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SINGULARITIES OF FINITE FORMAL TYPE

FOR FOLIATIONS OF (c?, 0)

J.F. MATTEI and E. SALEM!

1 Introduction

We consider a germ of a (singular) formal foliation F at the origin of C? i.e.
given by a differential 1-form w = a(z,y) dz + b(z,y) dy, where a and b are
formal power series in two variables : a,b € C[[z,y]].

After desingularization of F by a finite number of blowing ups at points,
we get on a neighbourhood M of a divisor D, a transversally formal foliation
(2.1.2) F along D. This foliation is singular only at a finite number of points,

at the neighbourhood of which it is locally given by a strictly reduced form
(2.2).

We shall compute in this paper the first cohomology group of a distin-
guished covering (2.3.5) U of the divisor D, with values in the sheaf B3 over
D of transversally formal basic vector fields. By basic vector field, we mean
a vector field leaving F invariant and which is tangent to D . The sheaf over
D of basic vector fields contains as a subsheaf the sheaf Xz of transversally
formal vector fields which are tangent to F and to D. We denote the quotient
sheaf by T5; it is the sheaf of (transversally formal) transverse vector fields.

The computation of H'(U; X'x) is mainly a geometrical problem. It follows
from the theorem of Andreotti-Grauert that its dimension is finite, and it
has been computed in [7]. The computation of H!(4;7%) is of a different

1The second author was supported during this research by a FNRS fellowship.



nature. In this paper, we show that under some nondegenelacy condltlons
the dimensions of the spaces H'(i;73) and H'(u; B3) are ﬁmte
More precisely : S

Theorem 1.0.1 Let F be a formal folzatzon at the orzgzn of C2 whzch is
nondegenemte in the following sense :

1. F is nondicritical. _
2. F has no singularity of resonant saddle-node type along D.
8. The holonomy group of each component of D of valence > 3. is non
abelian. s ERNES ey
4. Every germ of a transversally formal first integral of F at a singular

point which is the intersection of a component of D of valence >3 with
a chain of valence 2, is constant.

Then dim¢ H'(U; Tz ) and dime H'(U; By ) are finite.

We also give explicit formula for computing these dlmenslons (4.0.20)
and (4.0.23). o

The space H'(i; X'z) is the base space of a universal equisingular unfold-
ing of the foliation F (see [7]). We shall construct in a forthcoming paper,
using Theorem (1.0.1), a universal equisingular deformation of F, with fixed
local reduced models and fixed holonomy groups. This universal deformation
has base space H'(i; B5), and is given by a holomorphic family of formal dif-
ferential 1-forms. We shall also show that the condition of nondegeneracy
given above is generic.

This pa,per is extracted from a paper that will be pubhshed elsewhere.
The second author gave a talk on Theorem (1.0.1) at the conference ”Topol-
ogy of holomorphic dynamical systems and related topics” at RIMS, Kyoto,
in October 1995.
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2 Background on transversally formal folia-
tions.

Let M be a holomorphic connected manifold of dimension 2. We shall denote
the sheaf of germs of holomorphic functions, holomorphic vector fields, and
holomorphic differential forms on M by Oar, X and Ap. We refer to 1]
and to [2] for the basic notions of ringed spaces and sheaves used in this
paragraph.

2.1 Transversally formal foliations.

Definition 2.1.1 We consider a connected holomorphic manifold M of di-
mension 2, and an analytic subset S = (| S|, Onm/Is) of M, not necessarily
reduced. M?® is the ringed space

MS = (|M\S| =S|, Ogs = (;5}?,)

where O3y is the sheaf of germs of transversally formal functions along S,
obtained by completion of Oy relative to the ideal Is :

~ i_l((’)M)

Of,l = limf(—‘—k——

Sen ViTH(ISH)

andi : S — M 'is the inclusion map. We shall say that O3, is a transversally
formal space.

We shall consider only analytic subsets S of dimension 0 and monomial di-
visors, i.e. locally defined by only one equation which is monomial in well
chosen coordinates. In that case, the elements of O3, can be written in these
coordinates as series :

2 Ar(v)u*  resp. gj: (Ai(u) + Ai(v))(uv)k

where S is defined by u = 0 resp. uv = 0; the coefficients A, A}, A? being
convergent on the same domain.
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By extension of the scalars i71(0On) — Of; we can define the notions
of transversally formal differential 1-form and of transversally formal vector
field along S :

KS = Z_I(AM) ®¢"1(0M) @f,! ) i’\f,! = ?:—l(XM) ®i—](0M) 5;‘9,[ .

When S = {m} is a point, we shall denote the modules of germs of formal
functions, formal differential 1-forms and formal vector fields on M at the
point m by O, Aprsm and Xagp,.

Definition 2.1.2 A transversally formal foliation F of codimension 1 on M
along S is a sheaf Ay of locally free submodules of rank 1 of A3,

Thus, at each point m, the module Az, over Oy, is generated by the germ
wm, of a transversally formal differential 1-form on M along S.

Outside the singular locus of F, i.e. the analytlc closed subset Szng( )
of S defined by the sheaf of ideals ' :

(1) I_r :=A]_-'XM

one has a "regular” foliation of codimension 1. By dividing locally the gen-
erators of As,, by the g.c.d. of their coefficients, one constructs a' unique
transversally formal foliation, the saturated foliation satF of F having only
isolated singular points. ‘

!

If f: ]T/I\'S — M5 is a transversally formal map (i.e. a morphism of
ringed spaces) between two transversally formal spaces we define the inverse
image of F by f to be the foliation f*F locally given by the inverse image
f*wm of the differential form w,, which generates Az,,; when the f*w,, are

—g!
identically zero we say that (M’ | f) is an integral manifold of F.

Definition 2.1.3 The strict transform of F by f is the saturated foliation
fF | |
Definition 2.1.4 Let F be a transversally formal foliation of codimension 1

on a neighbourhood M of a hypersurface S.” The singular locus of (F,S) is
the analytic subset Sing(F,S) of S defined by the sheaf of ideals

I;-,g = sat (A}- . XM,S)
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where : Xps C X is the subsheaf of germs of holombrphic vector fields

on M tangent to S (i.e. to the smooth part of S) and, for any ideal I :=

(u1y.-.,ur) Of Opm, sat(I) is the ideal generated by the quotients i; :=
u«

p.g.c.d.(ui,. ) A point not in Sing(F,S) is called a regular point of
(7,5).

One can easily check that :

Proposition 2.1.5 A pointm € S isa reguldr point for (¥, S) if and only if
at this point, F is reqular, S is smooth, and each local irreducible component
of S is either an integral manifold of F, or transverse to F.

2.2 Strictly reduced forms.

In this paragraph we describe in the context of formal foliations some notions
which are classical for holomorphic foliations (see [3], [4], [8]).

The most simple formal invariant associated to a germ of a formal foliation
F at the origin of C?, defined by a differential form

w = a(z,y)dz +b(z,y)dy, a, b € Ocz,0
is the algebraic multiplicity of ¥ at 0 :
(2) vo(F):=inf{wvo(u); v € Iz} (=inf{vo(a); vo(d)})

where vy is the valuation at the origin of C? relative to the maximal ideal of
5{2,0 . ‘ ’ '

The strict tangent cone of w, or of F, is the subspace C!, of P! defined
by the homogeneous equation za, + y b, = 0, where a, , b, are the homoge-
neous components of degree v := vg(F) of the coeflicients @ and b. When
C! = P!, we say that w or F is dicritical at the first order. In this case the
exceptional divisor D := E~'(0) obtained from the origin by the blowing
up map F : C2 — C2, is not an integral curve for the saturated foliation
F := sat (E*F).
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Definition 2.2.1 F is prereduced if ¥ is non singular;, or if F is singular
and its strict tangent cone consists of two simple points.

One can see that F is a singular prereduced foliation if and only if the
linear part of w is diagonalizable : there exists A\;, A2 € C, A; # 0, and
coordinates (u,v) at the origin such that the 1-jet of w is j}(w) = Ajudv +
Apvdu and the "eigenvalues” Ay, A, satisfy : Ay + A3 #0.

Definition 2.2.2 F is strictly reduced, if 7 is singular prereduced and the
quotient of the eigenvalues of j'(w) is not a stricly negative rational number.

Let us now take for F the germ of a saturated, transversally formal foli-
ation along a divisor with normal crossings S on a holomorphic manifold M
of dimension 2. The pair (F, S) is prereduced (1e9p strictly 1educed) at a
point m € S, if one either has :

e m is a regular point for (F,5) (see (2.1.4)) or

e m € Sing (F), F is prereduced (resp. stuctly reduced) at m and each
irreducible component of S at m is an integral curve of F .

One can check that (see [5], [6]):

Proposition 2.2.3 Let S be a germ of an analytic curve in (C2,0) with
normal crossings, and w a strictly reduced differential 1-form transversally
formal along S. If S is an integral curve of w, then w is conjugate (by a
transversally formal diffeomorphism along S) to a differential 1 form in the
list (we call these models the formal normal forms) :

1. Linearizable case :
w = /\121 dZ2 + )\222 le with /\1,/\2 € C A /Al ¢ Q(O )
(a) Linearizable non resonant case : /A € Q>0 ' o
(b) Linearizable resonant case : A\y/A; = p/q, p,q EN*, (p,q)=1 .

2. Resonant non linearizable case :
w:=qz(1 + ¢ (2F23)%) dz, +p~2(1+( ¢—-1)(s7 ) dzl wth
2, ¢, kEN*, (pg)=1,(€C .

51



52

3. Saddle node case: w = (Cz5 — p)dza + 25t dzy withpeN*, (€C

In cases 1. and 2., w has two convergent integral manifolds 2; = 0 et
29 = 0. In the third case w has only one convergent integral manifold z; = 0,
the other integral manifold z; = 0 being only formal.

2.3 Trees of reduction.

We construct a tree with base {0}, and height A’ (which a priori may be
infinite) called the tree of prereduction of F. It is a commutative diagram

A (F)= (M B, 59, 7, xj, D7)

7=0,..h!
MY s oM B it B 0 T, )
U u U U
(3) Zhl —_— e ey Z] Y 2.7_1 —_— e e— EO
U U U U
C/‘h’ — e — C/j SN C/j—l ey e — CIO _

defined by :
1. M°:=cC?, »0:= {0} = C"°,

2. ¥ := Sing(F7,D?) where 7/ is the strict transform of F by the map
E; , which is the composition of the blowing ups centred at C*, k=
0,...,7—1,and D’ := Ej'l(O),

3. C" C ¥4 is the set of points m of D/ where the pair (fj, Dj) is not
prereduced.

In the same way we can construct a tree of strict reduction denoted by
A (F), with height A > k' by replacing in the above definition the sets C’7
by the sets C7 C ¥ of points m € DI where the pair (77, D7) is not strictly
reduced.

Theorem 2.3.1 (of reduction) [9] [8] The trees of prereduction and strict
reduction of a formal foliation at the origin of C* have finite heights.



The foliation F := F* is the strictly reduced foliation associated to .F,
D := D" is the divisor of strict reduction of ¥, and E := E" : M — C? is
the map of strict reduction.

Definition 2.3.2 We say that a formal foliation F at 0 € C? is nondicriti-
cal if every irreducible component of the exceptional divisor D is an integral
manifold of F .

Definition 2.8.3 The set I of critical elements for the strict reduction of F
consists of : :

a) the connected components ¢ of 5 =3, and

b) the connected components a of -3,

A critical element of type a) resp. b) has dimension 0, resp. 1.

Definition 2.3.4 Two critical elements are adjacent if their closures inter- :

sect.

Definition 2.3.5 A dzstmguzshed covering U ofD s a covering by open sets
(Un)aer where :

a) Uy :=«a ifdim(a)=1,
b) U, is the intersection of a small tubular nefghbouvhood of o in M with
D, if dim(a) = 0.

In particular, a distinguished covering has the properties :

Remark 2.3.6 i) U,NUsNU, =0ifa,B,yv,€ Tand a # B, a# 7, B#7~
i) UuNUsNE=0if a,B €I, a # B,
iii) each U, N Up is a Stein open set.

Definition 2.3.7 We can associate to A(F) its dual tree R* (F) :

o each vertex corresponds by a 1-1 map to an irreducible component D of

D;

53



o two vertices are connected by an edge if the corresponding irreducible
components of D intersect;

o for each component ¥ of S contained in an irreducible component D,
we attach an arrow to the vertex corresponding to D;

o the weight at the vertex corresponding to D is the Chern class of the
normal bundle of D in M.

3 The sheaves of basic and transverse vector

fields.

Let F be a foliation defined by a germ at the origin of C? of a formal,
nondicritical differential 1-form w. Let £ : M — €? be the map of strict
reduction of its singularities, F be the strict transform of 7 by E and let
us denote the sheaf @% (2.1.1) over D, of functions which are transversally
formal along D := E~1(0) by O.

We consider the sheaf Oz C & over D of germs of first integrals of F
which are transversally formal : f € @ and df € Az. The aim of this paper
is to compute the cohomology of a distinguished covering (2.3.5) & of D with
values in the sheaf B

B 7 C i:a ’
of transversally formal basic vector fields. By basic vector field, we mean a
vector field leaving F invariant and which is tangent to D. This sheaf admits
only a structure of an @z-module; but- the sheaf

~ A5
2 }~
¥y C A%

of transversally formal vector fields which are tangent to F and D is clearly

a locally free O- module of rank one. Thus, the computation of H(i;Xz).

is mainly a geometrical problem. It follows from the theorem of Andreotti-
Grauert that its dimension is finite, and it has been computed in [7].

The space H'(u;B%) has a dynamical nature. To split the problem, ac-
cording to the two different types of difficulties we have, we make the follow-
ing definition :
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Definition 3.0.8 We define the sheaf of transverse vector fields to be the
quotient sheaf given by the short ezact sequence of Oz-modules :

(4) 0—-9«?;v—>§;—>v’f;——+0.
We are now going to describe the sheaf 7.

Remark 3.0.9 If W is an open set of the distinguished covering & of D,
then
0 — Xx(W) — B

We shall denote the class of Z € B>

(W) — T5(W) — 0.
V) in T(W) by {Z}.

#(V

Let us fix a critical element « of dimension 1 and a point m € U, .

Proposition 3.0.10 The restriction of Tz to U, is locally free of rank 1
over Oz.

Proof. At each point m of U, we choose transversally formal coordinates
(21,22) of D such that Az = Oc.m dzy, where (2, = 0) i 1s the equatlon of a

component of D. We have: 03 . =C[[z]] , B3, = OCmD_+C {E 2]] z2y2

Tm = C[[2]]- {22%2}

which leads to the conclusion. O

and

Let T, be a germ of a smooth curve transverse to U, at a point m € a.
The restriction of z, to T}, is a formal coordinate on T, and the above lemma
allows us to identify @;’m with the ring @7, of formal series on T},, and ’f’;,m
with the module X7, of formal vector fields on T,,. The continuation of first
integrals along paths in U, is given by the holonomy, and one can easdy

check that

Proposition 3.0.11 Let W C U, be a connected open 7nez'g/zl)our/zood of m

in Uy. A formal vector field Z € X1, (resp. a germ of a formal power

series f € Or,, ) induces a (unique) global section Z°*t € HO(U*':’f;) (resp.
ot € HO(W;0%)) if and only if the flow of Z commutes with the action
(resp. fis invariant under the action) of the holonomy group F genelaz‘ed by
i (Wim).
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We now describe the fibre of 75 at a singular point. It is well known (see
[4][page 143]) that any germ of a strictly reduced 1-form admits a basic vector
field, which is unique up to multiplication by a first integral. To be more
precise, let us consider a singular point ¢ of F on an irreducible component
D of D and let us take normalizing coordinates at c, i.e transversally formal
coordinates (z,2;) at this point under which D = (z; = 0) and F has a
formal normal form. We denote the holonomy of F induced by the loop in
D around ¢ = (0,0) : z;(0) = €, 2,(0) =0, 0 € [0,2x] by h. We have

= 6}@ ) {ZC} ?
and according to the cases ([4],[5],[6]):

1. If F is defined by w, := A12z1 dzg+Ag2o dzy with AjAg # 0, Ao/ A € Q<o
then
a)if A/M € Qs0, Oz, =C,
b) if Ao/ M =p/q, p, qGN (p,
and in both cases one has :
{zg=4/ﬁxﬂl%q+xﬁ&%5}={Mﬁ§5}={hhgz}

and h(z;) = e~%™2/ Mgy,

¢)=1, 0z =c[=Z=],

9. If F is defined by w, 1= q 21 (14+¢ (2220)%) dzo+p 2o (1+((=1) (20 22)F) dzy
with p,q,k € N*, (p,q) =1, € C, then

- qk+1
L —C b =e T exp (2in—E O ) and
Foo (z2) =€ exp (2 mm%) an

: P a\k )*
which is also equal to {-—éﬂp 23_} {1 + (Cﬂzf))(z P2d)* 1-5_
- 12

1+ ¢(2723)
3. If ¥ is defined by w. := ((25 — p)z1 dz; + 22tdz , ¢ € €, then
6?.(: =C, h is never periodic .

254‘1 9 9 T)+1
{2} = 1/2{@“_—])—)3‘5 tags)= {(——,Wa—} = {~1g—}
4, If f'iis defined by w, := 22t dzy 4+ (€28 — p)zy dzy, ¢ € €, Oz and {Z,}
have the same expressions as above but now & is periodic 1f and only

ifceq.
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Using the previous proposition, one can easily construct in case 4), when
( € Q, a non-constant section of Oz and a non-zero section of 7z on a
neighbourhood of D — {¢} which do not extend to the point ¢. To exclude
this case, one gives the following definition :

Definition 3.0.12 A singularity of F at a point ¢ € D is a resonant saddle-
node along D if there exists a system of transversally formal coordinates
(21,22) at c such that (2, = 0) is the local equation of a component of D,
and F is defined by :

= (2} = p)zodz; + z{’“ dz,, (€Q.

When no singular point of F is of this type we shall say that F is without
resonant saddle-node.

Lemma 3.0.13 Let a and c be two adjacent critical elements of dimension
1 and 0 respectively. If ¢ is not a resonant saddle-node fm F along the
component of D c071espondmg to a, then :

1. FEvery section f,. of 0; over Uy, := U, N U, can be extended in a
unique way to a section of @; over U, .

2. Every section X,. of ’ZA'; over Uy, := U, N U, can be extended in a
unique way to a section of ’]A«'; over U, . :

Proof. Let us begin by proving the second part of the lemma. We consider
a curve T,, transverse to the divisor at a point m # ¢ of a small disc” W C
U, centred on ¢ on which the section {Z,} described above is globally defined.
By (3.0.11), this section induces a formal vector field X,, on T, , invariant
under the holonomy map k., relative to a loop ¥y, generating 1 (W —{c};m).
By studying each case in the normalizing coordinates (z;,z;) at ¢ where
T, = {2z =€}, one deduces the following expression for X,

o case l.a) : X,, =uzzg—2;, HLEC,
e case 1.b) : X, = f(272]) 22525 f(z) € c|[z]],

Z‘ "
° case?.:sz,u—z—qk—.zk, L EC.
z 2
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In the first two cases it follows by direct computation. In the last case, one
uses the following classical lemma

Sublemma 3.0.14 Evefyformal diﬁeombrphism ¢ of (C,0) commuting with

P

H(z):= ei‘;rzea: (Yo/a.¢) Y, 0. ¢ i =200 ——— —
= P\ Xp/q,¢ p/g,¢ +— < 1+C3qk Oz

where p,q, k EN*, (p,q) =1, ( € C can be written as :

Zink
d=¢e 1 exp(tYp/q¢), kez, tec.

Proof of the sublemma. ? Let us denote

2impk k+1 g
L¥(z):=¢ 1 z, G'2):=exp(2int ﬁzﬁ@-

), H:=LFoG'.
The two formal diffeomorphisms L! and G' commute with each other and
one has :

H(Z) — Hl,l , H" = H™" , Hk,t — I{k+7‘q,t , k,?l,’l‘ €z.

By developing the commutativity relation, ¢ o H** o ¢~ o (H**)7!(2), one
gets a series 3 P;(k,t)z’ whose coefficients are polynomials in the variables
k and t and satisfy the relations : P;(k + rq,t) = Pj(k,t). As ¢ commutes
with H and thus with all of its iterates, one has P;(n,n) = 0 for any integer
n, and therefore P;(k+rq,k) = 0 for all k,r € Z. This implies that for every
J €N, P; is identically zero. Thus ¢ commutes with H kt and therefore with
G* also. On the other hand, every germ at 0 of a diffeomorphism ¢ of C can

be formally decomposed as ¢ = L o exp (Ypr/q4,¢r) , with

2mp’

(L, exp (Vg ¢e)(2) = 2, Yoryqr,cr ~gor Yoryar, o L(2) ~por € 7 2.

By exchanging the rdles of ¢ and H in the previous discussion, one gets that

2The proof we give here is due to D. Cerveau
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the flows of Yy, ¢+ and of Yy/q¢ commute. If one sets Yo g = a(z)% one
has
a(z) qk+1+8_ 1
alz) 2 Oz \1+4 (2% )~
. DL .
We can easily see that a(z) = A W 1(7?’)‘ € C, which ends the proof.

O To complete the proof of the second part of the lemma, it is enough to
remark that in all the cases, the vector field X,, is the restriction to Ty, of
the vertical representative of {Z,} multiplied by an element of Oz(W).

The proof of the first part of the lemma can be done in the same way.
The restriction of fu. to Ty, defines a series f2, € zOr,, invariant under the
holonomy. When &, is not periodic, f2.(z) = z and the lemma is trivial.
Using the above description of the strictly reduced cases, h,, is periodic
only if 7 admits a (transversally formal) first integral F' at the point c.
This first integral can be written in the normalizing coordinates (21, z3) as
F(z1,22) = 2123 and can be extended to the whole U, using proposition
(3.0.11). Moreover the restriction f2, of f,. to T, is a formal series [(27)z
with [ € C[[z]]. Since 2? is equal on U,. to the restriction F° of F' to T, ,
by the uniqueness of the extension (3.0.11), one has f,. = l4(F)z; which
completes the proof. O

4 Cohomological spaces associated to a dis-
tinguished covering.

We keep the notation of the previous paragraph and we still denote a germ at
the origin of C? of a formal nondicritical foliation by F, and the distinguished
covering of the divisor D of the strict reduction of F by «. For any subset D’
of D we denote the covering of D’ consisting of the open sets & which intersect
D' by U(D') and the neighbourhood of D’ in D obtained as the union of all

o .
the open sets in %(D’') by D’. From the above lemma (3.0.13) we obtain that
for any irreducible component D of D one has :

(5) H'u(D); 75) = 0.
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Definition 4.0.15 The valence v(D) of an irreducible component D of D is
the number of singular points of ¥ on D .

The irreducible components of valence greater than or equal to 3 will play a
special role in our discussion. We shall denote the set of irreducible compo-
nents of D of valence > 3 by Comp(D).

Definition 4.0.16 A chain C in D is either

e a connected component of the union of the irreducible components of D
having valence < 3,

e or the intersection point ¢ of two elements of Comp(D) .

Definition 4.0.17 The valence v(C) of a chain C is the number of intersec-
tion points of C with Comp(D), or 2 if the chain is reduced to the intersection
point of two elements of Comp(D) .

If the set Comp(D) is not empty, the valence of a chain is either 1 or 2.
We shall denote the set of chains of D (resp. having valence > r) by Ch(D)
(resp. Ch.(D)).

Remark 4.0.18 If F is without resonant saddle-node, any chain ¢ of D has
the following properties :

1) Any germ X € 73 of a transversal vector field (resp. any germ of a first
integral f € O3) at a singular point of F on C can be extended to a unique
global section of 7z (resp. O3) on e, :

2) Any section of 7z (resp. of O3 ) over an open set of %(C), or over the
intersection of two open sets of %(C), can be extended as a unique global
section of T (resp. Oz) on ¢, '

3) H'(u(c); 7z) = 0 and H'(u(c); 03) =0.

We get the two first properties by combining propositions (3.0.11) and
(3.0.13). They imply that H'(U(C); Tz) (resp. H(uU(C); Oz)) is equal to
the cohomology of u(C) with coefficients in the C-vector space £ of global
sections of 7z (resp. Oz ). To prove 3) it is enough to solve explicitly the
associated system of linear equations. One can do it directly, or one can also
consider the nerve of this covering, to which we can associate a simplicial
1-chain whose geometric realization is a closed interval J C R, and therefore

HYu(c); &)= HY(J; &)= H'(J;C) ®@c £ =0.
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Lemma 4.0.19 Let D be an irreducible component of D having no singu-
larity of F of resonant saddle-node type and let Hp be its holonomy group.
Then :

1. There exists a non-constant section‘of Oz over D if and only if Hp is
finite.

2. There exists a non-zero section of Tz over D if and only if Hp is abelian.

Proof. The first equivalence is well known (see [8]).

Let us consider a section X € HO(W; 7z). It induces (3.0.11) a formal
vector field Z,, on T,, whose flow commutes with the action of Hp. »

If Z,, is not linearizable, it is formally conjugate (see [6]), to a vector field
of the form Y,/ ¢ := 2i7 T——_*%,; P with p,q,k € N*, (p,q) =1, €C.
By (3.0.14) Hp is then a subgroup of Z x C.

If Z,, is linearizable, with eigenvalue A not a root of unlty, Hp is also
linearizable.

We deduce from the previous study of all the reduced cases that if A\ =
exp(2iwsp/q) -with s € N, all the singularities of 7 on D admit a non-constant
first integral, and in particular every element of Hp is periodic. On the other
hand, the commutativity hypothesis implies that in the coordinate z which
linearizes Z,,, all the elements of Hp can be written as : h(z) = z1(z?). We
deduce that {(z) = 1(0), with /(0) a root of unity.

In all cases we have shown that Hp is abelian. The converse (that we
shall not need) can be proven in the same way, using (3.0.14) and going
through all the cases. O

Theorem 4.0.20 Let F be a formal nondicritical foliaiion at the origin of
C? such that the strictly reduced associated foliation F and the divisor D have
the followzng properties :

1. F is without resonant saddle-node (3.0.12) along D.

2. The holonomy group of each irreducible component of D of valence > 3
s non abelian.
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We denote the sheaf of first integrals vanislzivzg at the points of D by @Qf C 0s.
Then for every distinguished covering U of D one has :

H'u; )~ @ Tc), H'w;0%)~ P 6%(c),

v(e)=2 v(c)=2
where the direct sums are taken over all the chains of D of valence 2.
Proof. Let us consider the open covering of D
w:={D /D e Comp(®)}|]{&/ceCh®)}.
Every open set W € W satisfies, by (5) and (4.0.18) :
HY (u(W); ('A)";E) =0 and H'u(W); 7z) = 0.
Thus we have ([2], chapter 4) :
Hl(ll;@“;)=Hl(W;(5‘;;) and HYu; Tz)= H'(W; T3) .

From the above lemma, every section S of these sheaves over a divisor of
valence > 3 is zero and the system of cohomological equations can be split
into independant equations :

fII(W; '?7__) = @ I‘II(W(C) 'f;)
ceChy (D)

and
1 . O —
H'(w;0%)= @ H'(W(C); 0%),
c€Chy (D)
where W(C ) is the family of 2 or 3 elements which consists of ¢ and of the

open sets D corresponding to the components D of D of valence > 3 and
intersecting . When C has valence 1, W has two elements and the coho-
mological equation reduces to : boo = So, it always has a solution by the

extension lemma (3.0.13), and the1ef01e

H'(W(C); 0%) =0, H'(W(C);T)=0, il v(c)=1.



When C has valence 2, W has three elements and the cohomological equations

can be written as :
Spe =%
(*) Syor =S

ed e
Again using (3.0.13) we see that every cocycle (5133’ SB:O) is cohomologous
c
to a unique cocycle (5132,0). As Sog can be extended in a unique way we

have isomorphisms (well defined if we orient the dual tree A*(F) considered
as a graph), '

H'(W(C); 0% ) ~ 0%(¢), HY(W(C); Tz) ~ T3(C).
Therefore the conclusion holds. O

This theorem shows the importance of the following class of formal foli-
ations :

Definition 4.0.21 We shall say that a formal foliation F at the origin of
C? is of finite formal type (f.f.t.) if for a distinguished covering U of the
exceptional divisor D, the foliation F obtained after strict reduction of its
singularities satisfies :

dime H'(U; Bz) < oo,
where Bx is the sheaf over D of transversally formal basic vector fields.
We can give a finiteness criterium :

Definition 4.0.22 We shall say that a formal foliation F at the origin of
C? is non-degenerate if it satisfies the following conditions :

1. F is nondicritical.

2. F has no singularity of resonant saddle-node type along D .

3. The holonomy group of each irreducible component of D of valence > 3
is non abelian. '

4. Every germ of a transversally formal first integral of F at a singular
point which is the intersection of an irreducible component of D of va-
lence > 3 with a chain of valence 2, is constant.
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Theorem 4.0.23 Every formal nondegenerate foliation F at the origin of
C? is f.f.t. and satisfies :

3. c—l c—2
B S e )
c€o (w) =

where :
o o(w) is the disjoint union of all centres C?, j = 0,...,h — 1, in the
strict reduction tree of F .

e Forc € §7, v, is the algebraic multiplicity (2) at the point ¢ of the

strict transform FV),

e 7(F) is the number of chains of D of valence 2.

Proof. We consider the long exact sequence associated to the short exact
sequence (4) defining B3 . By (4.0.19) there is no non-zero global section of 73
over the irreducible components of D of valence greater than or equal to 3, so
there is none on D and H°(#; 7z ) = 0. On the otherhand H*(U; ¥z ) = 0 as

the three by three intersections of open sets of & are empty (2.3.6). Therefore
the sequence '

(6) 0 — HY(u; %) — HYu; Bz) — HY (U; Tz) — 0
is exact and
dime H'(U; Bz ) = dime HYu; 73) + dime H'(U; .f; ).
The precediﬁg theorem t'ells‘ us that dim¢ H'(U; f’;) =71(F). The femaining
term is the dimension of H'(#; Xz) computed in [7]. O
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