Residue formulas for singular foliations defined by meromorphic functions on surfaces

Tomoaki Honda * 本田知亮

1 Baum-Bott residue of singular foliation on surfaces

In this artile, let X be a two dimensional complex manifold (complex surface). A dimension one singular foliation is \mathcal{E} on X is defined by a system $\{(U_{\alpha}, v_{\alpha})\}$, where $\{U_{\alpha}\}$ is an open covering X and v_{α} is a holomorphic vector field on U_{α} for each α , such that $v_{\beta} = e_{\alpha\beta}v_{\alpha}$ on $U_{\alpha} \cap U_{\beta}$ for some non-vanishing holomorphic function $e_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$.

Let $S(v_{\alpha})$ be a zero-set of v_{α} on U_{α} . The condition $v_{\beta} = e_{\alpha\beta}v_{\alpha}$, we have $S(v_{\alpha}) = S(v_{\beta})$ on $U_{\alpha} \cap U_{\beta}$. Therefore we can define the singular set $S(\mathcal{E})$ of \mathcal{E} by $S(\mathcal{E}) = \bigcup_{\alpha} S(v_{\alpha})$. We say \mathcal{E} is reduced if $S(\mathcal{E})$ consists of only isolated points. Since $\{e_{\alpha\beta}\}$ satisfies the cocyle condition, $e_{\alpha\beta} = e_{\alpha\gamma}e_{\gamma\beta}$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, it defines a line bundle E.

A singular foliation can also be defined in terms of holomorphic 1-forms. A codimension one singular foliation \mathcal{F} on X is defined by a system $\{(U_{\alpha}, \omega_{\alpha})\}$, where ω_{α} is a holomorphic 1-form on U_{α} for each U_{α} such that $\omega_{\beta} = f_{\alpha\beta}\omega_{\alpha}$ on $U_{\alpha} \cap U_{\beta}$ for some non-vanishing holomorphic function $f_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$.

Similarly to the case of vector field, we can define the singular set $S(\mathcal{F})$ by $S(\mathcal{F}) = \bigcup_{\alpha} S(\omega_{\alpha})$, where $S(\omega_{\alpha})$ is the zero-set of ω_{α} on U_{α} . We say \mathcal{F} is reduced if $S(\mathcal{F})$ consists of only isolated points. A line bundle F is determined by the cocyle $\{f_{\alpha\beta}\}$.

These two definitions are equivalent as long as we consider reduced foliations. There is a natural one-to-one correspondence as folowing.

$$\mathcal{E} = \{(U_{\alpha}, v_{\alpha})\} \quad \overset{\text{annihilator}}{\longleftrightarrow} \quad \mathcal{F} = \{(U_{\alpha}, \omega_{\alpha})\}$$
$$\langle v_{\alpha}, \omega_{\alpha} \rangle = 0$$

In this correspondence, $S(\mathcal{F}) = S(\mathcal{E})$, the integral curves of v_{α} are equal to the solution of $\omega_{\alpha} = 0$ (See [Sw]). Hence we consider only reduced foliations in what follows.

^{*}This is a joint work with Tatsuo Suwa. I would like to thank him and Lê Dũng Tráng for suggesting the problem and for helpful conversations.

Let \mathcal{E} be a one dimensional reduced singular foliation. For each point $p \in S(\mathcal{E})$ and a homogeneous and symmetric polynomial ψ in degree two, we have the Baum-Bott residue $\operatorname{Res}_{\psi}(\mathcal{E}, p) \in \mathbf{C}$ as following.

Suppose $(U_{\alpha},(x,y))$ is a coordinate neighborhood with the origin p, and p is the isolated zero of the vector field $v = a(x,y)\frac{\partial}{\partial x} + b(x,y)\frac{\partial}{\partial y}$ on U, where v defines \mathcal{E} on U. Let A be the Jacobian $\frac{\partial(a,b)}{\partial(x,y)}$, $\sigma_1 = X_1 + X_2$, $\sigma_2 = X_1X_2$, i.e. the elementary symmetric functions in two variables. We set

$$\sigma_1(A) = \mathrm{trace} A, \quad \sigma_2(A) = \det A.$$

 ψ can be written as $\psi = \tilde{\psi}(\sigma_1, \sigma_2)$ by some polynomial $\tilde{\psi}$. We set $\psi(A) = \tilde{\psi}(\sigma_1(A), \sigma_2(A))$. Then the Baum-Bott residue $\text{Res}_{\psi}(\mathcal{E}, p)$ is given by the integral

$$\operatorname{Res}_{\psi}(\mathcal{E}, p) = \left(\frac{1}{2\pi\sqrt{-1}}\right)^{2} \int_{\Gamma} \frac{\psi(A)dx \wedge dy}{ab},$$

where $\Gamma = \{(x,y) \in U \mid |a(x,y)| = |b(x,y)| = \varepsilon\}$ for a sufficientry small positive number ε and is oriented deg $a \land \deg b > 0$. In particular when $\psi = \sigma_2$, the residue $\operatorname{Res}_{\psi}(\mathcal{E}, p)$ is equal to $(a,b)_p$, the index of v at p. If v is global, we get Poincaré-Hopf formula. We denote by TX the holomorphe tangent bundle of X. The following theorem is known. (See [BB].)

Theorem 1.1 (Baum-Bott) If X is compact, we have

$$\sum_{p \in S(\mathcal{E})} \operatorname{Res}_{\psi}(\mathcal{E}, p) = \psi(TX - E) \frown [X],$$

where, denoting by $c_1 = c_1(TX - E)$ and $c_2 = c_2(TX - E)$ the first and second Chern classes of the virtual bundle of TX - E, we set $\psi(TX - E) = \tilde{\psi}(c_1, c_2)$.

Let \mathcal{F} and $\backslash F$ be the codimendion one foliation corresponding to \mathcal{E} and the line bundle associated with \mathcal{F} respectively. We have following lemma and proposition. For line bundles L_1 and L_2 , we denote $c_1(L_1)c_1(L_2) \frown [X]$ by $L_1 \cdot L_2$

Lemma 1.2 $F = E \otimes K$, where K is a cannonical bundle of X.

Propsition 1.3 If X is compact, we have

$$\begin{split} & \sum_{p \in S(\mathcal{F})} \operatorname{Res}_{\sigma_1^2}(\mathcal{E}, p) &= F^2 \\ & \sum_{p \in S(\mathcal{F})} \operatorname{Res}_{\sigma_2}(\mathcal{E}, p) &= \chi(X) - K \cdot F + F^2, \end{split}$$

where $\chi(X)$ is Euler number of X.

2 Singular foliations defined by meromorphic functions

Let φ be a meromorphic function on X. Take a coordinate covering $\mathcal{U} = \{U_{\alpha}\}$ of X such that on each U_{α} , the differential $d\varphi$ of φ is writen as $d\varphi = \varphi_{\alpha}\omega_{\alpha}$ where ω_{α} is a holomorphic 1-form with isolated zeros on U_{α} and φ_{α} is a meromorphic function on U_{α} . Then the system $\{(U_{\alpha}, \omega_{\alpha})\}$ determines a singular foliation \mathcal{F} which is reduced and codimension one. The associated line bundle F is defined by the cocycle $\{f_{\alpha\beta}\}$, where $f_{\alpha\beta} = \frac{\varphi_{\alpha}}{\varphi_{\beta}}$. The leaves of \mathcal{F} are the level sets of φ .

Let $D^{(0)}$, $D^{(\infty)}$ be a zero and pole divisor of φ , respectively. $D^{(0)} = \sum_{j=1}^{s} n_j D_j^{(0)}$ and $D^{(\infty)} = \sum_{i=1}^{r} m_i D_i^{(\infty)}$ are irreducible decompositions. We denote by |D| the support of D and by [D] the line bundle determined by D.

Lemma 2.1 If the critical points of φ in $X - |D^{(\infty)}|$ are all isolated, then we have $F = [-\sum_{i=1}^{r} (m_i + 1)D_i^{(\infty)}].$

Under the assumption of this lemma,

$$S(\mathcal{F}) \cap (X - |D^{(\infty)}|) = \{ \text{the critical point of } \varphi \}$$

 $S(\mathcal{F}) \cap |D^{(\infty)}| \supset D^{(0)} \cap D^{(\infty)} \text{ (indeterminacies of } \varphi)$
 $D_i^{(\infty)} \cap D_j^{(\infty)} \text{ (singularities of } D^{(\infty)}).$

Hereafter we assume that the critical point of φ in $X - |D^{(\infty)}|$ are all isolated. We denote by \mathcal{E} the dimension one foliation corresponding to \mathcal{F} , which is an annihilator of \mathcal{F} .

Lemma 2.2 For the singular point p of \mathcal{E} in $X - |D^{(\infty)}|$, we have

$$\operatorname{Res}_{\sigma_2^2}(\mathcal{E}, p) = 0, \quad \operatorname{Res}_{\sigma_2}(\mathcal{E}, p) = \mu_p(\varphi),$$

where $\mu_p(\varphi)$ is the Milnor number of φ at p.

In what follows, for divisors D_1 and D_2 , we denote by $(D_1, D_2)_p$ the intersection number at p and by $D_1 \cdot D_2$ the total intersection number.

Lemma 2.3 For the singular point p of \mathcal{E} in $|D^{(\infty)}|$, we have

$$\operatorname{Res}_{\sigma_1^2}(\mathcal{E}, p) = \sum_{i=1}^r \frac{(m_i + 1)^2}{m_i} (D^{(0)}, D^{(\infty)})_p - \sum_{1 \le i \le j \le r} \frac{(m_i - m_j)^2}{m_i m_j} (D_i^{(\infty)}, D_j^{(\infty)})_p.$$

Thus if p is not an intersection point of $D^{(0)}$ and $D_i^{(\infty)}$ or of $D_i^{(\infty)}$ and $D_j^{(\infty)}$ which is $m_i \neq m_j$ then $\operatorname{Res}_{\sigma_i^2}(\mathcal{E}, p) = 0$.

Set $D = \sum_{i=1}^{r} (m_i + 1)D^{(\infty)}$ which may be called the pole divisor of $d\varphi$. From the above (2.2) and (2.3), we get following.

Propsition 2.4 Let φ be a meromorphic function on a compact complex surface X. If the critical points of φ in $X - |D^{(\infty)}|$ are all isolated, we have

$$D^{2} = \sum_{p} \left(\sum_{i=1}^{r} \frac{(m_{i}+1)^{2}}{m_{i}} (D^{(0)}, D^{(\infty)})_{p} - \sum_{1 \leq i \leq j \leq r} \frac{(m_{i}-m_{j})^{2}}{m_{i}m_{j}} (D^{(\infty)}_{i}, D^{(\infty)}_{j})_{p} \right)$$

$$\sum_{p \in S(\mathcal{E}) \cap (X-|D|)} \mu_{p}(\varphi) + \sum_{p \in S(\mathcal{E}) \cap |D|} \operatorname{Res}_{\sigma_{2}}(\mathcal{E}, p) = \chi(X) + D^{2} + K \cdot D$$

Remark 2.5 We call the quantity $\frac{1}{2}(D^2 + K \cdot D) + 1$ the "virtual genus" of a divisor of D (See [K]). Then we may define the "virtual euler number" of a divisor D by $\chi'(D) = -(D^2 + K \cdot D)$. (c.f. $\chi(X) = 2 - 2g(X)$) With this the second equation of (2.4) is written as

$$\sum_{p \in S(\mathcal{E}) \cap (X - |D|)} \mu_p(\varphi) + \sum_{p \in S(\mathcal{E} \cap |D|)} \operatorname{Res}_{\sigma_2}(\mathcal{E}, p) = \chi(X) - \chi'(D)$$

3 Foliations arising from polynomials

Let f(x, y) be a polynomial of degree d with complex coefficients. Consider the rational function φ_0 on $\mathbf{P}^2 = \{ [\zeta_0, \zeta_1, \zeta_2] \}$ given by

$$\varphi_0(\zeta_0,\zeta_1,\zeta_2) = \frac{\tilde{f}(\zeta_0,\zeta_1,\zeta_2)}{\zeta_0^d},$$

where $\tilde{f}(\zeta_0, \zeta_1, \zeta_2)$ is a homogenized polynomial of f. Suppose that the critical points of f are all isolated. Thus $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are relatively prime and f is reduced.

We denote by \mathcal{F} the singular foliation on \mathbf{P}^2 defined by φ_0 . The pole divisor of φ_0 is dL_{∞} , where L_{∞} is the infinite line $\{\zeta_0 = 0\}$. Thus the line bundle F corresponding to \mathcal{F} is given by $F = [-(d+1)L_{\infty}]$.

Let $U_i = \{\zeta_i \neq 0\} \subset \mathbf{P}^2 \ (i = 1, 2, 3)$. On the finite part $U_0 = \mathbf{C}^2 \subset \mathbf{P}^2$, \mathcal{F} is defined by df. By assumption the critical points of f are all isolated, we have $S(\mathcal{F}) \cap U_0 = C(f)$, the set of critical points of f on U_0 . Now we consider in the infinite part of \mathbf{P}^2 . We work on U_2 however it is similar on U_1 . We can assume that $f_d(x,y)$ is not divisible by g, where $f_d(x,y)$ is a homogeneous piece of degree g of g. Then $f(f) \cap f(g) \cap f(g) = f(f) \cap f(g) \cap f(g) = f(f) \cap f(g) \cap f(g) = f(g) \cap f(g) = f(g) \cap f(g) \cap f(g) = f$

as a coordinate system on U_2 . The function φ_0 is written as $\varphi_0(u,v) = \frac{f(u,v)}{u^d}$ on U_2 , where $\hat{f}(u,v) = \tilde{f}(u,v,1)$. On U_2 , \mathcal{F} is defined by

$$\omega = \left(u\frac{\partial \hat{f}}{\partial u} - d \cdot f\right) du + u\frac{\partial \hat{f}}{\partial v} dv.$$

Now since $S(\mathcal{F}) \cap L_{\infty} = \{u = f_d(v, 1) = 0\}$, the set of intersection points $D^{(0)}$ and $D^{(\infty)}$, and $D^{(\infty)}$, by (2.3), we have

$$\operatorname{Res}_{\sigma_1^2}(\mathcal{E}, p) = \frac{(d+1)^2}{d} \operatorname{m}_p(f), \quad p \in S(\omega) \cap L_{\infty},$$

where $m_p(f) = (D^{(0)}, L_{\infty})_p$. Since $\sum m_p(f) = d$, the formula $\sum \operatorname{Res}_{\sigma_1^2} = F^2$ is a tautology. The foliation \mathcal{E} corresponding to \mathcal{F} is defined by the vector field $u \frac{\partial \hat{f}}{\partial v} \frac{\partial}{\partial u} - \left(u \frac{\partial \hat{f}}{\partial u} - d \cdot f\right) \frac{\partial}{\partial v}$ on U_2 . For the singular point p of \mathcal{E} in $L_{\infty} \cap U_2$, we can calculate $\operatorname{Res}_{\sigma_2}(\mathcal{E}, p)$ as following.

$$\operatorname{Res}_{\sigma_{2}}(\mathcal{E}, p) = \left(u \frac{\partial \hat{f}}{\partial v}, u \frac{\partial \hat{f}}{\partial u} - d \cdot \hat{f}\right)_{p}$$

$$= (u, \hat{f})_{p} + \left(u \frac{\partial \hat{f}}{\partial v}, u \frac{\partial \hat{f}}{\partial u} - d \cdot \hat{f}\right)_{p}$$

$$= \operatorname{m}_{p}(f) + I_{2},$$

where $I_2 = \left(u\frac{\partial \hat{f}}{\partial v}, u\frac{\partial \hat{f}}{\partial u} - d \cdot \hat{f}\right)_p$. In order to calculate I_2 , let $\frac{\partial \hat{f}}{\partial v} = h_1^{m_1} h_2^{m_2} \cdots h_l^{m_l}$ be a irreducible decomposition at p and $\pi(t) = (u(t), v(t))$ a uniformalization of $h_i = 0$. Now if we write

$$\hat{f}(\pi(t)) = \sum_{n \ge q_i} a_n t^n, \quad \frac{\partial \hat{f}}{\partial u}(\pi(t)) = \sum_{n \ge r} b_n t^n, \quad u(t) = \sum_{n \ge s} c_n t^n$$

with a_{q_i} , b_r , $c_s \neq 0$. From $\frac{d\hat{f}}{dt}(\pi(t)) = \frac{\partial \hat{f}}{\partial u}(\pi(t))\frac{du}{dt}$,

$$q_i = r + s$$
, $na_n = \sum_{k=s}^{n-r} kc_k b_{n-k}$ $(n \ge q_i)$.

Thus we may write

$$\left(u\frac{\partial \hat{f}}{\partial u} - d \cdot \hat{f}\right)(\pi(t)) = \sum_{n \geq q_i} \left(\sum_{k=s}^{n-r} c_k b_{n-k} - da_n\right) t^n.$$

We denote the order of this power series by $q_i + \delta_i$. Since $q_i = \left(h_i, u \frac{\partial \hat{f}}{\partial u}\right)_p$, we have

$$\begin{split} I_2 &= \sum_{i=1}^l m_i q_i + \sum_{i=1}^l m_i \delta_i = \left(\frac{\partial \hat{f}}{\partial v}, u \frac{\partial \hat{f}}{\partial u}\right)_p + \delta_p \\ &= \left(\frac{\partial \hat{f}}{\partial v}, u\right)_p + \left(\frac{\partial \hat{f}}{\partial v}, \frac{\partial \hat{f}}{\partial u}\right)_p + \delta_p = \mu_p(\hat{f}) + m_p(f) - 1 + \delta_p, \end{split}$$

where $\delta_p = \sum_{i=1}^l m_i \delta_i$. The number δ_p is reffered to as the "value of a jump in Milnor number at ∞ " by D.T.Lê. In general $\delta_p = 0$. Thus we have

$$\operatorname{Res}_{\sigma_2}(\mathcal{E}, p) = \mu_p(\hat{f}) + 2m_p(f) - 1 + \delta_p$$

Since $\chi(\mathbf{P}^2) = 3$, $K_{\mathbf{P}^2} = -3L_{\infty}$, $D = (d+1)L_{\infty}$, $L_{\infty}^2 = 1$, $\sum m_p(f) = d$, we have the following formula.

Theorem 3.1

$$\sum_{p \in C(f)} \mu_p(f) + \sum_{i=1}^k (\mu_{p_i}(\hat{f}) + \delta_{p_i} - 1) = d^2 - 3d + 1,$$

where, letting $f_d(x,y) = \prod_{i=1}^k (b_i x - a_i y)^{d_i}$, $p_i = [0, a_i, b_i]$, $m_{p_i}(f) = d_i$.

This formula is also obtained by D.T.Lê in the case f has no critical points. (not published.)

Next we consider the compactification $\pi: X \to \mathbf{P}^2$ of f as constructed by D.T.Lê and C.Webber (See [LW]). The set A(f) of atypical values of f is expressed as $A(f) = D(f) \cup I(f)$, where D(f) is the set of critical values of f and I(f) is determined by the behavior of f at infinity. Then the compactification $\pi: X \to \mathbf{P}^2$ is obtained from \mathbf{P}^2 by a finite sequence of blowing up "points at infinity" and have following properties.

- (1) X is a compact complex surface and π is a proper holomorphic map inducing a biholomorphic map of $X \pi^{-1}(L_{\infty})$ onto $\mathbf{P}^2 L_{\infty} = \mathbf{C}^2$.
- (2) $\pi^{-1}(L_{\infty})$ is a union of projective lines with normal crossings.
- (3) The meromorphic function $\varphi = \varphi_0 \circ \pi$ does not have indeterminacy points, where $\varphi_0 = \frac{\tilde{f}}{\zeta_0^d}$. Thus we may think of $\varphi : X \to \mathbf{P}^1$ as a holomorphic map.
- (4) For $\lambda \in \mathbf{C} I(f)$, π gives an imbedded resolution of the singularities of the curve $C_{\lambda} : \tilde{f} \lambda \zeta_0^d = 0$ on L_{∞} .

Moreover, if we denote by \mathcal{A} and \mathcal{A}_{∞} , respectively, the intersection graphes of the divisor $\pi^{-1}(L_{\infty})$ and the pole divisor of φ ,

- (5) \mathcal{A} is a connected tree and \mathcal{A}_{∞} is a connected sub-t-ree of \mathcal{A} .
- (6) Each connected component of $\mathcal{A} \mathcal{A}_{\infty}$ is a bamboo which contains a unique distriction component (a component of $\pi^{-1}(L_{\infty})$ on which φ is not constant).

Let \mathcal{E} be the foliation on X which is determined by φ and $D^{(\infty)} = \sum_{i=1}^r m_i D_i^{(\infty)}$ be the pole divisor of φ . We assume all the critical points of φ are isolated. Then there are two types of singularities of \mathcal{E} .

- (a) critical points of φ on $X |D^{(\infty)}|$,
- (b) intersection points in $D^{(\infty)}$.

For the type (a) singularity p, $\operatorname{Res}_{\sigma_1}(\mathcal{E},p)=0$ and $\operatorname{Res}_{\sigma_2}(\mathcal{E},p)=\mu_p(\varphi)$ as before. For the type (b) singularity p, $\operatorname{Res}_{\sigma_1^2}(\mathcal{E},p)=-\frac{(m_i-m_j)^2}{m_im_j}$ if p is an intersection point of $D_i^{(\infty)}$ and $D_j^{(\infty)}$. On the neighborhood of the type (b) singularity p, we can write $\mathcal{E}=x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y}$. Then $\operatorname{Res}_{\sigma_2}(\mathcal{E},p)=(x,y)_p=1$. Again we set $D=\sum_{i=1}^r(m_i+1)D_i^{(\infty)}$, then $\sum \operatorname{Res}_{\sigma_1^2}(\mathcal{E},p)=F^2$ becomes

$$D^{2} = -\sum_{1 \leq i \leq j \leq r} \frac{(m_{i} - m_{j})^{2}}{m_{i}m_{j}} \delta_{ij}, \quad \delta_{ij} = \begin{cases} 0 & \text{when } D_{i}^{(\infty)} \text{ meets } D_{j}^{(\infty)} \\ 1 & \text{othewise} \end{cases}.$$

We recall $D(f) \subset A(f)$, then $\sum \operatorname{Res}_{\sigma_2}(\mathcal{E}, p) = \chi(X) + K \cdot D + D^2$ becomes

$$\sum_{\lambda \in A(f)} \mu(X_{\lambda}) + l = \chi(X) - \chi'(D),$$

where $\mu(X_{\lambda})$ is a total Milnor number of $X_{\lambda} = \{\varphi = \lambda\}$ and l is the number of intersection points of $D^{(\infty)}$. The last equation may be thought of as a "Milnor number formula" in the presence of multiple fibers. In fact, we assume that $D^{(\infty)}$ is reduced. We obtain the Milnor number formula in the two domensional case. (See also [TT])

References

- [BB] P. Baum and R. Bott, Singularities of holomophic foliations, J. of Diff. Geom. 7 (1972), 279-342.
- [K] K. Kodaira, On compact complex analytic surfaces, I, Ann. of Math. 71 (1960) 111-152.
- [LW] D.T. Lê and C. Weber, A geometric approach to the Jacobian conjecture for n=2, Kodai Math. J. 17 (1994) 374-381.
- [Sw] T. Suwa, Unfoldings of complex analytic foliations with singularities, Japan. J. Math. 9 (1983) 181-206.
- [TT] T. Honda and T. Suwa, Residue formula for singular foliations defined by meromorphic functions on surface, preprint

Department of Mathematics, Hokkaido University, Sapporo 060, Japan e-mail:t-honda@math.hokudai.ac.jp