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0. Introduction

Non-commutative IP-spaces are, by definition, a family of Banach spaces LP(M) which “in-
terpolates” a von Neumann algebra M and its unique predual M, in a certain sense. If a von
Neumann algebra M is commutative, then there exists a measure space (X, u) such that the
pair (M, M,) is identified with (L*°(X, u), L*(X, p)). Hence in general cases, von Neumann
algebras are called “non-commutative LP-spaces” and their preduals are “non-commutative L-
spaces”’, and in any construction, non-commutative LP-spaces constructed for a commutative
von Neumann algebra should reduce to usual LP-spaces.

The construction of non-commutative LP-spaces has been made by Haagerup ([Ha]), Hilsum
([Hi]), Araki-Masuda ([AM]), Kosaki ([Ko]) and Terp ([Te]). All of these non-commutative
LP-spaces are equivalent in the sense of being isometrically isomorphic, but the constructions
are quite different.

In [Ko] and [Te], the tool for constructing non-commutative LP-spaces is Calderén’s complex
interpolation method ([Ca], [BL]). The complex interpolation method is a way in harmonic
analysis to produce a one-parameter family of Banach spaces Cp(A4g, A1), 0 < 8 < 1 from a
compatible pair (4o, A;) of Banach spaces.

Consider the abelian case. It is known that if we apply the complex interpolation method
to the compatible pair (L=(X, u), L'(X,¢)), where (X, i) is a measure space, we obtain the
family {LP(X, u)}1<p<oo @8 the interpolation spaces. Here, a pair (Ag, A;) of Banach spaces is
called compatible if both Ay and A; are embedded into some linear space E with a common
part which is dense in both Ay and A;. In the abelian case, L=(X, u), and L'(X, u) are
naturally embedded into the Banach space L=(X, i) + L'(X, 1) endowed with the infimum
norm, in which a weak* dense subspace of L®°(X, ) and a norm dense subspace of L'(X, ) is
identified. But in the general case, it is difficult to construct embeddings of the pair (M, M,)
such that it is compatible.

Kosaki ([Ko]) considered the complex interpolation of the pair (M, M,) with a fixed faithful
normal state ¢ on M. and he constructed a compatible pair (M, M,) by the embedding

TEM - zp € M,,
(resp. €M — preM,. )

The non-commutative LP-spaces (called “left LP-spaces” resp. “right LP-spaces”) are defined
as the interpolation spaces of the compatible pair (M, M,). Kosaki discussed more generally
a one-parameter family (M, M,),, —1/2 < n < 1/2 of compatible pairs, in each case M is
embedded into M,, and showed the equivalence to Haagerup’s LP-spaces.

Kosaki’s construction is sufficient for dealing with von Neumann algebras with faithful nor-
mal states, but in general, weights appears naturally such as the dual weights for the crossed
products, and the canonical weights on the group algebras. Making (M, M,) into a compat-
ible pair for a fixed faithful normal semi-finite weight ¢ on M is much more difficult than
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the state case because of the absence of such embeddings. Terp ([Te]) constructed a compat-
ible pair (M, M,) for a faithful normal semi-finite weight ¢, which is equal to the “central”
case in Kosaki’s construction, and showed the equivalence to Hilsum’s LP-spaces If we can
extend Terp’s construction to a one-parameter family as in Kosaki’s, then we can use unified
arguments for the non-commutative LP-spaces.

In this paper, for a faithful normal semi-finite weight ¢ on M, we construct a complex
one-parameter family of compatible pairs (M, M,)(a), o € C. and obtain non-commutative
LP-spaces L(a)(go) by the complex interpolation method. This construction is a generalization
of Kosaki’s one and Terp’s one. When « is real, |a| < 1/2 and g is a state, then the compatible
pair (M, M,), is the same as Kosaki’s. When a = 0, the compatlble pair is the same as Terp’s.
Next, we construct isometric isomorphisms

Up,e8) * Liay(#) = Ly ()

for ¢, € C and 1 < p < co. Hence the families {L(a)}1<p<°o, a € C, are equivalent to each
other, in particular, to Terp’s LP-spaces.

Now, we summarize the content of each section.

In Section 1, we will explain Calderén’s complex interpolation method. We define not only
usual complex interpolation but another complex interpolation method, which is a modification
of the original method inspired by [Ko] to deal with the o-weak topology on von Neumann
algebras.

In Section 2, we will devote to construction of non-commutative LP-spaces by the complex
interpolation method. Analytic elements for the modular operator A, play an important role
in our discussion. Next, we determine the common part of M and M,.

Finally in Section 3, we show that each family {L(a)( )} are equivalent, that is, the LP-spaces
for any parameter o € C are all isometrically isomorphic.

1. The Complex Interpolation Method

First of all, we will explain the usual complex interpolation

The pair of Banach spaces (A, 4;) is called compatible if there exists a normed space £ such
that both Ay and A, can be embedded continuously into £.

Let A = (Ay, A;) be compatible Banach spaces. We define a subspace X(A) of £ by Y(A) =
Ao+ A, and endow its norm by

Hallz(A) = inf{”aolle + ||a1||A1 }a = Qg + ai, Qg S AQ, ay € Al}, a & Z(A)

Then we define

( f is continuous, bounded on D )
and holomorphic in the interior of D

and satisfies
(1) f(it) € Ap for all t € R,
F(A)=qf:D— %(A) the function ¢t € R — f(it) € Ay is continuous }

: and lim;_,10 || f(3t)]|4, = O

(2) f(1+1t) € A for all t € R,

the function ¢ € R — f(1 +4t) € A, is continuous
| and lim, 100 || f(1 +42)||la, =0, )

where D means the closed strip {a € C|0 < Rea < 1} We endow the norm of F (A) by
17 llrcy = masc{max 1) Laoy max £ (1 + iD)la,}, £ € F(A).
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This is indeed a norm of F(A) by the Phragmén-Lindel6f theorem. Then we define the inter-
polation spaces by

Co(A) = {a € Z(A4)|a = f(0) for some f € F(A)}

with its norm
lallcocay = nf{|| fll 7a)| F(6) = a}, a € Cp(A)

for each 6, 0 < 6 < 1. It is easy to see that F(A) and A, 0 < 6 < 1, are Banach spaces.
Now, we introduce another complex interpolation method, which will be used in Section 3
to prove equivalence of non-commutative LP-spaces.
For a compatible pair A = (Ao, A;), we define X(A) as above, and fix a 0(X(A)*, X(A))-dense
subspace II of X(A)*. Then we define F'(A) by

( [ is 0(X(A), IT)-continuous, bounded on D )
and holomorphic in the interior of D

and satisfies

(1) f(it) € Ag for all t € R,

and sup,gg |£(i8)]L4, < o0

(2) f1+it) € A  forall t € R,

the function £ € R — f(1+ it) € A; is norm continuous

\ and sup;cg || F(1 + it)||4, < o0. )

F'(A) ={f:D - S(A)

Then we set
£y = mase{sup | £6) g, sup 11+ D)L}, £ € F(A).

Clearly, F(A) is a closed subspace of F (A) We define interpolation spaces Cy(A4), 0 < § < 1
via F'(A) in a similar fashion.

2. Construction of Non-commutative LP-space

Let M be a von Neumann algebra and ¢ be a faithful normal semi-finite weight on M. We
will construct a complex one-parameter family of the families {L{,\(¢¥)}1<p<eo, @ € C, of
non-commutative LP-spaces by the complex interpolation method. V

Let {m,,n,, A} be the GNS construction induced from (M, ¢), A, Ay be the associated left
Hilbert algebra and the Tomita algebra (see [Ta]), respectively. By identifying M and T,(M),
we write z instead of 7,(z).

Now, for each o € C, we define

o (y*z) = (xJATA(y)|JA~>A(2))

L(a) =¢zeM
for all y, z € ag,

there exists a functional p{® € M, such that }

where ay means A~1(2p) and J and A are the modular conjugation and the modular operator,
respectively.
The following proposition is easily proved by the density of the Tomita algebra.

Proposition 2.1. For each a € C, L, is a linear manifold with

Py = M8 + ol A, p € C, 3,y € L.
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We define the norm of L, by

lzllze,, = max{|lz/leo, 6113,

where || - || and || - ||; denote the norms of M and M,, respectively. We note that L) is a
Banach space.
The next proposition shows that L(,) contains enough elements.

Proposition 2.2. Let a2 be the algebraic linear span of the elements of the form y*z, y, z € ao.
Then, for any a € C, we have

Clg C L(a)

and (
%ffl = WiA-TA(y), JAA(2)

where we ,, £€,m € H, means the vectorial functional (- £|n).
Proof)

Bearing the fact B B
T (JA%A(2)) = JA%2JA%, €€, a € C

in mind, we compute, for z,y, z,w € ay,

(v 2 J A A(z)|[JAT*A(w)) = (2JA%A(z)|lyJA*A(w))
= (m(JATA())A(2)|m, (JAT*A(w))A(y))
= (JA®zJA*A(2)|JA%wIA*A(y))
= (ATwJA“A(y)|AFzJAA(2))
= (wJA®A(y)|zJA*A(z))
= (Z*wJA*A(y)|JA%A(2)).

Hence we get y*z € L(o) and that

SOZ(,?Z; = Wia-aA(y),JA2A(2)" O

Now we define two maps: i(q) : L) — M is a canonical inclusion and jio) : Loy — M.,
is defined by jo(z) = ¢{*,z € L(,). From the density of the Tomita algebra, the above two
maps are both norm-decreasing and injective.

Furthermore we have

Proposition 2.3.
(a) The set i(q)(L(s)) is o-weakly dense in M.
(b) The set jia)(L(s)) is norm dense in M,

Proof)

(a) It is easily proved by Prop 2.2. ,

(b) Suppose that the norm closure of jia)(L(a)) is not equal to M,. Since (M,)*=M, there
exists non-zero rg € M which vanishes on j,(L(a)) by the Hahn-Banach theorem. Rephrasing

this, we have
(@ JATA(y)|JAT*A(2)) = 0

for all y, z € ap. On the other hand, JAPay = ag, B € C, is dense in H,, so that o = 0, hence
a contradiction. []
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Next, we define adjoint maps i?—a) M, — Lf-a) and Jay M- L’(“_a) of i(_q) and j_q):

i{_q) is the restriction to M, of the canonical adjoint map of i(_s), and j_,, is the canonical
adjoint map. Explicitly,

(yi iza)('l/))>L(._a),L’(“_a) = ¢<y) , Y € L(_a), ’(p (= M*,
<y’j?a)($))L(-—a)vL’(« = QO:SJ_OL)(:L') 'Y € L(-—a), S M

—a)

The maps ) and J(—ay are also norm-decreasing and Proposition 2.3 tells us that they
are injective. We call (M, M,)(,) the compatible pair obtained from the above considerations,
and set non-commutative LP-spaces by

Lz(Ja)(M, p) = Cl/p(M:M*)(a), l<p<oo, a€C.

The notation L{, (M, ¢) will be often abbreviated as L{,(¢) in this paper.
Now, our next aim is to prove the following theorem:

Theorem 2.4. The diagram

is commutative, that is, the formula
| () = oy (z), © € Lia), ¥ € L-a)-
holds. |
We will divide the proof of Theorem 2.4 into several propositions.
Proposition 2.5.
P\ (z"w) = 5o (y"2)
for all z,y,z,w € ay.

Proof)
Using Proposition 2.2 together with the definition of L4, we have

o (z*w) = Wa-FA(y), JaAE) (T W)
= ("wJATTA(y)|JA"A(2))
= ¢ @) [

The following proposition shows that L) is a ag-bimodule.
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Proposition 2.6. (a) For each a € C, the Banach space L) is (ag, 6g)-invariant, that is,
for a,b € ag and z € L,), azb € L(,) and

‘Pf;;%z = Ufz‘a-m (a) o Ufia-}-i/Z (0),

where the symbol uypv, u,v € M, ¢ € M,, means (vpv, a) m, m = P(vau), a € M.
(b) If Rea=Re ,3, then L(a) = L(ﬁ) and \

o = ¢ =P o0t

where ¢t = i(8 — @), for all € L) = Lg).

Proof)
(a) If we set
o' = 0_ija—ipp(a), U = 0_iayis2(b),

then we have

Ala) = A*H/2A(a)
= JATE 2 JA(a)
JATETATY2A(a)

JA™*A(a*)

and that

Y = m(A*Y2A())
= m(JAY2JA*A(D))
m(JA%A(D))".

Thus we compute

(azbJA“A(y) |JAT*A(2))

= (zbJA%A(y)|a* JA™*A(2))
(zA*TJA*DTATA(y)|AYTTA %a* JA™*A(2))
(zA* I, (JA*A(y))AB) | TA™ 1. (JA*A(a*))A(2))
(zJA%YJA*A(D)|JA™*2 JA™*A(a*))

(zJATA(yY)| JAA(zd"))

go(a)(b’y*za')

= (a'o3b, ¥ 2) ma M-

Hence, azb € L(,) and
Pl = d'p.

(b) For z € L), we have

(zIAPA()|TAPA(Z)) = (zJAPATA(y)|JATA=A(2))
TAPTATA(y)| AP TAT*A(2))
AT g AETATA(y)| TA™*A(2))

0?4 (z) JAA(y)| JA*A(2)).

AN TN N N
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Hence z € L(s) and

B) — (@
Yo' = Vot (@)

On the other hand,
(zJATAPA(Y)|[JTAT*ATA(2)) = (zJATA(of (y))|JAT*A(0? (2))
= ¢(of (y*2))-
Hence #) = p{® o gf. [
Proposition 2.7. Let a,b € M, and let w;, v;(j = 1,2,3) be elements of ay. Then, for all
t € R, both wjwyaws and vivzbus belong to Ly and we have the equality

(it) * . (—it) *
(pw;wzaw:; (Ul U2 b,U3) - (p'u;"vz bus (wl Wa (I'LU3)

Proof)
For y, z € ay, we have

(wiwsaws JA(Y)|JA(2)) = (waawsJA(y)|wiJA(z))
= (M (JA(y))AMwaaws)|m (JA(2))A(w1))
(JyJ A(waaws)|JzJA(w,))
(2J A(w1) |y J A(waaws))
= (y*z2JA(wy)|JA(wr0ws))

Hence wiwsaws € L(g) and
0
gofu;‘)wza,w:, = wJA(wl), JwzaA(wsz)-
By Proposition 2.6(b) we have wiwsaws € L) and

(it) _ oo?
Qow;wzaw;; = WiA(wr), JwaA(ws) t

= WA-itJA(w1), A~ JwyaA(ws):
Next we will prove the equality

(i) * (o *
Qow{wzaw3('l]1”2bv3) - %;v2bv3(wlw2aw3).

(’U2b'U3)r = \/;[m e—rtZO'ép(’Uzb’Ug)dt.

Then we have (vsbus), € ap, |

For r > 0, let

(vebus), — vabvs  o-strongly”
and
| A(vabus) — A((vebus)y)lln, — 0 as T — +oo.
Hence we compute '
go(wfwzaw?,)(it)(v{(v2bv3)r) = (wiwyawsJATEA(v))|JAT®A((vabus),))
= WiA(wr), TA((vabvs).) (07 (WIWaaws)).

Letting r — oo, we get
(it)

Purunaws (V1V20V3) = WIA(w),IA(vabre) (07 (W w20w3))

(—it)
Qav;‘vgbvg (Uf{w? CL’U)3) . D

To obtain the equality in Prop 2.7 for more general «, we use the idea of analytic continua-
tion. The following proposition is crucial for this purpose.
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Proposition 2.8. Let o, 3 € C, and set E = {y € C|Rea < Rey < Re}. Suppose that a
function
f:E— M,

satisfies the following four conditions:

(1) f is holomorphic in the interior of E.
(2) f is 0(M,, a3)-continuous on E.

(3) f is uniformly continuous on the lines Re 2 = Rea, Rez = Re 3 with respect to the norm

I -

(4) f is norm bounded.
Then, f is norm continuous on D, that is,f belongs to A(E; M,).

Proof)
By applying a suitable affine transformation, we may assume that £ = Dy, = {y € C| -

1/2 < Rey <1/2}
For r > 0, we set

fo(z) = ﬁf_”oo e f(z +it)dt € M., z € Dy,
g (2) = \/; [, et fitYdt € M, z € C,

where each integrals are understood in the sense of Bochner. We will show that each f;
belongs to A(Dy/; M,) and that f is the uniform limit of {f}, ylelding that f also belongs
to A(D;/2; My). The proof divides into several steps.
Step 1. We claim that f, satisfies the conditions (1), (2), (3) and (4) in Proposition 2.8.
Let v be an arbitrary closed rectifiable curve in the interior of D;/,. Then we compute

L (fr(2), @) momdz = L (\E /_o:oe_’tz(f(z+it),a)M*,Mdt)dz

T oo .
- \/;[_we—”2([y<f(z+Zt)7a'>dz)M*,Mdt eEM,, z€ D1/2
0

for all a € II by Fubini’s theorem and Cauchy’s integral theorem. Hence f, is holomorphi‘é m
the interior of D;/, by Morera’s theorem. '
To prove the o(M,, II)-continuity of f., we set, again for a € II,

k(z) = (f(2), @) mepm, 2 € Dyp.

It follows that
k()| < [|f(2)ll1llallc < Mllalle, 2 € Dyya,

where M = || f[|.4(p, 5,m.) = SUPep, , [|f(2)[|1- The bounded convergence theorem applied for
the finite measure e~"*dt tells us that

/Oo e k(w + it)dt — /co e " k(z + it)dt

as w € Dy approaches z. The uniform continuity of the adjoint of modular automorphism
group of implies (3). We can easily prove (4).
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Step 2. We claim that f, admits an analytic continuation to the whole plane C. For each

s € R, we have
fulis) = \/f / ¥ et flis + it)dt

f/ e~ (it)dt

= g.(is)

Hence f, and g, coincide on the imaginary axis. By the same argument as in Step 1, we know
that g, is an entire function, so that g, is the desired analytic continuation of f,.
Step 8. We claim that {f.} converges to f uniformly on D/, with respect to the norm || - ||,
as r — 00.
Since f is uniformly continuous on the line Rez = 1/2, for any € > 0, there exists § > 0
such that
|31 — 32| <b= ||f(1/2 + ’iSl) — f(1/2 + ’iSz)”l < 6/3

We take r so large that
\/7 / e~ dt < &1
Then we estimate
1F(1/2 +1s) = £(1/2 +is)|

- ||\/';/_°; e £(1/2 + is)dt — \E/_c: e F(1/2+ s + it)it ],

< \/;_/_"; R F(L/2 +i5) — F(1/2 +is + it)|| ¢
_ \/;f(/_:+/~66+/6w)e‘”2\|f(1/2+is) - F/2+is + it)lds

| T = e rt2 \/7 8 —rt2 . - .
< o [t amar+ [T [ 02 4+ is) — £1/2 4 s + i)
6
< 6/3/68_rt2dt
< S.<
S gE<e

Hence f is the uniform limit of {f,} and we conclude that f belongs to A(D; /s, M,) by the
completeness of A(D;/2, M,). []

Proposition 2.9. Let o, 8 be complex numbers such that Rea < Re . If a € L) N L),
then we have a € L(,) for all v € C, Rea < Rey < Rep.

To prove Proposition 2.9, we use a classical result in harmonic analysis:
Lemma 2.10. (See [BL]) There exist two integrable continuous functions
K;j:D° xR — Ry, j=0,1
such that for any function f € A(D) we have the presentation
£ = [ fit)Ko(e, e+ [ F(L+it)Ki(z, Dt

for all z in the interior of E.
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Proof of Proposition 2.9)
Fix z,y € ap and consider the function

Yzy t B — C,

Pay(7) = (aJATA(2)|TAT"A(y)), v € E,

where E = {7y € C| Rea < Rey < Ref}.
Then, by Lemma 2.10, and applying some suitable change of variables, there exist two
integrable continuous functions Ky, K; such that

tes0) = [ Gunlet Ko 0+ [ a8+ it)K(3, )l

for all 7y in the interior of E. Now, we define an M,-valued function ® on E by using Bochner
integrals.

®(y) = f_ Ko(7, )pletiiddi 4+ [ Ki(v,t)of+#dt. if Rea < Rey <Ref
= ol ifyeoF

These integrals exist and indeed define elements of M, by Proposition 2.6 (2) together with the
fact that the adjoint action of modular automorphisms on M, is pointwise-norm continuous.

We will show that ® € A(E; M,).
For z,y € ag, we have

(@(7), T*Y) Mu M
= / Ko(t, ) {0, 2*y) pm. mdl + / K (t,7) (@80, 1%y pp, mdit

- / Ko, 7)(aJ AT A ()| JA~"#A(y))dt + /_ Ku(, 7)(@J AP-A (2)| JA P~ A (y))dt

= / ~ u (e + i) Ko(t, v)dt + /_ Z o (B + 1)Ky (8, y)dt

= ‘\Ow,y<’7)-

for all v in the interior of . This formula means that the function @ is analytic in the interior
and (M, a3)-continuous on E. Considering the maps

t € R pla+it) € M,,

and
te R B +it) e M,,

they are both periodic function of period 2w. Hence ® satisfies Conditions (1), (2), (3) and
(4) in Proposition 2.8, so that ® € A(E; M,). Consequently, for all v € E, a belongs to L,

and ¢ly) = (7).

Proposition 2.11. Let a be a complex number such that Rea > 0. Then, for any a € Ly
and for any wy, ws, w3 € ay, we have

wiweaws € Loy N L(y)-

Proof)
This follows easily from Propositions 2.6(1) and 2.7. []
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Proposition 2.12. Let o be any complex number and let a € L), b € L_a), w;,v; €
ag, j = 1,2,3. Then we have

(@) * (o) *
(pw;"wza’w:; (Ul Uzb’l};;) = ('D'vaz bus (’U)l Wa CL'U)3) .

Proof)
This has been already shown in the case of Rea = 0, and by symmetry, it suffices to show
when Rea > 0
We set
E,= {6 €C|0 <Ref <Rea},

and consider the function ,
w: B, — C

defined by
H(B) = L) s (vv2b3) — 00, (wiwnaws), B € E,.

By Proposition 2.9, u is well-defined, and by Proposition 2.8, u belongs to A(E,). Proposition
2.7 tells us that

p(it) =0
for all £ € R, then we have y is identically zero by the Phragmén-Lindel6f theorem. Hence we

get the desired formula. []
The next lemma is used to complete the proof of Theorem 2.4.

Lemma 2.13. ([Te], Lemma 9) For any § > 0, there exists a net {e;} € ap such that
(2) log(e;)lloo < Mm@ € C, for all j.
(b) e; — 1 strongly.

Proof of Theorem 3.4)
Let z € Ly), y € L(_s). We take {e;} as in the previous lemma (6 = 1, say). Set

= Ufa+i/2(ej)2xazx—i/2(ej) ’
Y = Ufa+i/2(ej)2y0$x—i/2(ej)
Then by Proposition 3.12, we have
(2.1) (y;) = ol (z;).

By Proposition 2.6(a), we have
o) = efplMe;,

o) = el Ve
Since the bounded net {e;} converges to 1 strongly, we have

Il — @y — 0,
1ol — @il — 0,

Hence, letting j to infinity in the formula (2.1), we have
o (y) = ().

because both ||Z;||co, ||Y;j]lco are bounded. This concludes the proof of Theorem 2.4. []
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Corollary 2.14.
jz‘—a)(M) N Z?——a)(M*) = L(a); aeC.

Proof) . |
By Theorem 2.4, L) can be regarded as a subspace of L{_,,. Suppose that Jeay(T) =

iz‘_a)(w). Then for any y, z € ag, we have

Yy'z) = ¢ (@)
(zJA®A(y)|[JA™*A(2)).

Hence z € L(4) and (@ = ¢. []

3. Equivalence of Non-commutative LP-spaces

In this section, we will prove that L’(’a)(w) is isometrically isomorphic to Lis(¢), o, 8 € C,
1 < p < 0o. In particular, L{a) is isometrically isomorphic to Terp’s LP-space L?o)(QD)-

To this end, we use the weaker interpolation F'(M, M, ) with II = af. The following
proposition is an improvement of Kosaki’s.

Proposition 3.1. Assume that the unit ball of Ay is o0(£(A), IT)-complete in Y(A). Let Y be
a reflexive Banach space satisfying

ApNA CY C E(A)

as a linear space. Then Cy(A) = Y = Cy(A) provided that the following two conditions are
fulfilled:

(1) for each y € Y there exists an f € F(A) such that
F0) =y, Ifllz = llylly,

(2) each g € Fy(A) satisfies
lg@lly < llgllzca),

where Fy(A) = {f € F(A)|f(z) = exp(e2?) T, ajexp();2), z € D, € > 0, a; € AgNAy, A; €
R}.

Proof)
The proof proceeds similarly as that of [Ko,Theorem 1.8]. Refer also to the proof of 2.8. - []
As an immediate consequence of Proposition 1.1, we have the following:

Corollary 3.2. Let A, B be two compatible pairs. Assume that the unit ball of By is o(X(B),II)-
complete in ¥:(B), where IT is a o(X(B)*, £(B))-subspace of X(B)*. Moreover, suppose that
Ay is reflexive for all , 0 < § < 1. If there is a isometric map of F'(A) into F'(B), then
Ag = By (equal norms), 0 < 8 < 1.

Theorem 3.3. Let a be a real number. Then L, (y) is isomerically isomorphic to Ligy ()
for 1 < p < o0.
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Proof)
By Corollary 3.2, it suffices to construct a isometric map @ : .’F(O) — f(a) Let f € f(o)
Then we define

2% 3oy (e f (i8)) Ko(2, 8)dt + [23, 7oy (F(1 +1it) 0 0%40) Ki(2,t)dt 0 <Rez <1
(@f)(2) = { ooy (otaf (i) z=it,teR
i_ay(f(L+1t) 0 0%s,) z=1+it,teR.

We will show that ®f € .7-'(’a). For y,w € ag, we set

T]y*w(z) = (f(z),( Oia(1- z)(y)) —ta(l— z)( )))2(0),L(0), zeD.

It is easy to see that 7,~, belongs to A(D). Then we compute

Nyw (i) f(it), (o za(l—}-it)(y))*g fz’a(l—it)(w)))z(o)xL(o)
Fit) JAT I () |[TAA(w))
of (f(it)) JA™*A(y) | JA*A(w))

J(a) ( (Zt)) Y w>2(a)1L(a)
(@f)(it),y w)E(a) Lays

{
(
(
(4
{
and

ny*W(l + it) = (f(l + it): (U;fx(it) (y))*afz‘a(—it) (’UJ)))E(O),L(O’)
(F(L+it) 0 Lot y WM. M
((CI)f)(l + it): y*w>2(a)lL(a)'

By Lemma 2.10, we have ®f € F(,) with

((@f)(z),y*w)g(a),,;(a) = Nyw(2), 2 € D.

We also easily check that || f||z,, = [|2f]| 7, since the difference factor on the boundary is
just modular automorphisms. Hence we completed the proof. []

Theorem 3.4. Let «, § be complex numbers such that Rea = Re 3. Then L(a) is isometrically
isomorphic to L( 8)> 1<p<oo.

Proof)

We may assume that « is real. Then by the previous theorem, L(a) is reflexive. Again this
time, we will construct an isometric map from ]-'( ) into .7:( 8)-

Let f € ]—'( y- Then we define

f°°ooj(* (02 (F(i0)Ko(z,t)dt + [%2,i7_g(F(1 +it))Ki(2,8)dt 0 <Rez <1
(@f)(2) = { J( 5)( 2(f(i))) z=1t,t €R
i_p(f (1+zt)) z=1+1itt €R,

where s = —i(8 — ). We will show that ®f € .7-'(’ﬁ). For y,w € a3, we compute

(@) @),y Wsgre = Ou(0f(f(it)))
¢ (f(it)) by Proposition 2.6(b)
= < (Zt)’ y*w>E(a),L(a)
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and
(@NHA+it), Y Wiy = (FA+E), Y wW)m,m-

By Lemma 2.10, we have ®f € F4 with

((@F)(2), Y W) Ly = Mrw(?), 2 € D.

Moreover, this map is isometric because the difference factor on the boundary (difference
arises only on the left boundary line) is just modular automorphisms. Hence we completed
the proof. []

Combining Theorems 3.3 and 3.4, we obtain the following result:

Corollary 3.5. Let o, # be any two complex numbers. Then L’(’a) is isometrically isomorphic
to Lig), 1 <p < oo.
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