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Introduction

Let $Z= \sum_{i=1}^{n}f_{i}(z)\partial/\partial z_{i}$ be a holomorphic vector field in some neighborhood
of the 2$n$-dimensional closed disk $\overline{D}^{2n}(1)=\{z\in \mathrm{C}^{n}|||z||\leq 1\}$ in $\mathrm{C}^{n}$ . We denote
by $F(Z)$ the foliation defined by the solutions of $Z$ . In this paper we will prove the
following

$\mathrm{T}t\iota_{\mathrm{E}\mathrm{O}\mathrm{R}}\mathrm{E}\mathrm{M}$ A. If the $2n-1$ dimensional sphere $S^{2n-1}(1)$ , which is the boundary
$\partial\overline{D}^{2n}(1)$ of $\overline{D}^{2n}(1)$ , is transverse to $F(Z)$ then the number of the compact leaves of
the foliation $F(Z)|_{s()}2n-11$ is 1, 2, . . . , $n$ or $\infty$ .

In [5], A. Douady and the author proved the following Poincar\’e-Bendixson type
theorem for a holomorphic vector field.

THEOREM 0.1 (A. Douady and T. Ito). If $S^{2n-1}(1)$ is transverse to $\mathcal{F}(Z)$ , then
each leaf $L$ of $F(Z)$ which crosses $S^{2n-1}(1)$ tends to the unique singular point $P$

of $Z$ in $\overline{D}^{2n}(1)$ . $\text{凡鷹}her\eta \mathrm{f}ore$ , since we can move $P$ to the origin $0$ of $\mathrm{C}^{n}$ by the
$\Lambda f\ddot{o}bius$ transfonnation, we see that the sphere $S^{2n-1}(r)=\{z\in \mathrm{C}^{n}|||z||=r\}$ is
transverse to $\mathcal{F}(Z)$ for any real number $r,$ $0<r\leq 1$ .

In the case $n=2$ we used Theorem 0.1 as well as the existence theorem of
separatrix proved by C. Camacho and P. Sad ([3]) to obtain an affirmative answer
to a special case of the Seifert conjecture:

COROLLARY 0.2 ([5]). Under the hypothesis of Theorem 0.1, the foliation $F(Z)|_{S(1}3)$

on $S^{3}(1)$ has at least one compact leaf.
We use Theorem 0.1 to prove the following

THEOREM B. Under the $l\iota yp_{ot}heSiS$ of Theorem 0.1, the set $|of$ the eigenvalues
$\{\lambda_{1}, \ldots , \lambda_{n}\}$ of the $n\cross n$ matrix $( \frac{\partial f_{i}}{\partial z_{j}}(0))$ belongs to the Poincar\’e domain.

This research was partially supported by Grant-in Aid for Scientific Research (C) (NO.
06640181) from the Ministry of Education, Science and Culture, and by the Joint Center for
Science and Technology of Ryukoku University.

数理解析研究所講究録
955巻 1996年 75-79 75



The proof of Theorem A follows from Theorem 0.1, Theorem $\mathrm{B}$ and the Poincar\’e-
Dulac theorem ([6], [4]. See \S 3).

The author wishes to thank Xavier G\’omez-Mont and Andr\’e Haefliger for their
advice.

1. Examples

To shed some light on Theorem $\mathrm{A}$ , we give some examples in this section.

EXAMPLE 1.1. Let $\lambda_{1}$ and $\lambda_{2}$ be non-zero complex numbers. Assume that
$\lambda_{1}/\lambda_{2}$ is not a negative real number. Consider $Z=\lambda_{1}z_{1}\partial/\partial z_{1}+\lambda_{2}z_{2}\partial/\partial z_{2}$ on
$\mathrm{C}^{2}$ . For any positive real number $r$ , the 3-dimensional sphere $S^{3}(r)$ is transverse
to $F(Z)$ . The solution set $L_{w}$ of $Z$ with the initial condition $w=(w_{1}, w_{2})$ is
$\{(z_{1}, z_{2})=(w_{1}e^{\lambda_{1}T}, w_{2}e^{\lambda T})2\in \mathrm{C}^{2}|T\in \mathrm{C}\}$ . In particular, if $w_{1}$ is different from
zero we may write

(1.1) $z_{2}=w_{2}e^{\lambda_{2/(z_{1}}}\lambda 1\log/w_{1})$ .

Case (i). If $\lambda_{2}/\lambda_{1}=q/p$ is a positive rational number every leaf of $\mathcal{F}(Z)|s3(1)$ is
compact. This is a Seifert fibration over $S^{3}(1)$ . In the case where $\lambda_{2}/\lambda_{1}$ is equal
to 1, $F(Z)|s^{3}(1)$ is a Hopf fibration. In $\mathrm{t}1_{1}\mathrm{i}_{\mathrm{S}}$ case we have infinitely many compact
leaves. ’

Case (ii). If $\lambda_{2}/\lambda_{1}$ is $\mathrm{e}\mathrm{i}\mathrm{t}\dot{\mathrm{h}}$ er positive irrational or non-real, then $\{(z_{1},0)\in \mathrm{C}^{2}||z_{1}|=$

$1\}$ and $\{(0, z_{2})\in \mathrm{C}^{2}||z_{2}|=1\}$ are compact leaves of $\mathcal{F}(Z)|_{S(1}3)$ . The equation
(1.1) implies that the set $L_{w}\cap S^{3}(1)$ is not a compact leaf when every $w_{i}$ is different
from zero. In this case $F(Z)|S3(1)$ has

$\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{c}\mathrm{t}.1|\mathrm{y}$
two compact

$|\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{s}$
.

EXAMPLE 1.2. Let $\lambda$ and $\epsilon$ be two non-zero complex numbers. $\mathrm{C}_{\grave{\mathrm{O}}\mathrm{n}\mathrm{S}}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}z=$

$\lambda z_{1}\partial/\partial Z1+(\lambda z_{2}+\epsilon z_{1})\partial/\partial z_{2}$ . The solution set $L_{w}$ is $\{(z_{1}, z_{2})=.(w_{1}.e^{\lambda T}.$., $(w_{2}+$

$\epsilon w_{1}T)e^{\lambda T})|\tau\in \mathrm{C}\}$ . If $w_{1}$ is different from zero we may write

(1.2) $z_{2}=(w_{2}+ \frac{\epsilon w_{1}}{\lambda}\log(\frac{z_{1}}{w_{1}}))(\frac{z_{1}}{w_{1}})$ .

If $r>0$ is small $S^{3}(r)$ is transverse to $\mathcal{F}(Z)$ . If $r>0$ is large, on the other hand,
$S^{3}(r)$ is not transverse to $\mathcal{F}(Z)$ . In the case where $S^{3}(r)$ is transverse to $\mathcal{F}(Z)$ , the
set $\{(0, z_{2})\in \mathrm{C}^{2}||z_{2}|=r\}$ is a compact leaf of $\mathcal{F}(Z)$ . The equation (1.2) implies
that the leaf $L_{w}\mathrm{n}S^{3}(\gamma)$ is not compact if $w_{1}$ is different from zero. Thus $F(Z)|_{S(r)}3$

has exactly one compact leaf.

EXAMPLE 1.3. Let $\lambda$ and $a$ be two non-zero complex numbers. Let $k$ be an in-
teger bigger than two. Consider $Z=\lambda z_{1}\partial/\partial z_{1}+(k\lambda z_{2}+az_{1}^{k})\partial/\partial z_{2}$ . The solution
set $L_{w}$ of $Z$ is

$z_{1}=w_{1}e^{\lambda T}$ and

$z_{2}=(w_{2}+ \int_{0}^{T}aw^{kk}ee^{-}d1\lambda\tau.k\lambda TT)e^{k\lambda}T$

$=(w_{2}+aw_{1}^{kk}T)e\lambda\tau$ .
If $w_{1}$ is different from zero we may write

(1.3) $z_{2}=(w_{2}+ \frac{aw_{1}^{k}}{\lambda}\log(z1/w1))(\frac{z_{1}}{w_{1}})^{k}$
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For a small $r>\mathit{0},$ $S^{3}(r)$ is transverse to $\mathcal{F}(Z)$ and the set $\{(0, z_{2})\in \mathrm{C}^{2}||z_{2}|=r\}$

is a compact leaf of $\mathcal{F}(Z)|s^{\mathrm{a}}(Y)$ . We see from the equation (1.3) that $L_{w}\cap S^{3}(r)$

fails to be compact if $w_{1}\neq 0$ . Thus $\mathcal{F}(Z)|S^{3}(r)$ has one and only one compact leaf.
We mention that we investigated in ([5]) a global property of contact sets

between spheres and $F(Z)$ .

2. The non-existence of transversal maps

Let $\mu_{i}(1\leq i\leq n)$ be non-zero complex numbers. Assume that the set
{ $/x_{1\cdot.\mu_{n}\}},.$, belongs to the Siegel domain. Consider a linear vector field $Z=$
$\sum_{i=1}^{n}\mu_{ii}Z\partial/\partial z_{i}$ on $\mathrm{C}^{n}$ . To prove Theorem $\mathrm{B}$ we need a non-existence theorem of
a transversal map $f$ of a manifold to the foliation $\mathcal{F}\{Z)$ .

THEOREM 2.1. Let $\mu_{1}$ and $\mu_{2}$ be non-zero complex numbers. Consider $Z=$
$\mu_{1^{Z}1}\partial/\partial z_{1}+\mu_{2^{Z}2}\partial/\partial z_{2}$ on $\mathrm{C}^{2}$ . Let $M$ be a closed connected $C^{\infty}- m\underline{a}nifold$ of di-
mension either two or three. If $\mu_{1}/\mu_{2}$ is a negative real $number_{j}$ then there exists
no $C^{\infty}$ -map $\varphi$ of $M$ to $\mathrm{C}^{2}$ such $tl_{lat\varphi}(M)$ is transverse to $\mathcal{F}(Z)$ .

PROOF. Suppose that there exists a $C^{\infty}$-map $\varphi$ of $M$ to $\mathrm{C}^{2}$ such that $\varphi(M)$

is transverse to $\mathcal{F}(Z)$ . We may select a negative rational $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}-p/q$ sufficiently
close to $/x_{1}/\mu_{2}$ such that $\varphi(M)$ is transverse to $\mathcal{F}(Z’)$ , where $Z’$ is the linear vector
field defined by $Z’=pz_{1}\partial/\partial_{Z_{1}}-q_{Z}2\partial/\partial z_{2}$ . The solution $L_{w}$ of $Z’$ with the initial
point $w=(w_{1}, w_{2})$ is

$z_{1^{Z}2}^{q\mathrm{P}}=w_{1}^{q}w^{\mathrm{p}}|\cdot|2$
. Set $F(z_{1}, z_{2})=z_{1}^{q}z_{2}^{p}$ . Then the map $\Phi=$

$|F\circ\varphi|$ : $Marrow\varphi \mathrm{C}^{2}arrow F\mathrm{C}arrow \mathrm{R}$ attains a maximal value $\Phi(P)$ at some point
$P\in M$ . At the point $\varphi(P),$ $\varphi(M)$ is not transverse to $\mathcal{F}(Z’)$ , but this contradicts
our transversality assumption. ..

$\cdot$ .. ,-.
1

, $\square$

$\mathrm{T}\}\{\mathrm{E}\mathrm{o}\mathrm{R}\mathrm{E}\mathrm{M}2.2$. Consider a linear vector field $Z= \sum_{i=1}^{n}\mu_{i}Z_{i}\partial/\partial z_{i}$ on $\mathrm{C}^{n}$ ,
$n\geq 3$ , where the $\mu_{i}$ ’s are non-zero complex numbers and the $\mu_{i}/\mu_{j}$ ’s, $i\neq j$ , are
imaginary. Let $M$ be a $2n-2$ or $2n-1$ -dimensional closed connected $C^{\infty}$ -manifold.
If the set $\{\mu_{1}, \ldots , \mu_{n}\}beiong_{S}$ to the Siegel domain, then there is no $C^{\infty}- ma_{l}p\varphi$ of
$M$ to $\mathrm{C}^{n}$ such that $\varphi(M)$ is transverse to $\mathcal{F}(Z)$ .

PROOF. Let $\Sigma=\{z\in \mathrm{C}^{n}|\sum_{i=1}^{n}\mu_{i}Zi\overline{z}_{i}=0\}$ be the contact set between the
spheres $S^{2n-1}(r)$ and $\mathcal{F}(Z)$ . Then the set $\Sigma$ is a cone and $\Sigma-\{0\}$ is a submanifold
of dimension $2n-2$ . C. Camacho, N. H. Kuiper and J. Palis proved the following
Fact ([2]). If we take a point $w\in\Sigma-\{0\}$ , the distance between $L_{w}$ and the
origin $0$ of $\mathrm{C}^{n}$ attains a unique minimum at $w$ and $L_{w}\cap\Sigma=\{w\}$ . Further the
set $W=\{z\in \mathrm{C}^{n}|0\not\in\overline{L}_{z}\}$ of leaves which do not tend to $0$ is diffeomorphic to
$(\Sigma-\{0\})\cross \mathrm{C}$ . The projection map $\pi$ : $Warrow\Sigma-\{0\}$ indicates that.each leaf
$L\subset W$ corresponds to the point $L\cap\Sigma$ .

Assume that there exists a $c\infty$-map $\varphi$ of $M$ to $\mathrm{C}^{n}$ such that $\varphi(M)$ is transverse
to $\mathcal{F}(Z)$ . The transversality condition implies that the restricted map $\pi|w\cap\varphi(M)$ :
$W\cap\varphi(M)arrow\Sigma-\{0\}$ is a submersion. Since $\pi(W\cap\varphi(M))$ is open closed connected
in $\Sigma-\{0\},$ $\pi(W\cap\varphi(M))$ is $\mathrm{e}\mathrm{q}\mathrm{u}.\mathrm{a}.1$ to $\Sigma-\{.0\}$ . This contradicts the fact that
$\pi(W\cap\varphi(M))$ is bounded. $\square$

We will conclude this section by proving Theorem B.

PROOF OF $\mathrm{T}\iota \mathrm{r}\mathrm{E}\mathrm{O}\mathrm{R}\mathrm{E}\mathrm{M}$ B. We calculated in [5] that the index of $Z$ at the origin
is one. Hence every eigenvalue of the matrix $(\partial f_{\dot{\iota}}/\partial z_{j}(\mathrm{o}))$ is different from zero.
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It follows from Theorem 0.1 that for small enough $r_{1}>0$ the linear part $Z^{(1)}=$

$\sum_{i=1(}^{n}\sum_{j}^{n}=1\partial f_{i}/\partial_{Z(0)Z_{j})}j\partial/\partial Z_{i}$ of $Z$ is transverse to $s^{2n-1}(r1)$ . Suppose that the
set $\{\lambda_{1}, \ldots , \lambda_{n}\}$ does not belong to the Poincar\’e domain. We may choose an $n\cross n$

matrix $A=(a_{ij})$ close enough to $(\partial f_{i}/\partial z_{j}(\mathrm{o}))$ that the set of the eigenvalues of
$A$ satisfies the conditions of Theorem 2.1 or Theorem 2.2. The sphere $s^{2n-1}(r1)$

is transverse to $\mathcal{F}(\overline{Z}^{(1)}),$ wllere $\tilde{Z}^{(1)}$ is the linear vector field defined by $\tilde{Z}^{(1)}=$

$\sum_{i=1}^{n}(\sum_{j}^{n}=1ijz_{j}a)\partial/\partial z_{i}$ . This is a contradiction to Theorem 2.1 or Theorem 2.2.
$\square$

3. Proof of Theorem A

We recall first a theorem due to H. Poincar\’e ([6]) and H. Dulac ([4]), which
we shall call the Poincar\’e-Dulac linearization and polynomialization at an isolated
singular point of a holomorphic vector field.

Let $Z= \sum_{i=1}^{n}f_{i}(z)\partial/\partial z_{i}$ be a holomorphic vector field defined on some neigh-
borhood of the origin $0$ of $\mathrm{C}^{n}$ . Assume that the origin is an isolated singular point
$\mathrm{o}\mathrm{f}Z$ .

THEOREM 3.1 (H. Poincar\’e and H. Dulac). If the set of eigenvalues of the ma-
trix $(\partial f_{t}/\partial z_{j}(\mathrm{o}))$ bclongs to the Poincar\’e domain, then there exists a biholomorphic
map $\Phi$ of some $neighb_{\mathit{0}}rllood$ of $0$ to another neighborhood of $0$ in $\mathrm{C}^{n},$ $\Phi(z)=w$ ,
$\Phi(0)=0$ , such that $\Phi_{*}Z=W$ with

$W= \lambda_{1}w_{1}\partial/\partial w1+\sum_{i=2}^{n}(\lambda_{1}.w:+biw|.-.1+Pi(w_{1}, \ldots,wi-1))\partial/\partial w_{i}$,

where the $b_{i}’ s$ are either $0$ or 1 defined by the Jordan block of $(\partial f_{i}/\partial z_{j}(\mathrm{o}))$ and the
$P_{i}(w_{1}, \ldots , w_{i-1})$ ’s are polynomials defined as follows:
Let $m_{\mathfrak{i}}=$ $(m_{i}(1), \ldots , m_{i}(i-1))$ be an $(i-1)$ -tuples of non-negative integers such
that $\sum_{k=}^{i-1}1mi(k)\geq 2$ and $\lambda_{i}=\sum_{k=1}^{i1}-m_{i}(k)\lambda_{k}$ . Define $P_{i}$ by $P_{i}(w_{1}, \ldots , w_{i-1})=$

$\sum_{m:}a_{m}w^{m}:1:(1)\ldots$ , $w_{1-1}^{m.(}.\cdot i-1$). Here the $a_{m:}$ are complex n.umbers.
We note for example in the case where $n=2$ the $W$ is one of the following:
1. $W=\lambda_{1}w_{1}\partial/\partial w_{1}+\lambda_{2}w_{2}\partial/\partial w_{2}$ .
2. $W=\lambda w_{1}\partial/\partial w_{1}+(\lambda w_{2}+w_{1})\partial/\partial w_{2}$ .
3. $W=\lambda w_{1}\partial/\partial w_{1}+(k\lambda w_{2}+aw1)k\partial/\partial w_{2}$ .

We are now ready to prove Theorem A.

PROOF OF.THEOREM A. We may assume, using the M\"obius transformation,
that the unique singular point is the origin $0$ of $\mathrm{C}^{n}$ . By the grace of Theorem $\mathrm{B}$ and
Tlleorem 3.1 we may select a sufficiently small number $r_{0}>0$ so that $F(Z)|_{\overline{D}^{2n}}(\gamma_{\mathrm{Q}})$

is $\mathrm{b}\mathrm{i}\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}_{\mathrm{P}^{1_{1}\mathrm{i}}}\mathrm{C}$ to $\mathcal{F}(W)|\Phi(\overline{D}^{2}n(r_{\mathrm{O}}))$ . Then $\mathcal{F}(Z)|_{S}2n-1(r_{\mathrm{O}})$ has 1, 2,. . . , $n$ or infin-
itely many compact leaves. By Theorem 0.1 $F(Z)|s2n-1(r\mathrm{o})$ is $C^{\omega}$-diffeomorphic to
$\mathcal{F}(Z)|_{S^{2-}(1}\mathfrak{n}1)$ . This completes the proof of Theorem A. $\square$

REMARK. M. Brunella and P. Sad ([1]) proved the following theorem. Define
a linear hyperbolic foliation $\mathcal{L}_{\lambda}$ in $\mathrm{C}^{2}$ by $xdy+\lambda ydx=0,$ $\lambda\in \mathrm{C}-\mathrm{R}$ .

THEOREM (M. Brunella and P. Sad). Let $\Omega\subset \mathrm{C}^{2}$ be a generalized bidisc and
let $\mathcal{F}$ be a holomorphic foliation defined in a neighborhood $of\overline{\Omega}$ and transverse to $\partial\Omega$ .
Then there exists a locally injective holomorphic map $\phi$ which sends a neighborhood

$of\overline{\Omega}$ to a $neighb_{or}l\iota ood$ of $0$ in $\mathrm{C}^{2}$ and such that $\mathcal{F}=\phi^{*}(\mathcal{L}_{\lambda})$ for some $\lambda\in \mathrm{C}\backslash \mathrm{R}$ .
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hrthermore $\phi$ is injective as a map between spaces of leaves, $i.e$ . for every leaf
$L\in \mathcal{L}_{\lambda}$ the preimage $\phi^{-1}(\phi(\overline{\Omega})\cap L)$ is exactly one leaf of $\mathcal{F}|_{\overline{\Omega}}$ .
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