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A projective structure on a Riemann surface $X$ is given by select-
ing a special complex analytic cocrdinate covering of $X$ such that
the coordinate transition functions are linear fractional transforma-
tions. Such a coordinate covering is in general realized as the local
solutions of a certain kind of Schwarzian equation on $X$ which is
described as a projective connection on that surface. The multi-
valuedness of the solutions of such a Schwarzian equation, which
is represented as a homomorphism from the fundamental group of
$X$ into the group $\mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ of linear fractional transformations, is
called the monodromy representation of the corresponding projec-
tive structure (or the projective connection).

By allowing the complex structure on $X$ to vary, we naturally
obtain the monodromy mapping from the space of projective con-
nections (or structures) on varying (compact) Riemann surfaces to
the space of representation classes of the fundamental group of $X$

into $\mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ . Although there are various aspects of study on the
monodromy mapping, we shall concentrate in this report on the
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symplectic-geometric properties of that mapping. Before going into
the details, let us begin by clarifying our motivation for this inves-
tigation. To make the exposition simple and explicit, we start with
the case of genus one.

Let $X$ be a compact Riemann surface of genus one, and $H=$
$\{\tau\in \mathrm{C};{\rm Im}\tau>0\}$ the upper half-plane. One can represent $X$ as
the quotient $\mathrm{C}/L(1, \tau)$ for some $\tau\in H$ , where $L(1, \tau)$ denotes the
usual lattice in the complex plane $\mathrm{C}$ generated by the periods 1 and
$\tau$ . Then linear ordinary differential equations on $X$ are represented
as those on $\mathrm{C}$ whose coefficients are doubly periodic functions. Let
us consider a Fuchsian equation (on C) of the form

(1) $\frac{d^{2}y}{dz^{2}}=q(z)y$ ,

where

$q(z)=k+ \sum_{i=1}^{m}\{H_{i}\zeta(z-ti, \tau)+\frac{1}{4}(\theta_{i}^{2}-1)\wp(z-ti, \mathcal{T})\}$ ,

$\sum_{i=1}^{m}H_{i}=0$ .

Here $\zeta(z, \tau)$ and $\wp(z, \tau)$ denote respectively Weierstrass’ $\zeta$-function
and $\wp$-function with fundamental periods 1 and $\tau$ ; thus the Laurent
expansion of the function $q(z)$ at $z=t_{i}$ has the form

$q(z)= \frac{\theta_{i}^{2}-1}{4(z-ti)^{2}}+\frac{H_{i}}{z-t_{i}}+$ higher terms,

and therefore equation (1) has its (regular) singularities at $z\equiv$

$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}t_{i}(\mathrm{m}\mathrm{o}\mathrm{d} L(1,\mathcal{T}))\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}\exp_{0}\mathrm{n}\mathrm{p}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{f}_{0}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}_{\mathrm{S}}\mathrm{e}\mathrm{n}_{\mathrm{C}\mathrm{i}\mathrm{y}p}\frac{1}{2,1}(1\mathrm{t}\mathrm{h}\mathrm{e}meromor\pm\theta_{i}).\mathrm{w}_{\mathrm{e}}\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}\mathrm{t}\mathrm{h}\mathrm{a}hi_{C}proje\mathrm{t}ctive\mathrm{t}\mathrm{h}\mathrm{e}$

connections of Fuchsian type on the Riemann surface $X$ (see [4]).
(In this report we make a technical assumption that each singularity
$z\equiv t_{i}$ (mod $L(1,$ $\mathcal{T})$ ) is not logarithmic. )
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Select a suitable fundamental parallelogram

$F=\{z\in \mathrm{C};z--Z0+r_{1}\cdot 1+r_{2}\cdot\tau, 0\leq r_{i}\leq 1\}$

with no singularity of (1) on the boundary. We assume for simplicity
that the (distinct) points $t_{i}(i=1, \ldots, m)$ lie in the interior of $F$ .
Identifying the opposite sides of $F$ yields an explicit realization of
the surface $X$ . Let $\gamma_{i}(i=1, \ldots, m)$ be a loop in $F\backslash \{t_{1}, \ldots, t_{m}\}$

with base point $z_{0}$ encircling the point $t_{i}$ once counterclockwise, and
$l_{1}$ (or $l_{\tau}$ ) the directed segment from $z_{0}$ to $z_{0}+1$ (or $z_{0}+\tau$); these
segments also represent loops in $X$ with base point $[z_{0}]$ , where $[z]$

denotes the congruence class of a point $z\in$ C. One observes that
the homotopy classes of the loops $\gamma_{i}$ and the paths $l_{1},$ $l_{\tau}$ form a set of
generators of the fundamental group $\pi_{1}$ $(X\backslash \{[t_{1}], \ldots , [t_{m}]\}, [z_{0}])$ .

Let us take a basis $(y_{1}, y_{2})$ in the space $V$ of solutions of (1) in
a small neighborhood of $z_{0}$ . Analytic continuation of the functions
$y_{1},$ $y_{2}$ along each loop $\gamma_{i}$ gives another basis $(\hat{y}_{1},\hat{y}_{2})$ in $V$ , so it
determines an invertible matrix $\chi(\gamma_{i})\in \mathrm{G}\mathrm{L}(2, \mathrm{C})$ such that

$(\hat{y}_{1},\hat{y}_{2})=(y_{1}, y_{2})x(\gamma_{i})$ .

Similarly, analytic continuation of $y_{1},$ $y_{2}$ along the path $l_{1}$ (or $l_{\tau}$ )
yields functions $\hat{y}_{1},\hat{y}_{2}$ on a small neighborhood of the point $z_{0}+1$

(or $z_{0}+\tau$ ) and determines a matrix X $(l_{1})$ (or X $(l_{\tau})$ )
.

$\in \mathrm{G}\mathrm{L}(2, \mathrm{c})$

such that

$(\hat{y}_{1}(z+1),\hat{y}_{2}(_{Z+}1))=(y_{1}(_{Z)}, y_{2}(z))\chi(l_{1})$

(or $(\hat{y}_{1}(Z+\tau),\hat{y}_{2}(_{Z+}\tau))=(y_{1}(_{Z)}, y_{2}(z))\chi(l\mathcal{T}))$ .

These matrices depend only on the homotopy classes of the loops
and paths; and thus one obtains the monodromy representation
(or simply monodromy)

(2) $\chi:\pi_{1}(X\backslash \{[t_{1}], \ldots, [t_{m}]\}, [z_{0}])arrow \mathrm{G}\mathrm{L}(2, \mathrm{C})$
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of equation (1). (It follows from the special form of (1) that the
Wronskian of any basis $(y_{1}, y_{2})$ is constant; hence the image group
of the homomorphism (2) is actually a subgroup of $\mathrm{S}\mathrm{L}(2, \mathrm{c})$ , the
complex Lie group of $2\cross 2$ matrices of determinant one. ) If we take
another base point or another basis of local solutions, representation
(2) turns into a conjugate one. The monodromy of equation (1) is
thus defined up to this equivalence.

Consider now a (small) deformation of equation (1). Here
we assume that the local monodromy around each singular point
remains constant. In other words, introducing a complex parameter
$s$ varying in the unit disk $\triangle$ , we consider (small) variations
(3)

$k=k(s),$ $H_{i}=H_{i}(s)( \sum_{i=1}^{m}H_{i}(s)=0),$ $t_{i}=t_{i}(s),$ $\tau=\tau(s)$

of the parameters of (1). The condition for the local monodromy
representations to be constant is just that the parameters $\theta_{i}$ are to
be fixed. (To be precise, however, if some of the singularities are ap-
parent, there appear additional conditions. See [4]. ) In particular,
if the deformation (3) does not change the (global) monodromy (2)
as well up to conjug.$\mathrm{a}\mathrm{c}\mathrm{y}$, it is called a monodromy preserving de-
formation.

In general, monodromy preserving deformations are described
in terms of a completely integrable system of partial differential
equations on the space of deformation parameters; such a system
is called a deformation equation. Early in this century, R. Fuchs,
L. Schlesinger and R. Garnier considered monodromy preserving
deformations of second order (or systems of first order) linear ordi-
nary differential equations on the Riemann sphere $\mathrm{P}^{1}$ What they
derived as deformation equations included the Painlev\’e equations
I-VI as special instances. Over fifty years later, K. Okamoto started
an extensive study on monodromy preserving deformations in early
$1970\mathrm{s}$ . On one hand he treated that kind of problem on a torus
(genus one) and derived equations that can be viewed as gener-
alizations of the Painlev\’e equations (see $[8]-[10]$ ). On the other
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hand, studying the genus zero case again, he was led to the cru-
cial discovery [11] that the monodromy preserving deformations of
a second order equation on $\mathrm{P}^{1}$ can be described as a completely
integrable Hamiltonian system on the space of deformation param-
eters. (Later he verified this also for the genus one case [12], [13]. )
The generalization of that observation to the case of higher genus
was carried out by K. Iwasaki. In [4] Iwasaki considered a certain
space of meromorphic projective connections of Fuchsian type on
a compact Riemann surface of arbitrary genus. By establishing a
suitable parametrization of that space, he gave an explicit descrip-
tion of a closed 2-form corresponding to the fundamental 2-form
of the desired Hamiltonian system. Furthermore he later found [5]
that the closed 2-form above coincides precisely with the pullback of
the natural symplectic form on the space of monodromy representa-
tions by the monodromy mapping. That work is fundamental in the
sense that it provided a geometric principle of treating monodromy
preserving deformations; indeed since symplectic forms are nonde-
generate, it follows that the monodromy preserving deformations
are completely described by the pulled-back (degenerate) symplec-
tic form (under the condition that the differential of the monodromy
mapping is surject..ive).

In the studies mentioned so far, the underlying Riemann sur-
faces had been fixed. Generalizing this situation further, one can
consider a deformation (of a differential equation) such that the un-
derlying Riemann surface itself varies. The main purpose of our
current study has been to obtain a more unified perspective by ap-
plying Iwasaki’s general principle to that type of situation. We first
studied in [6] the genus one case; specifically we treated equations of
the $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}}(1)$ and considered deformations of the form (3). Applying
the “ pulling-back” principle, we obtained the following.
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THEOREM 1. The Monodromy preserving deformations
of equation (1) are described by the dosed 2-form

(4)

2 $\sum_{i=1}^{m}dH_{i}$ A $dt_{i}+ \frac{1}{\pi\sqrt{-1}}dk$ A $d\tau$

- $\frac{\eta_{1}(\tau)}{\pi\sqrt{-1}}\sum_{i=1}^{m}$ ( $t_{i}dH_{i}\wedge d\tau+H_{i}dt_{i}$ A $d\tau$ ).

Remarks are in order here. The term $\eta_{1}(\tau)$ denotes the com-
plex constant given by $\zeta(z+1, \tau)-\zeta(z, \mathcal{T})=\eta_{1}(\tau)$ . The closedness
of the 2-form (4) can immediately be verified by rewriting the third
term $\mathrm{a}\mathrm{s}-\frac{\eta_{1}(_{\mathcal{T})}}{\pi\sqrt{-1}}\sum_{i=1}^{m}d(H_{i}t_{i})$ A $d\tau$ , because $\eta_{1}(\tau)$ depends only on
$\tau$ . It is natural to ask how this 2-form is altered under canonical
transformations of the parameters of (1); it turns out that the 2-
form is invariant under certain changes of the parameters. Finally,
it should be observed that if we consider the monodromy preserving
deformations of (1) on a fixed torus, the resulting 2-form would be

2 $\sum_{i=1}^{m}dH_{i}\wedge dt_{i;}$

indeed this 2-form was obtained by Okamoto $[11]-[13]$ and Iwasaki
[4] (for the case of arbitrary genus).

Having finished clarifying our motivation and reviewing the
result of [6], we get back to the main topic of this report. As
mentioned earlier, we consider next the space of (holomorphic) pro-
jective connections on varying compact Riemann surfaces (of genus
$g\geq 2)$ . Although we restrict ourselves to the holomorphic connec-
tions, our result will provide an intrinsic description of the desired
pulled-back symplectic structure. Let us first recall the basic termi-
nology to be used.

Let $X$ be a compact Riemann surface of genus $g\geq 2$ , and
$p:Harrow X$ a universal covering of $X$ with covering transformation
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group F. By the uniformization theorem, one can take $H$ to be the
upper half-plane and $\Gamma\subset \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{R})$ a strictly hyperbolic Fuchsian
group acting on $H$ by linear fractional transformations. A holo-
morphic function $q:Harrow \mathrm{C}$ is called a (holomorphic) quadratic
$dif$ ferential for $\Gamma$ if

$q(\gamma z)\gamma’(z)2=q(z)$ for all $\gamma\in\Gamma,$ $z\in H$ .

The space $A_{2}(H, \Gamma)$ of all quadratic differentials for $\Gamma$ can canon-
ically be identified with the space of holomorphic $(\mathit{2},0)$-forms on
$X$ and therefore turns out to be a $(3g-3)$-dimensional complex
vector space (by Riemann-Roch). For a quadratic differential $q\in$

$A_{2}(H, \Gamma)$ , consider the differential equation

(5) $S(f)(_{Z)}=q(z)$

on $H$ , where $S(f)=(f^{J/}/f’)’-1/2(f’’/f’)^{2}$ denotes the Schwarzian
derivative of the function $f$ . Any solution $f$ of (5) turns out to be
a locally biholomorphic,(or locally schlicht) mapping from $H$ into
the Riemann sphere $\hat{\mathrm{C}}$ , and there arises a homomorphism $\rho:\Gammaarrow$

$\mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ such that

(6) $f(\gamma z)=\rho(\gamma)f(Z)$ for all $\gamma\in\Gamma,$ $z\in H$ ;

here $\mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ is the group of linear fractional transformations act-
ing on $\hat{\mathrm{C}}$ . The mapping $f$ can be viewed as describing a special
complex analytic coordinate covering of the Riemann surface $X$ ,
in the sense that the coordinate transition functions of the cover-
ing are linear fractional transformations; thus we say that $f$ deter-
mines a projective structure on $X$ , and we call $\rho$ the monodromy
representation determined by $f$ .

Since the most general solution of (5) has the form $A\circ f$ for
some $A\in \mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ and the corresponding homomorphism can be
written as $\gamma\mapsto A\rho(\gamma)A^{-1}$ , it follows that each quadratic differential
determines an equivalence class of projective structures on $X$ and a
conjugacy class of representations $\Gammaarrow \mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ . Conversely any
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local biholomorphism $f$ satisfying (6) yields an element of $A_{2}(H, \Gamma)$

via the identity (5), the element depending only on the equivalence
class of $f$ . Thus there is a canonical $\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{t}_{\mathrm{o}^{-}\mathrm{o}\mathrm{n}\mathrm{e}}$ correspondence
between the space $A_{2}(H, \Gamma)$ and the set of equivalence classes of
projective structures on $X$ ,

REMARK. In general, one can establish a natural one-to-one
correspondence between the affine space of projective connections
on a Riemann surface and the set of equivalence classes of projective
structures on that surface. In the case above, since the Riemann
surface $X$ has a fixed projective structure via the representation
$X=H/\Gamma$ , the set of projective connections can be identified with
the set of quadratic differentials.

Let us turn next to varying the complex structure on the
(marked) Riemann surface $X$ . For this purpose we introduce the
Teichm\"uller space $T(\Gamma)$ of $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ (marked) Fuchsian group $\Gamma$ and the
universal Teichm\"uller curve $V(\Gamma)$ , a natural fiber space over $T(\Gamma)$

with projection $\pi:V(\Gamma)arrow T(\Gamma)$ . To each point $\tau\in T(\Gamma)$ there
are associated a quasidisk $H_{\tau}$ and a quasi-Fuchsian group $\Gamma_{\tau}$ (with
invariant domain $H_{\tau}$ ) such that the fiber $\pi^{-1}(\tau)$ of the projection
$\pi:V(\Gamma)arrow T(\Gamma)$ above $\tau$ is precisely the marked Riemann surface
$H_{\tau}/\Gamma_{\tau}$ represented by $\tau$ . The crucial point here is that this con-
struction of $V(\Gamma)$ (due to Bers) provides each fiber $\pi^{-1}(\tau)$ with a
fixed projective structure via the representation $H_{\tau}/\Gamma_{\tau}$ . Hence, just
as in the discussion above, there arises a natural one-to-one corre-
spondence between the set of equivalence classes of projective struc-
tures on $\pi^{-1}(\tau)$ and the space $A_{2}(H_{\tau}, \Gamma)\mathcal{T}$ of quadratic differentials
on $H_{\tau}$ for $\Gamma_{\tau}$ . Furthermore the spaces $A_{2}(H_{\mathcal{T}}, \mathrm{r}_{\tau})$ for $\tau\in T(\Gamma)$ can
be glued together to form a holomorphic vector bundle $Qarrow T(\Gamma)$

of rank $3g-3$ ; thus the $(6g-6)$-dimensional total space $Q$ qualifies
as the universal space of equivalence classes of projectivestru-ctures
on varying Riemann surfaces of genus $g$ .
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Recalling that each element $q\in A_{2}(H_{\mathcal{T}}, \Gamma_{\mathcal{T}})$ determines a con-
jugacy class of representations $\Gamma_{\tau}arrow \mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2},\mathrm{c})$ , one obtains the
monodromy mapping

$F:Qarrow \mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c})$

via the canonical isomorphisms $\Gamma_{\tau}\cong\Gamma$ , where $\mathrm{P}\mathrm{S}\mathrm{L}(2,\mathrm{c})$ acts as a
group of transformations on $\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))$ by inner automor-
phisms. The fundamental properties of the mapping $F$ are: (i) al-
though the set $\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c})$ has in general rather
complicated singularities, the points in ${\rm Im} F$ are regular points of
that space, and (ii) the mapping $F$ is a local biholomorphism from
the space $Q$ onto an open subset of $\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{c})$

(see $[1]-[3]$ ).
As explained earlier, our purpose here is to describe that sym-

plectic structure on $Q$ which is given by pulling back the natural
symplectic structure $\omega_{\mathrm{P}\mathrm{S}\mathrm{L}}$ on $\mathrm{H}\mathrm{o}\mathrm{m}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c})$ via the
monodromy mapping $F$ . However, since the space $Q$ can be viewed
as the total space of the holomorphic cotangent bundle $T^{*}T(\Gamma)$ of
the Teichm\"uller space $T(\Gamma)$ , it follows that there is defined a canon-
ical symplectic structure $\omega_{Q}$ on $Q$ . Our mail result [7] then asserts
that the desired pulled-back symplectic structure on $Q$ is precisely
the canonical $\omega_{Q}$ (up to a constant factor).

THEOREM 2. The mapping $F:Qarrow \mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{C}))/$

$\mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{c})$ preserves the symplectic structure up to the constant
$\pi$ , that is,

$\pi F^{*}\omega \mathrm{p}\mathrm{S}\mathrm{L}=\omega Q$ .

To be more precise, the theorem can be restated as follows. Let
$Parrow T_{g}$ be the (holomorphic) affine bundle of projective connections
on marked genus $g$ Riemann surfaces. Selecting a point $\tau_{0}\in T_{g}$

and representing it in the form $H/\Gamma$ allows us to identify $T_{g}$ with
$T(\Gamma)$ . By using Bers’ construction of the universal Teichm\"uller

curve $\pi:V(\Gamma)arrow T(\Gamma)$ , we obtain a holomorphic cross-section of

24



the bundle $Parrow T_{g}$ ; and there then arises a natural commutative
diagram

$Prightarrow\overline{F}\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{c}))/\mathrm{p}\mathrm{s}\mathrm{L}(\mathit{2}, \mathrm{C})$

$B\downarrow$ $||$

$Qarrow F\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c}))/\mathrm{p}\mathrm{s}\mathrm{L}(2, \mathrm{C})$ ,

where $B:Parrow Q$ is the (biholomorphic) mapping that identifies the
projective connections on each fiber $\pi^{-1}(\tau)$ with the vector space
$A_{2}(H_{\tau},\mathrm{r}_{\mathcal{T}})$ . Our main result can now be rewritten as ..

$\pi\overline{F}^{*}\omega_{\mathrm{P}\mathrm{S}\mathrm{L}}=B^{*}\omega_{Q}$ .

We emphasize here that the choice of the cross-section made above is
crucial for describing the pulled-back symplectic structure $\overline{F}^{*}\omega_{\mathrm{P}\mathrm{S}\mathrm{L}}$

in this way; for instance, we cannot use that cross-section which is
given by applying the usual uniformization theorem to each element
of $T_{g}$ because it is not even holomorphic. In particular, since the
zero-section of a cotangent bundle determines a Lagrangian immer-
sion with respect to the canonical symplectic structure, we have the
following corollary.

COROLLARY 3. The cross-section of the bundle $Parrow T_{g}$

given by $Bers’$ construction of the universal Teichm\"uller curve
$\pi:V(\Gamma)arrow T(\Gamma)$ determines a Lagrangian immersion with re-
spect to the pulled-back symplectic structure $\overline{F}^{*}\omega_{\mathrm{P}\mathrm{S}\mathrm{L}}$ .

It should be noted here that the cross-section above depends
on the choice of the base point $\tau_{0}\in T_{g}$ ; thus we have actually
obtained a family of Lagrangian immersions $\mathrm{p}.\mathrm{a}$rametrized by the
Teichm\"uller space $T_{g}$ . .

$\mathrm{P}\mathrm{a}\mathrm{s}\mathrm{s}\underline{\mathrm{i}\mathrm{n}}\mathrm{g}$ to the space $\mathrm{H}_{\mathrm{o}\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c})$ via the
mapping $F$ yields another formulation of the corollary. The space
$\mathrm{H}_{0\mathrm{m}}(\Gamma, \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C}))/\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{c})$ contains as a subset the quasicon-
formal deformation space $QH(\Gamma)$ of $\Gamma$ ; this space consists of those
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representations $\Gammaarrow \mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2},\mathrm{c})$ which can be written as $\gamma\mapsto w\circ\gamma\circ$

$w^{-1}$ for some quasiconformal mapping $w$ of the Riemann sphere
$\hat{\mathrm{C}}$ onto itself. By a simple argument we find that $QH(\Gamma)$ can be
put into a canonical one-to-one correspondence with $T(\Gamma)\cross T(\Gamma)=$

$T_{g}\cross T_{g}$ ; and (the image of) the cross-section of the bundle $Parrow T_{g}$

in the corollary then corresponds to a “ Bers slice” $T_{g}\cross\{*\}$ via the
mapping $\overline{F}$ . (A change of the base point $\tau\in T_{g}$ gives another slice
of $T_{g}\cross T_{g}.$ ) With these remarks in mind, we immediately obtain
the following.

COROLLARY 4. The Bers slices of the quasiconformal de-
formation space $QH(\Gamma)$ are Lagrangian submanifolds of the
space $\mathrm{H}\mathrm{o}\mathrm{m}(\Gamma, \mathrm{p}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{c}))/\mathrm{P}\mathrm{S}\mathrm{L}(\mathit{2}, \mathrm{c})$ .

REFERENCES

[1] C. J. Earle, On variation of projective structures, in Rie-

mann Surfaces and Related Topics, 1978 Stony Brook $C_{on}-$

ference, I. Kra and B. Maskit, eds., Ann. of Math. Studies 97,

Princeton Univ. Press, Princeton, N.J., 1981, 87-99.
[2] D. A. Hejhal, Monodromy groups and linearly polymorphic

functions, Acta Math. 135 (1975), 1-55.
[3] J. H. Hubbard, The monodromy of projective structures, in

Riemann Surfaces and Related Topics, 1978 Stony Brook

Conference, I. Kra and B. Maskit, eds., Ann. of Math. Studies

97, Princeton Univ. Press, Princeton, N.J., 1981, 257-275.
[4] K. Iwasaki, Moduli and deformation for Fuchsian projec-

tive connections on a Riemann surface, J. Fac. Sci. Univ.

Tokyo Sect. IA Math. 38 (1991), 431-531.

26



[5] –, Fuchsian moduli on Riemann surfaces –its Poi-

sson structure and the Poincar\’e-Lefschetz duality, Pacific

J. Math. 155 (1992), 319-340.
[6] S. Kawai, Deformation of complex structures on a torus

and monodromy preserving deformation, preprint.

[7] –, The symplectic nature of the space of projective

connections on Riemann surfaces , to appear in Math. Ann.

[8] K. Okamoto, On $Fuchs’s$ problem on a torus, I, Funkcial.

Ekvac. 14 (1971), 137-152.
[9] –, Sur le probl\‘eme de Fuchs sur un tore, II, J. Fac.

Sci. Univ. Tokyo Sect. IA Math. 24 (1977), 357-372.
[10] –, D\’eformation d’une \’equation diff\’erentielle lin\‘eare

avec une singularit\’e irr\’eguli\‘ere sur un tore, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 26 (1979), 501-518.
[11] –, Isomonodromic deformation and Painlev\’e equa-

tions, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect.

IA Math. 33 (1986), 575-618.
[12] –, The Hamiltonian structure derived from the hol-

onomic deformation of the linear ordinary differential e-
quations on an elliptic curve, Sci. Papers College Arts Sci.

Univ. Tokyo 37 (1987), 1-11.
[13] –, On the holonomic deformation of linear ordinary

differential equations on an elliptic curve, preprint.

27


