goooboooobgon
956 O 1996 O 1-15

Quantum double construction for
subfactors arising from periodic
commuting squares

EERE R 12 BB (Satoshi Goto)

1 Introduction

V. F. R. Jones introduced index for subfactors in {11] and he found his celebrated
polynomial invariant for knots by using the subfactor theory in [12]. This work has
revealed an unexpected relation between subfactor theory and 3-dimensional topol-
ogy. A. Ocneanu’s paragroup theory (see [19], [20], [21], [15], [30] for the definition
of a paragroup, for example) also has revealed a deep relation between subfactor the-
ory and quantum group theory, 3-dimensional topology and rational conformal field
theory etc. (See [1], [8], [9], [21], [22], [25], [29] etc. for these topics.)

A. Ocneanu introduced the asymptotic inclusion for a subfactor in [19], [20]. This
asymptotic inclusion in subfactor theory is regarded as the right analogue of the
quantum double construction of Drinfel’d [3] (see [24] and [9]). In {23] A. Ocneanu
claimed that combinatorial data satisfying Moore-Seiberg axiom ([18]) in the rational
conformal field theory can be constructed after passing to the asymptotic inclusion
from a given paragroup (see [10, Section 13.5]). A. Ocneanu also says in [25] that
if the fusion graph of the asymptotic inclusion M V (M’ N M) C Mo, is connected
then the system of My,-M, bimodules are braided and non-degenerate and that if we
have a non-degenerate braided system of bimodules then we get a Reshetikhin-Turaev
type invariant of 3-manifolds based on surgery ([27]). So the asymptotic inclusions
are important for these reasons and others.

Most fundamental examples of the asymptotic inclusions are subfactors generated
by the commuting squares of the two-sided sequence of the Jones projections;

(—py---r€_1,€1,...,6q) C (e_n;l,..‘.,e_l’,el,...,enH}
N N
7
(€cmy.. 1 €-1,€0,€1,---r€n) C (E—n—1,...,€-1,€0,€1,-+.,Ent1)-

Here Jones projections {e;}:cz satisfy the following relations;

eieir1€i = B %e;, for i€Z,
eiej = ejei, whenever |1 — j| # 2,



where (3 = 2cos(m/N). We remark that the above commuting squares have periodic-
ity 2 in the sense of Wenzl (see [28, page 357] for the definition of the periodicity of
commuting squares). The indices of the subfactors were first computed by M. Choda
in [2]. The above subfactor is easily shown to be isomorphic to the asymptotic inclu-
sion of the Jones subfactor with principal graph A,. A proof of this fact follows from
a general fact that the commuting square

(MLyN Mo) V (Mo N M) C (MLi_y N Mo) V (Mg N M)
n N
M,_kVMk C M_I_k_l\/Mk+1,

generates the asymptotic inclusion by Popa'’s generating property (see [26]).

Another fundamental example is a group case which was first claimed in [20, I11.3]
(see [16, Appendix] for a complete proof). That is, if we start with a finite group G
and consider the subfactor R C R X G, where R is the AFD II; factor and G acts
freely on R, then the asymptotic inclusion is of the form R®*¢ C RS, where G x G
acts freely on R with G embedded into G x G with a map g — (g, g). This example
gives one of the reasons why the asymptotic inclusion is analogous to the quantum
double construction. (See [17] for more details for this analogy.)

Recently J. Erlijman has made a remark in [4] that the following commuting
squares of two-sided sequence of generators {g; }:cz of Hecke algebra of type B, C, D
produce the asymptotic inclusion for the Hecke algebra of type B, C, D subfactors
of Wenzl,

(g-nw")g——lagl)"'agn) - (g—n—lv‘-'7g-—17gla"-)gu-l-l)
n N

<g—n1 v ;9~1>901917 e )gn> C (g—n-la -3 9-1,90,91,--. agn+1>'

In these cases the commuting squares have the periodicity 2. But in the Hecke algebra
of type A case, they have periodicity n (n > 2) in general. And the period 2 case is
nothing but the above examples of the two-sided sequences of Jones projections.

In this paper we generalize her construction of subfactors to the case we have
a fusion rule algebra and quantum 6j-symbols which produce periodic commuting
squares. We prove that this construction produces the same subfactor as the asymp-
totic inclusion for the subfactor generated by the original periodic commuting square.
We also give some examples and by applying this result in the case of fusion rule alge-
bras of SU(n)r WZW models, which is the same as Hecke algebra of type A subfactors
of Wenzl, we show that the above two-sided sequence of Hecke algebra of type A gen-
erators produces the asymptotic inclusion of the Hecke algebra subfactor of type A.
This result itself has been independently obtained by J. Erlijman [5].

According to the A. Ocneanu’s theory as in [25] and [9], we can get a great deal
of combinatorial data of RCFT and Reshetikhin-Turaev type topological invariants
by our method.

Acknowledgement The author would like to thank Prof. Y. Kawahigashi for fruitful
discussions and comments.



2 Quantum double construction for subfactors aris-
ing from periodic commuting squares

We start with a finite fusion rule algebra A with quantum 6j-symbols satisfying
unitarity, tetrahedral symmetry, and the pentagon equation (see [21], [7] for the
definitions of these). We denote that the standard basis of A by {a;};es. Fix an
element h = a; for some j € J and take finite powers h* of h and decompose them
into sums of basis in \A. Thus we get a fusion rule subalgebra B of A generated by h
and quantum 6j-symbols restricted to the subalgebra B.

We assume that h™ > % = id, that is, h™ contains an element * = id in the
expression of A" as a sum of elements in the basis of B. Here an element id represents
the identity element of the fusion rule algebra A. We take the smallest n satisfying
the condition A™ > * = id and denote it by the same n. Then a natural finite grading
arise in the elements of the basis of B as follows. We set §2, for all k£ (mod n) a subset
of B consists of elements of the basis of B which appear in the expression of h* as
a sum of the elements in the basis of 5. Then the basis of B is decomposed into a
union of finite subsets g, {2y, - -, Qp—1 so that they satisfy the following.

1. *:idEQO,h€Q1

2. if z is in Q, then z - h can be decomposed into a sum of elements in Q. for
k,k+1¢€ N (mod n), :

Definition 2.1 We call a subsystem (i.e., fusion rule subalgebra) B of a fusion rule
algebra A periodic when the generator h of B satisfies A" > id. The smallest such n
is called the period of the system B.

We remark that if the system B is periodic with period n, then it produces a
periodic commuting square with the same period n in the following way. Hence we
get a subfactor with finite index. (See [28] Lemma 1.4.) We make a double sequence
of string algebra which is a modified version of the original string algebra construction
from a paragroup as follows. First we put * in the upper left corner. Then we pass
to the right by multiplying the generator h from the right and pass to the downward
direction by multiplying h from the left. In this way we get periodic commuting
squares with period n both in the horizontal and vertical directions.

An C A C Ay - — P
N n N N
App C App C Ags C Az - — Q
Adp C Ay C A1,_2 Cc Az 0 — Q1

N n N N N

N N N N n



Note that the grading of the vertices of these commuting squares are illustrated
as follows:

01 n—2 n—10

0 1 2 n—1 0 1

1 2 3 0 1 2

2 3 4 1 2 3

3 4 5 2 3 4

n—-101 - n—-2 n-120
0 12 .- n—-1 0

. —t

The connection on the above commuting squares is flat in the following sense, that
is, the horizontal string algebra Ag (resp. A;x) commutes with the vertical string
algebra A; (resp. Ai—1). (See [19], [20], [13] or [14] for the definition of the flatness
in the usual period 2 case.) This definition of the flatness in the case of double

sequence of periodic commuting squares is equivalent to the following condition. (cf.
[14, Theorem 2.1})

®h -®h ®h
D — D — ] e —
& £2 §on
¥ —> L1 — Ty - Toap—t—> *
h® l m m
A 4
N n
h®- 1 72 2
Y
Y2 Y2 =1
Y2m -1 Yom-—1
h®- l 772ml ln2m
* —> L] —> T3 - Top——> %
& &2 &2n

In the above diagram we pass to the right by tensoring h (resp. h) from the right
in the left (resp. right) half of the horizontal paths and pass to the downward by
tensoring h (resp. h) from the left in the upper (resp. lower) half of the vertical
paths. This identity is shown by a slight modification of the original proof in the



canonical period two case ([7, section 4]) if we have the pentagon relation which is
one of the axioms for the quantum 6j-symbols.

Because the vertical string algebra has period n, the vertical graphs are not the
(dual) principal graph of the subfactor P C @ in spite of the flatness when the period
n is greater than 2. But we can get the principal graph of the subfactor by using
the following “orientation reversing” method of [6]. (cf. [6, Corollary3.4, Corollary
3.6]) We change the construction in the vertical direction from multiplying only A to
multiplying h and h alternately. Note that the system B contains & by the definition
of periodicity of B and the Frobenius reciprocity, i.e., we have A"™! = h. So we
obtain a subsystem of B consisting of elements of the basis appearing in the finite
alternating products of h and h. We denote this subsystem by C. In this way we get
the grading of the commuting squares changed as follows:

01 2 n—1 0 1

0 123 0 1 2
n-1 01 2 n—-1 01
0 123 0 1 2
01 2 n—1 0 1

We denote these modified commuting squares as follows.

B, C B C B,3 - = N

N N N N

B070 C B(),l C B(),z - Bogg e = M
n N n n N
Bigp C By € Big C Bz -+ — M
N

n N N N

Here we remark that the subfactor N C M is identical to P C Q.

Because of the flatness of the connection and Wenz!l’s dimension estimate [28,
Theorem 1.6], we conclude that the vertical graphs are the (dual) principal graph
of this subfactor. (see [6, Corollary 3.4, Corollary 3.6].) So we obtain the canonical
double sequence of higher relative commutants by applying the “orientation revers-
ing” method to both horizontal and vertical directions. (See [6, Theorem 3.5].) The
grading of the vertices again changes as follows:

0 n—-10 n—1 0 n-—1
0 1 0 1 .- 0 1 0
n—-10n-10 --- n—-1 0 n—-1
0 1 0 1 0 1 0
0 n—120 n—10 n-1



We denote these canonical commuting squares as follows:

Cap € Cyp € Cy3 -+ — N

N M N N

Coo C Cop C Gy C Coz -+ = M
M N N N N
Cio C C1 € Cap C Cg -+ — M
N

N N N N

By using this canonical Jones tower N C M C M; C My - -+ C M, we can construct
the asymptotic inclusion M V (M' N My,) C M. We also get another subfactor
QV (Q' NQx) C Qu from the previous tower P C Q C Q1 C @2+ C Qoo.

Here we remark that the asymptotic inclusion MV (M'NMy,) C M, is generated
by the following commuting squares:

CroVCon C Cri1oV Cont1
M M
C'n.,n C C’n+ 1 ,'n+1 }

and the subfactor Q V (@' N Qw) C Qo is also generated by the commuting squares:

AnoV Apn C Angi1oV Aonti
n N
An,n C An+1,n+1 .

Now we give a graphical expression of bimodules arising from these subfactors
MV(M'NMy) C My and QV (@' NQw) C Qo First remark that the generator h
can be identified with M as an M-N bimodule by using canonical commuting squares
as above and graphical expression as in Figure 2.1 (see [24] and [9].)

h

Figure 2.1



So the graphical expressions of the bimodules arising from the subfactor M vV (M' N
My,) C M, are exactly the same as the original ones in [24], [9] by this identification
thZMMN andl—z:NMM. ‘

Next we give graphical expressions of the bimodules arising from the subfactor
RV (Q NQx) C Qoo The algebras Q@ = M, QV (@' N Qw) = MV (M'N M)
and () are expressed as in Figures 2.2, 2.3 and 2.4 respectively. Here the point is
that we change all the labels of edges on the boundary from My and y My, to the
generator h. In particular Figure 2.2 is exactly the 2-dimensional expression of the
string algebras with period n.

h h

Figure 2.2
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h h
h h
h h
Figure 2.3

Figure 2.4

Here Figure 2.2 actually represents Q°® = M°P but we use this expression instead of
the upside-down picture for simplicity. ‘

Similarly if we change the labels of the edges on the boundary from My and
NMp to h, we get a graphical expression of @-@Q bimodule as in Figure 2.5.



h h

Figure 2.5

Here z is one of the elements in the basis of B. We denote this @-@Q bimodule by K,
and call it a surface bimodule. In the following we use the notation Z = QyNC which
is a subset of the basis in the system C.

Theorem 2 2 The bimodule K; above is irreducible. And the set of Q-Q) bimodules
{Kz}zezr makes an isomorphic system of Q-Q bimodules arising from the subfactor
(NCM)=(PCQ), ie., the system {Az}zez of M-M bimodules as above.

Proof:  From the commuting squares with the following gradings

0 1 2 3 0 1.2 - M=Q
n—1 01 2 n—=1 01 — M,

0 1 2 3 0 1 2 — M,
n—1 01 2 n—1 0 1 —

M;

and the graphical expression of ) = M and Q-Q bimodule, the set of bimodules
{K:}zez really makes a system of Q-@Q bimodules. The same method as in the proof
of Theorem 2.1 in [9] also works by using Wenzl’s dimension estimate [28, Theorem
1.6] in order to show the irreducibility of the inclusion @ C R,. Here R, denotes a
von Neumann algebra corresponding to Figure 2.6.



h h

Figure 2.6

Here the edges of the boundaries are labelled by h except for the top two z’s.

And a graphical inspection as in the proof of Theorem 2.1 in [9] shows that the
fusion rule and quantum 6;-symbols of the system of surface bimodules depend only
on the labels on the top edges z € T of the surface bimodules and do not depend
on the labels of edges on the boundaries. So the above system of Q-Q bimodules
{K_.}zer have the same fusion rule and quantum 6j-symbols as the system of Q-Q
bimodule arising from the subfactor P C Q. Q.E.D.

From the above theorem we may and do use the notation Q for the two isomorphic
system of @-Q bimodules as in the theorem.

Similarly we get an irreducible QV (Q' N Qw)-Q V (@' N Q) bimodules expressed
as in Figure 2.7.

10



Figure 2.7

where = and y are any pair of basis in 7 and the edges on the boundaries are labelled
by h. We denote this bimodule by L;,. The above theorem shows that this system
{ Lz,y } has the same fusion rule and quantum 6j-symbols as the system { B, } of
MV (M'NMy)-MV (M'N M) bimodules.

We can also get the sets of irreducible Q V (Q' N Qo )-Qoo bimodules { L, } and
irreducible Qoo-Qo bimodules { L, } as in Figure 2.8 and Figure 2.9 respectively by
changing the labels of the edges on the boundaries from My and yMjs to h. The
irreducibility of these @ V (Q' N Quo)-@oo and Quo-Qoo bimodules are shown in the
same way as in [9, Theorem 4.1, Theorem 4.2].

Figure 2.8

Here the labellings 7; are given by the elements of the subset of the minimal
central projections of Tube Q, the tube algebra of the system @ of Q-Q bimodules

11
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(see [25], [9] for the definition of the tube algebra) which are reachable from * by the
fusion graph of the asymptotic inclusion M V (M’ N M) C My (see [25]).

Figure 2.13

Now we can get the following theorem similarly.

Theorem 2.3 All the systems of bimodules {Lz 4}, {L.}, {L.} and {L,} consists
of four kinds of bimodules arising from the subfactor Q V (@' N Qw) C Qoo have the
same (Zqy graded) fusion rules and quantum 63-symbols as the four kinds of bimodules
arising from the subfactor MV (M' N M) C My,. Hence the two systems make the
same paragroups.

Proof: By the graphical inspection as in the proof of Theorem 2.1 in [9] we can
easily see that the fusion rules and quantum 6j-symbols of the system of these four
kinds of bimodules depends only on the labelling of XY, Z and m;. So we get the
result. Q.E.D.

Corollary 2.4 Two subfactors RV (QNQw) C Qo and MV (M'N My) C My
are isomorphic.

- Proof: Because the two subfactors have finite index and finite depth and have the
same paragroups, these are isomorphic by Popa’s generating theorem for strongly
amenable subfactors [26]. Q.E.D.

In the following we give some applications of this result.

Example 2.5 We start with SU(n) WZW model with level k. We can get a com-
mutative fusion rule algebra with quantum 6j-symbols. If we take the fundamental
generator h, then the resulting subfactor (P C Q) = (N C M) is the same as Hecke
algebra subfactor of type A of Wenzl. (See {6].) The above corollary shows that the
following commuting squares

(g—nyy---;g—lvgl;--'agn) - (g—n——h---7g—lvglv"'7gn+1>
N N

<g—n1 -++39-1,90,91,- - ;gn> C <g—n—1; ey 9-1,90,91,--- )gTH-l)



generate the asymptotic inclusion MV (M’ N M,,) C My. Here g;'s are the standard
generators of Hecke algebras satisfying the following relations:

9i9i+19: = 9i+19i9i+1, for i€Z,
| 9i9; = 959, whenever |i — j| > 2,
92 =(¢—1)g+yq, for i€Z,
:i:iw/n-

where ¢ =€
The isomorphism for this example has been obtained by J. Erlijman [5] indepen-
dently by a different method.

Example 2.6 Again we start with SU(n) WZW model with level k£ and take an-
other generator h different from the fundamental one, then the resulting subfactor is
isomorphic to pPp C pQxp, where P C ) denotes Hecke algebra subfactor of type
A of Wenzl and p is a projection in P’ N @y for some k. Here Qy is one of the von
Neumann algebras in the tower P C Q C Q; C ... C Q¢ C ... which are generated
by the double sequences of period n commuting squares as in [28]. In this case we
do not have natural generators for the commuting squares as in the previous exam-
ple. But our method also works in such cases and we can construct the asymptotic
inclusions for many such subfactors. This is an advantage of our method.

Example 2.7 We start with a fusion rule algebra which consists of N-N bimodules
of a subfactor N C M with principal graph D,,, for m > 2. If we take a bimodule
corresponding to one of the two tails of the principal graph Ds,, as a generator, then
the subsystem B = (h) has period 2 if m is even and period grater than 3 if m is odd.
This is because the contragredient map for Ds,, changes by mod 4, i.e., if m is even,
we have h = h and if m is odd, we have h # h.

Remark 2.8 We can easily modify this method to the case when the subsystem B
has more than two generators. For example if we have m generators hy, hy, -+, b
which are elements in the basis of A, then we take h = hy + hy + - -+ + h,, as a new
generator. And in this case we have to change the definition (Definition 2.1) of the
periodicity. We say the fusion rule subalgebra B generated by the above h periodic
of with the period n if the Bratteli diagram for {h*}r-g;2,.. has periodic with the
periodicity n.
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