e’(Ar)  if BT Ar > Ar,

and

OLfx fanle® (V) = CP(\A0) + A% if BT Ar=Ar = (B 1 M.

(e9) With the good choices of the e’(\)’s redefine functors Vo,, Va,, i €
[1,7m0], Vr,, s € &, so that the combinatorial functors 7, 7, and 7T; cor-
responding to ng, Tlfi“, and TXf, respectively, involve only the constants
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CEB(M\Ar), A € Qo, T € G. If we set QW(A) = T, T ... T, T, T/ Z,,(A) with
T; =T, and T, =T, (cf. (d4)), then

QU A) = Vo, (Q¥(A))  in K(S)-

(e10) Let S = S(ZR) the symmetric algebra of ZR. Put Sy = S ®z k.
Recall the h, from (e7). If Sy is the completion of S; with respect to the
maximal ideal generated by all o € R, one has a k-algebra isomorphism

(1) Sy — A via a— h, Va€R.

Through the isomorphism one can regard C?(\, Ar) living in Frac(S) for
each A € Qp and T' € G. Hence one can define combinatorial categories
K(Q,S), K(Ts,S), K(A;, S), combinatorial translation functors 75, 7, 7'
between them, and Z,,(S), QU1(S) by copying the definitions of K(£), etc.,
with A replaced by S and with S® = S[1 | o € R*] and S = S[2 | a €
R*\ {B}]. Note that hq € H,AX.

More generally, let A € Algg with o # 0 in A for any o € R. For a
We-orbit Q define (2, A) likewise. If A’ € Algy with a # 0 in A’ for all
a € R, define a functor of extension of scalars (2, A) — K(Q2, A'), written
M — My, by

Mu(N) = M) @0 A" ~ M) ®4 A VAN
and for each 8 € R* by Setting M (A, B) equal to the image of
M), B) @45 A7 = M(X, B) @4 A

in MgA)d Mug(B TANIELBTA> A (resp. Ma(A)if BT A=)
The translation functors 7, 7., 7' commute with functors of extension of
scalars. In particular,

(2) QU(8)s, ~ QU(S;) and QUI(S); ~ QlI(A).
Note that
(3) K(2, A) is independent of k.

For let u € QN2 and Wy = Cy,(u). Define a category K(W,/Wq, A)
just like (2, A). An object of K(W,/Wq, A) is a family of A%-modules
(M(wWa))wwaew, /wq, @lmost all members 0, together with A®-submodules
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M(wWq, B), wWq € W,/Wq and 8 € R, of M(wWq) & M((8 T w)Wq)
if (61 w)Wa # wWq (resp. M(wWy) if (8 T w)Wq = wWy), where
BT we W,such that (8 T w) x0 = T (w -, 0). Then one has an
isomorphism v

K(Q,A) — K(W,/Wq, A) via Mr— M
with M'(wW,)) = M(w - 1) and M'(wWq, ) = M(w - p, ) for each
we W, and 8 € R.
(ell) Lemma (cf. [AJS], Lemma 14.8) If A’ is flat over A, then for
each M,N € K(Q, A)

IC(Q, A)(M,N) X4 A/ >~ ,C(Q, A’)(MA'aNA’)'

(e12) Theorem (cf. [AJS], Lemma 14.9) Assume p >> 0 in Case 1.
Then for each i,7 € [1,ng),

K(90, S)(Q1(S), Q1(S)) ®s Sk =~ K(Q, Sk) (QU(Sk), QU (S)).

Proof. We first rewrite the left hand side as K(Q, S)(Q#(S), QU(S)) @z k.
For each A € )y and B8 € R™ let

QU(S)(2,8)° = { (QUS)(N) @ QU(S)(B 1 2)/QH(N.8) i B1A>

QUI(8)(N)/QUI(S) (A, B) HTA=A
One has (cf. [AJS], Lemma 14.15(b)/(14.16)) for each A € Qy and 3 € R*
(1) | QU(S)(N) is S-free of finite rank,
(2) Q(SY(A, B) is SP-free of finite rank,
and
(3) Q(8Y(A, B)° has no p-torsion.

Consider a natural map

v: 11 Mods(Q¥($)(3), @%(S)(N) — Cn
I I Modss(QM(S)(,8), Q9(S)(A, B)Y).

AEQ feRT
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Then K(Q, S)(QH(S), QU(S)) = ker+. By (3) the codomain of 3 has no
p-torsion, hence im has no p-torsion. Then TorZ(im,k) = 0. On the
other hand, for each A\ € ()

Mod g (Q¥(Sk) (V), Q9 (Sk) (V)
~ Modg(Q"(S)(A) ®s0 S}, Q7(S)(A) ®s0 S}) by (e10)(2)
~ Mod g (QU(S)(A), Q9(S) (V) ®se SE by (1)
- = Modge(QM(S)(N), QU(S)(N)) ®z k.

Hence if 14 is the analogue of ¢ over Sk, one gets a commutative diagram
of short exact sequences

0 — (kery) ®zk — Ihen, Modg(Q(S)(N), QU(S)(V)) @z &k

@) | [

0 —  ker(yy) —— Ihea, Modg(QM(SK)(N), QUI(Sk)(N))
— (imyY)®zk — 0

l

—  im(¢y) —— 0.
Consequently,

(5) K(Q,9)(QH(S)(\), QW(S)(\)) ®z k injects into
(82, k) (QU(Sk) (), QU1(Sk) (V).
Suppose Tor%(coker ), k) = 0. Then from (2) one gets as in (4) a com-
mutative diagram of exact sequences
0 — (my)®zk — [IModss(Q(S)(X,6), NS\, 6)°) 2 k

©) | I

0 =) —— [Modgy(QUS)(AA). QUSIRA)).

As the left vertical arrow is surjective by (4), (im) ®z k ~ im (¢x). Then
the 5-lemma applied to (4) yields (ker ¥) ®z k ~ ker(¢x), i.e., the bijectivity
in (5).
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Finally, Tor%(coker 1, k) = 0 automatically in Case 2. In Case 1 coker 1
is of finite type in Modg, hence (cf. [M], Theorem 6.5) | Ass(coker ) |< oo.

Also (cf. [M], Theorem 6.1) coker has a p-torsion iff p € N (Uk ¢)p As
p€Ass(coker

each p contains a unique prime of Z, coker has no p-torsion for p >> 0,
in which case Tor:l (coker, k) = 0.

(e13) Remark Theorem e.12 holds, in fact, for p > h (cf. [AJS], Theo-
rem 16.7). Its proof, however, requires introduction of Z-graded combina-
torial categories K(Qy,S) and K(Qq, Sk) (cf. [AJS], Lemma 16.6), that are
also relevant to the question of the Koszuhty of UP(g) and u(k) in [AJS]
§517/18.

(el4) Regardmg Z as S-algebra via o — O for each o € %, let Eii)(Z) =
K(Q0,9)(Q1(S), Q1(S)) ®s Z.

Corollary Leti,j € [1,ng).

(i) &,;51(Z) is independent of k. -
(ii) One has a k-linear isomorphism & ;)(Z) ®z k ~ Cr(QU(k), QUl(k)).
Proof. (i) follows from (e10)(3). The left hand side of (ii) is isomorphic to
K(,8)(QY(3), Q9(S)) ®s Sy @s, A®s b

~ K (0, S)(Q(Sk), Q¥(Sk)) ®s, A® ;4 k by (e12/13)

~ K(Qo, Sk)(QY(Sk) 4, QU(Sk) ) ® 1k by (ell) as A ~ S is flat over S
~ K(Qo, )(Q[’]( ), Q9(A))®4k by (e10)(2)
=K (Q0)(Q"(4), QV(A)) @, k

=~ K(0) (Vo (QU(A)), Voo (QV(A))) ® 4 &

~ CA(Q(A), QUI(A)) ® 1 & by (e3) '

~ Cr(QU(A) ®A k,QU(A) ® ik) by (d3) as QUI(A) is projective

~ Ci(QU(k), QU)(K)).



118

Acknowledgement

I studied a preprint version of [AJS] with UEDA(SUGAI) Ryotaro, that
has been very helpful to prepare the present survey. I greatly appreciate
his contribution. I am also grateful to H.H. Andersen for reminding me of
[APW1], (5.13) in the proof of (c8).

References

[A1] Andersen, H.H., Finite dimensional representations of quantum groups,
1-18 in Proc. Symp. Pure Math. 56 1994 (AMS)

[A2] Andersen, H.H., The irreducible characters for semi-simple algebraic
groups and for quantum groups, Proc. ICM 1994 at Ziirich (to appear)

[AJS] Andersen, H.H., Jantzen, J.C. and Soergel, W., Representations of
quantum groups at a p-th root of unity and of semisimple groups in
characteristic p : independence of p, Astérisque 220, 1994

[APW1] Andersen, H.H., Polo, P. and Wen K. Representatzons of quantum
algebras, Inv. Math. 104 (1991), 1-53

[APW2] Andersen, H.H., Polo, P. and Wen K., Injective modules for quan-
tum groups, Amer. J Math. 114 (1992), 571 604

[AW] Andersen, H.H. and Wen K., Representations of quantum algebras
The mized case, J. reine angew. Math. 427 (1992), 35-50

[AM] Atiyah, M. and Macdonald, I.G., Introduction to commutative alge-
bra, Reading 1969 (Addison-Wesley)

[B1] Bourbaki, N., Algebre commutative, Paris 1961/62/64/65 (Hermann)
[B2] Bourbaki, N., Algébre Ch. X, Paris 1980 (Hermann)

[DCK] De Concini, C. and Kac, V.G., Representations of quantum groups
at roots of 1, 471-506 in A. Conne et al (ed.), Operator algebras, uni-
tary representations, enveloping algebtas, and invariant theory (Collog.
Dixmier) PM 92, Boston 1990 (Birkh&user)

[DG] Demazure, M. and Gabriel, P., Groupes algébriques I, Paris 1970
(Masson)



119

[H] Hotta R., this volume

[J] Jantzen, J.C., Representations of algebraic groups, Orlando 1987 (Aca-
demic Press)

[KT] Kashiwara M. and Tanisaki T., Kazhdan-Lusztig conjecture for affine
Lie algebras with negative level, Duke Math. J. bf 77 (1995), 21-62

[KL1] Kazhdan, D. and Lusztig, G., Tensor structures arising from aﬁine
Lie algebras I, 11, J. AMS 6 (1993) 905-1011

[KL1] Kazhdan, D. and Lusztig, G., Tensor structures arising from affine
Lie algebras III, IV, J. AMS 7 (1994), 335-453

[K] Kempf, G., The Grothendieck-Cousin complex of an induced represen-
tation, Adv. Math. 29 (1978), 310-396

[L1] Lusztig, G., Some problems in the representation theory of finite Cheval-
ley groups, 313-317 in Proc. Symp. Pure Math. AMS 37 1980 (AMS)

[L2] Lusztig, G., Modular representations and quantum groups, 59-77 in
Contemp. Math. 82, Providence 1989 (AMS)

~ [L3] Lusztig, G., Quantum groups at roots of 1, Geom. Ded. 35 (1990),
89-114

[L4] Lusztig, G., Monodromic systems on affine flag manifolds, Proc. R.
Soc. London A 445 (1994), 231-246

[M] Matsumura H., Commutative ring theory, Cambridge 1990 (Cambridge
Univ. Press)

[NT] Nagao H. and Tsushima Y., Representations of finite groups, Orlando
1989 (Academic Press)

[S1] Soergel, W., Roots of unity and positive characteristic, Canadian Math.
Soc. Proc., to appear

[S2] Soergel, W., Conjectures de Lusztig, Sém. Bourbaki 47éme ann. 1994-
1995 n° 793, to appear



