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Residue formulas for singular foliations defined by
meromorphic functions on surfaces

Tomoaki Honda *
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1 Baum-Bott residue of singular foliation on surfaces

In this artile, let X be a two dimensional complex manifold (complex surface). A dimension
one singular foliation is £ on X is defined by a system {(Ua,v4)}, where {U,} is an open
covering X and v, is a holomorphic vector field on U, for each a, such that vg = e,gv, on
U, N Ug for some non-vanishing holomorphic function e,g on U, N Up.

Let S(v,) be a zero-set of v, on U,. The condition vg = esgva, we have S(va) = S(vg)
on U, N Ug. Therefore we can define the singular set S(&) of £ by S(€) = UaS(vy). We
say £ is reduced if S(€) consists of only isolated points. Since {eqs} satisfies the cocyle
condition, e, = €4yeyg 00 Uy N Ug N U, it defines a line bundle E.

A singular foliation can also be defined in terms of holomorphic 1-forms. A codimension
one singular foliation F on X is defined by a system {(Ua,wq)}, where wy is a holomorphic
1-form on U, for each U, such that wg = fapws on Uy N Ug for some non-vanishing
holomorphic function fog on Uy N Usp.

Similarly to the case of vector field, we can define the singular set S(F) by S(F) =
UaS(wg), where S(wy) is the zero-set of w, on U,. We say F is reduced if S(F) consists
of only isolated points. A line bundle F' is determined by the cocyle {fag}.

These two definitions are equivalent as long as we consider reduced foliations. There is
a natural one-to-one correspondence as folowing.

€ ={Usva)} BT F = ((Uy,wa)}
<va)wa> =0

In this correspondence, S(F) = S(€), the integral curves of v, are equal to the solution
of wy, = 0 (See [Sw]). Hence we consider only reduced foliations in what follows.

*This is a joint work with Tatsuo Suwa. I would like to thank him and Lé Diing Trang for suggesting
the problem and for helpful conversations.



Let £ be a one dimensional reduced singular foliation. For each point p € S(€) and a
homogeneous and symmetric polynomial # in degree two, we have the Baum-Bott residue
Resy(€,p) € C as following.

Suppose (Uy, (z,y)) is a coordinate neighborhood with the origin p, and p is the isolated
zero of the vector field v = a(z ’y)a% + b(x,y)% on U, where v defines £ on U. Let A be

the Jacobian ——(——)-, o1 = X1 + X3, 03 = X1 X, i.e. the elementary symmetric functions in

3(z
two Varlables %Ve set
o1(A) = traceA, o5(A) = det A.

i can be written as ¢ = (o1, o) by some polynomial . We set 1(A) = ¥(a1(A), o2(A)).
Then the Baum-Bott residue Resy (&, p) is given by the integral '

Resy(€,p) = (%\1/__1)2 /f zb(A)Z:Z A dy,

where I' = {(z,y) € U || a(z,y)| = | b(z,y)| = €} for a sufficientry small positive number ¢
and is oriented deg a Adeg b > 0. In particular when ¢ = o5, the residue Resy (€, p) is equal
to (a,b),, the index of v at p. If v is global, we get Poincaré-Hopf formula. We denote by
TX the holomorphc tangent bundle of X. The following theorem is known. (See [BB].)

Theorem 1.1 (Baum-Bott) If X is compact, we have
>~ Resy(€,p) = 9(TX — E) ~ [X],
pES(E)
where, denotmg by c1 = ai(TX — E) and c; = co(TX — E) the first and second Chern
classes of the virtual bundle of TX — E, we set (TX — E) = Pley,ca). ~

Let F andk be the codimendion one foliation corresponding to £ and the line bundle
associated with F respectively. We have following lemma and proposition. For line bundles

L] and LQ, we denote Cl(Ll)Cl(Lg) ~ [X] by Ll . L2
Lemma 1.2 F = F ® K, where K is a cannonical bundle of X.

Propsition 1.3 If X is compact,we have

Y Ress(€,p) = F?
pES(F)

Z Res,, (€

PES(F)

i

x(X)—K-F+F?,

where x(X) is Euler number of X.
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2 Singular foliations defined by meromorphic func-
tions |

Let ¢ be a meromorphic function on X. Take a coordinate covering Y = {U,} of X such
that on each U,, the differential dy of ¢ is writen as dp = ¢,w, where w, is a holomorphic
1-form with isolated zeros on U, and ¢, is a meromorphic function on U,. Then the system
{(Uq,ws)} determines a singular foliation F which is reduced and codimension one. The
associated line bundle F' is defined by the cocycle {f,g}, where f,p = 5;—;. The leaves of F
are the level sets of ¢.

Let D©, D() be a zero and pole divisor of ¢, respectively. D = 1=1 njD§0)'and

D) =53 m,-D,(oo) are irreducible decompositions. We denote by |D| the support of D
and by [D] the line bundle determined by D.

Lemma 2.1 If the critical points of ¢ in X — |D)| are all isolated, then we have F =
[~ Tha (mi + D).

Under the assumption of this lemma,

S(FYN (X — |D™)|) = {the critical point of ¢ }
S(F)N|D®)| > D@ N D (indeterminacies of ¢)
D¢ n D;OO) (singularities of D(*)) .

Hereafter we asuume that the critical point of ¢ in X —|D()| are all isolated. We denote
by £ the dimension one foliation corresponding to F, which is an annihilator of F.

Lemma 2.2 For the singular point p of € in X — |D)|, we have

‘ Resgg(é',p) = 0, Resoz(g)p) = y’p((p)’

where p,(p) is the Milnor number of ¢ at p.

In what follows, for divisors D, and D,, we denote by (D, D,), the intersection number
at p and by Dy - D, the total intersection number.

Lemma 2.3 For the singular point p of £ in |D{®)|, we have

r ; 2 . m)2
Res,s(€,p) = 3 T (Do) ey 3 (1M e peoy

i=1 i 1<igjsr MUY

Thus if p is not an intersection point of D© and Dz(oo) or of D1(°°) and D;-oo) which is
m; # m; then Res,2(€,p) = 0.
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Set D = Y0_;(m; + 1)D™) which may be called the pole divisor of dp. From the above
(2.2) and (2.3), we get following.

Propsition 2.4 Let ¢ be a meromorphic function on a compact complex surface X. If the
critical points of ¢ in X — |D(®)| are all isolated, we have

D? = Z (XT: (m; +1)° (D(O),D(m))p _ Z M(ng),Dgw))p)

p \i=1 m;

> me)+ D Reso,(Ep)=x(X)+D*+K-D
peS(E)A(X -ID)) pes(EnD]

Remark 2.5 We call the quantity (D2 + K - D)+ 1 the “virtual genus” of a divisor of
D (See [K]). Then we may define the “virtual euler number” of a divisor D by x'(D) =
—(D?*4+ K - D). (c.f. x(X)=2—2g(X)) With this the second equation of (2.4) is written

as
Yo mle)+ DD Rese,(€,p) = x(X)—X(D)
pES(E)N(X~|D)) pes(En|D])

3 Foliations arising from polynomials

Let f(z,y) be a polynomial of degree d with complex coefficients. Consider the rat‘ional
function o on P? = {[(o, {1, (2]} given by

(COa (1, Cz) f(CO’ (1, Cz)

@ 7
where f (Co,C1,C2) is a homogemzed polynomial of f. Suppose that the critical points of f
are all isolated. Thus &£ = L and 2L y are relatively prime and f is reduced.

We denote by F the singular foliation on P? defined by ¢o. The pole divisor of (g is
dL,, where L, is the infinite line {(; = 0}. Thus the line bundle F' corresponding to F is
given by F = [—(d + 1)L).

Let U; = {¢; # 0} C P? (i = 1,2,3). On the finite part Uy = C? C P2, F is defined by
df. By assumption the critical points of f are all isolated, we have S(F)N Uy = C(f), the
set of critical points of f on Uy. Now we consider in the infinite part of P2. We work on U,
however it is similar on U;. We can assume that fq(z,y) is not divisible by y, where fq(z,y)

is a homogeneous piece of degree d of f. Then S(F) N Ly, C U,. We take (u,v) = (%, %)

as a coordinate system on U,. The function g is written as cpo(u v) = ﬂ:T’vl on U,, where

f(u v) = f(u,v,1). On Uy, F is defined by

_ (.0 o 0f
vw—(u%—d f)du-{—u%dv.



12

Now since S(F) N Lo, = {u = fa(v,1) = 0}, the set of intersection points D® and D>,
and D) by (2.3), we have

(d+1)°

Resa%(gap) = —'d—mp(f)a pPE S(w) N Lo,

where m,(f) = (D, L,),. Since ¥ m,(f) = d, the formula 2 Resyz = F? is a tautology.

The foliation & corresponding to F is defined by the vector field u2L B au (u%g —d- f) 5%
on U,. For the singular point p of £ in Lo, N Uz, we can calculate Res,, (&, p) as following.

af o
Res,, (€, p) = (u—a% ua—f—d f)p

= (%f)p’*’( ij gf d- f)
= my(f)+ I

where I, = ( gi 1;— df) . In order to calculate I, let %{; = hT'h3?---h" be a

P
irreducible decomposition at p and 7(t) = (u(t),v(t)) a uniformalization of h; = 0. Now if
we write

f(x(®) =Y ant", g—i(ﬂ'(t)) =3 bat™, u(t) =) cut”

n>g; n>r n>s

with a, b, ¢ 7 0. From % (x(1)) = F(x(1)%,

n-~r

¢ =r-+s, na,= Z kckbn—k (n 2 Qi)-

Thus we may write

(ugé _d. f) (@) = 3 (z_; cebn_i — dan) t‘"

n>q; \k=s

We denote the order of this power series by ¢; + 6;. Since ¢; = (h,-, u%é) , we have
, P
: of Of
Ig = Z Z (T’u%)p+6p

_ Qi,u) +(a—f,a—£) 48, = )+ my() 146,
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where 6, = Y.'_; m;6;. The number §, is reffered to as the “value of a jump in Milnor

number at oo ” by D.T.Lé. In general é, = 0. Thus we have

Res,, (€,p) = /‘p(f) +2m,(f) =1+ 6
Since x(P?) = 3, Kp2 = —8Lo, D = (d + 1)L, L2, =1, Zmp(f) = d, we have the

following formula.

Theorem 3.1
k A

o () + 2 (i (f) + 6 —1) =d* = 3d + 1,
=1

peC(f)
where, letting fq(z,y) = H,-zl(b,-z —a;y)%, pi = [0, a;, b, my,(f) = d;.

This formula is also obtained by D.T.Lé in the case f has no critical points. (not
published.) '

Next we consider the compactification 7 : X — P? of f as constructed by D.T.Lé
‘and C.Webber (See [LW]). The set A(f) of atypical values of f is expressed as A(f) =
D(f) U I(f), where D(f) is the set of critical values of f and I(f) is determined by the
behavior of f at infinity. Then the compactification 7 : X — P? is obtained from P? by a
ﬁnite sequence of blowing up “points at infinity” and have following properties.

(1) X is a compact complex surface and 7 is a proper holomorphic map 1nducmg a biholo-
morphic map of X — 7~}(L,,) onto P? — L, = C2.

(2) 7 (L) is a union of projective lines with normal crossings.

(3) The meromorphic function ¢ = oo m does not have indeterminacy points, where
o = c% Thus we may think of ¢ : X — P! as a holomorphic map.
0

(4) For A € C — I(f), 7 gives an imbedded resolution of the singularities of the curve
Ch:f—AE=0on Ly.

Moreover, if we denote by ;4@11(1 A, respectively, the intersection graphes of the divisor
(L) and the pole divjsor of ¢,

(5) Ais a connected trge and A, is a connected sub-t ree of A.

(6) Each connected component of A — A, is a bamboo which contains a unique dicritical
component (a component of 77!(Le,) on which ¢ is not constant).

Let € be the foliation on X which is determined by ¢ and D™ = ¥7_, miD,(m) be the
pole divisor of ¢. We assume all the critical points of ¢ are isolated. Then there are two
types of singularities of £.
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(a) critical ponits of ¢ on X — |D(*)|,

(b) intersection points in D(*).

For the type (a) singularity p, Res,,(€,p) = 0 and Res,,(€,p) = py(¢) as before. For
the type (b) singularity p, Res,2(€,p) = — (mizmg)? 4 p is an intersection point of D,§°°) and

mimy
DJ(OO). On the neighborhood of the type (b) singularity p, we can write £ = :ca% —ya%. Then
Res,,(€,p) = (z,y), = 1. Again we set D = Y7_,(m; + 1)D§°°), then 3 Res,2(€,p) = F?

becomes

D? = _ Z M5 S = 0 when D,(°°) meets D§~°°)
1<ici<r My v 1 othewise ’

We recall D(f) C A(f), then ¥ Res,,(€,p) = x(X)+ K - D + D? becomes

Z( )u(XA) +1=x(X) - Xx'(D),
AEA(f

where p(X,) is a total Milnor number of Xy = {¢ = A} and [ is the number of intersection
points of D(®). The last equation may be thought of as a “Milnor number formula ” in
the presence of multiple fibers. In fact, we assume that D) is reduced. We obtain the
Milnor number formula in the two domensional case. (See also [TT])
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