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DIMENSION THEORY OF THE C*-ALGEBRAS OF LIE GROUPS

TAKAHIRO SUDO (72 % J& %)

Department of Mathematics, Tokyo Metropolitan University

-1.1. INTRODUCTION

-~ M.A Rieffel [R] introduced the notion of stable rank of C*-algebras, i.e. non commu-
tative complex dimension, and raised the problem such as describing stable rank of the
C*-algebras of Lie groups in terms of their geometry. First of all, A.J-L.Sheu [Sh] suc-
ceeded in the computation of stable rank of the C*-algebras of certain simply-connected
connected nilpotent Lie groups. By different methods, H. Takai and the author [ST1]
showed that stable rank of the C*-algebras of simply-connected connected nilpotent Lie
groups is equal to complex dimension of the fixed point subspace of the real dual spaces
of their Lie algebras under the coadjoint actions. This formula is not valid to the case
of exponential Lie groups in genefal, for example ax + b-groups.

The first half of this talk is a joint reserch with H. Takai [ST2]. First of all, we
analyze the spectrums of simply-connected connected solvable Lie groﬁps of type‘I.:‘
This is crucial to the computaton of stable rank of their C*-algebras. Next we show
that stable rank of the C*-algebras of simply-connected connected solvable Lie groups
of type I is estimated by complex dimension of the fixed point subspaces of the real
dual spaces of their Lie algebras under the coadjoint actions. This result generalizes the
estimation in the case of simply-connected connected nilpotent Lie groups [ST1]. As
corollaries, we show that the product formula of stable rank holds for the C*-algebras
of connected solvable Lie groups of type I, and estimate real rank in the case of simply-
connected connected solvable Lie groups of type I.

In the second half, we consider non-amenable connected real Lie groups of type I

[Su]. First of all, we show that stable rank of the reduced C*-algebras of connected non
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compact real semi-simple Lie groups is estimated by real rank of these groups. This
result is extended to the case of connected reductive Lie groups and partially even to the
case of connected non-amenable real Lie groups of type I. As a corollary, we show that
the product formula of stable rank holds for locally compact, o-compact non-amenable

groups of type L

1.2. SPECTRUM OF SOLVABLE LIE GROUPS OF TYPE I

In this section we show that every irreducible representation of simply-connected
connected solvable Lie groups of type I is either 1 or oo dimensional. This property
is crucial to the estimation of stable rank of the C*-algebras of those groups. Also
we show that 1-dimensional representations of such groups correspond naturally to the
fixed points of the real dual spaces of their Lie algebras under the coadjoint actions.

Let G be a connected Lie group and G its spectrum which consists of all continuous
irreducible unitary representations of G up to equivalence equipped with hull-kernel
topology. Let C*(G) be the C*-algebra of G, which is generated by the image of the
universal unitary representation of G. We identify the spectrum C*(G)" of C*(Q)
with G. We denote by G1, Goo the set of all 1, co-dimensional representations of G
respectively. We call Gy the character space of G, which is a topological group with
the pointwise multiplication. Then we show G = G; U Go, if G is a simply-connected
connected solvable Lie group of type I in what follows.

Let & be the Lie algebra of G and &* the real dual space of . We denote by Ad
the adjoint action of G on ® and by Ad* the coadjoint action of G on & defined by
Ad™(9)e(X) = ¢(Ad(g™!)(X)) for g in G, X in & and ¢ in B*. We denote by (8*)C
the fixed point subspace of &* under Ad*. Note that &* is isomorphic to a Euclidean

space as a topological (vector) group. Then the following lemma holds:

Lemma 1.2.1. Let G be a simply-connected connected Lie group. Then G, is isomor-

phic to (&*) as a topological group.

Sketch of proof. Let x be an element of G;. Its differential dx 1s a Lie homomorphism
from & to iR defined by dx(X) = Zx(exptX)|s=o for every X in &. Let & be the



63

mapping from G to (&*)€ defined by ®(x) = dx/27i for x in Gy. In fact,

Ad*(exp(Y))(dx/2mi)(X) = (dx/2ni)(Ad(exp(-Y))X)
- %(X/%ri)(exp H(Ad(exp(=¥)) X)) eo

= g;(x/Zvri)(exp(—Y) exp tX exp(Y))|s=o = (dx/2mi)(X)

for every X,Y in &. Then the injectiveness and surjectiveness of & depend on the

connectedness and simply-connectedness of G respectively. U

Remark 1.2.2. There exist some non simply-connected connected solvable Lie groups of
type I, for which the above lemma is false. In fact, let G be the n-dimensional torus

T". Then (6*)¢ = R™. On the other hand, G = Z".

Lemma 1.2.3. Let G be a connected Lie group. Then G4 is isomorphic to G/, Gpn

as a topological group where [G,G] is the commutator subgroup of G.

Sketch of proof. We consider the mapping ® from (G/[G, G])" to G defined by ®(x) =
xoq for x in G where g is the quotient mapping from G to G /|G, G]. The surjectiveness
of ® follows from that G/[G, G| is abelian. O

Remark 1.2.4. Since G/[G,G] is a connected commutative Lie group, it is isomorphic

to R* x T*~* for some k > 0 where n = dim(G/[G, G]). Thus, by Lemma 1.2.1,
Gy = (G/[G, G = R* x z"*

as a topological group. If G is a simply-connected connected Lie group, then it follows

from Lemma 1.2.1 and 1.2.3 that
(6")¢ =G, = (G/[G,G)" =R"

as a topological group.

Next we recall briefly the representation theory of simply-connected connnected solv-
able Lie groups by Auslander and Kostant [AK] in what follows:

Let G be a simply-connected connected solvable Lie group. Let ¢ be the complex-

ification of ® and B¢ its dual space. Let ¢ be an element of &*. We denote by G,
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(resp. [p]) the stabilizer (resp. the orbit) of ¢ with respect to the coadjoint action of G
and by &, its Lie algebra, which equals the radical of ¢, i.e.

{X € 8|p([X,Y]) =0 for every Y € &}.

We extend ¢ to an element of & by (X +1Y) = p(X) +1ip(Y) for X +1Y in B¢. Let

5 be a polarizaton for ¢, which satisfies the following conditions:

1) 5 is a Lie subalgebra of &,

2) $ contains &, and is stable under Ad(G,),

)
)
3) «([%,9]) = {0},
)
)

A~ N N S

4) dimc(®&¢/9H) = dimg|y],

(5) $ + % is a Lie subalgebra of &¢,
where $ is the conjugate space of § in &¢. 4 ,

Put 9 NS =Dand (H+H) NS =E. Then Dc =HNHand Ec = H+ H. Let D,
and Fy be the connected Lie subgroups of G corresponding to Lie algebras ® and &
respectively. Put D = G,Dg and E = G,Ey. Then it holds thé,t E = DEy. We have
thé,t‘Ad* (D) is open in the affine subspace ¢ + £+ of &* Where &L is the annihilator
of . | o

We define an alternating bilinear form B, on £/® by

B,(X,Y) = o([Y, X])

for ¢ in ®* and X,Y in £/D. Then it is a non-singular alternating form on £/D.
(€/D)c is identified with £c/Dc. Then (£/D)c = H/Dc & H/Dc where & is the direct
sum. Let J be a linear mapping of (£/D)¢ defined by J = —iI on /D¢ and J = il
on $/D¢. Then J maps £/D onto itself, and J? = —I on £/D. Let S, be the bilinear
form on £/D defined by
S,(X,Y)=B,(JX,Y).

Then it is a non-singular symmetric bilinear form on £/9. We say that a polarization
$ for ¢ is positive if S, is positive definite.

Let 91 be the maximal nilpotent ideal of &. Since M is stable under Ad(G), so is
2™ under Ad*(G). A polarization § for ¢ is called strongly admissible if NN is a
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polarization for ¢|y in 9*, which is stable under G|y, Where |y is the restriction of
p to M.

We say that a polarization §) for ¢ satisfies Pukanszky condition if Ad*(E)yp is closed
in &*. If this condition is satisfied, then Ad*(D)p = ¢ + L. Any strongly admissible
positive polarization satisfies Pukanszky condition.

An element ¢ in &* is called intégra,l if there exists a character n, of G, whose
differential dn,, is equal to the restriction of 27ip to &,. More "precisely, it is defined
by ny(exp X) = e2™%(X) for X in &,. If G is of type I, then evvery element ¢ in &*
is integral. If a polarization $ for ¢ satisfies Pukahszky condition, then 7, extends
uniquely to a character x, of D.

- Let L2(E/D, X,) be a Hilbert space of all complex valued pg-measurable functions
f on E satisfying '
Xo(d) 7 f(e) = f(ed)

for din D and e in E, where pp is the Haar measure on F, and

/ |f(&)]*dup/p(&) < 0o
E/D

where pg /D is the quotient measure of pg on E/D and & =eDin E /D. The inner
product of L2(E/D, X‘qo) is defined by

(lfa) = [E R OREs(@)

for fi, f2 in L?(E/D,x,). Then the induced representation indptg X, of X, to E on
L*(E/D,x,) is defined by

(ind xo) (W) (e) = F(h7%e)

for e,h in E.
Let $) be a strongly admissible positive polarization for ¢. Let L?(E/D, x,, %) be
the closed subspace of L?(E/D, x,) consisting of all smooth functions f on F with the

property that
f -2 =2mip(2)f
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for every Z in ) where Z = X +¢Y for X, Y in €, f-Z=f-X +if-Y and

f-X(e)= %f(e exp(—tX))|i=o

for e in E. In fact, differentiating both sides of the following equation:
Xo(exptX) 71 f(e) = f(eexptX)

at ¢ = 0 for X in D, we have that f - X = 2mip(X)f. We denote by indp1g(xy,$) the
subrepresentation of indptg X, corresponding to L*(E/D, x,, H). |

Let L*(G/E) ® L*(E/D, x,, %) be the Hilbert space of all L2(E/D, x,,, $)-valued
pG-measurable functions on G satisfying the similar conditions as above with respect

to indpre(Xy, $). We denote by indge(indpre(xe, H)) the induced representation of
indp1g(xe, H) to G on L*(G/E) ® L*(E/D, x4, ). Let

ind (xy, ) = ind(ind (x, 9))-

Then we know that if G is of type I, then every element 7 in G is equivalent to an
induced representation indp1g(X,,$) of G.

Note that E/D has a complex structure so that it is holomorphic to C" for some
n > 0. Let A(E/D) be the set of all holomorphic functions on E/D and A(E) the pull
back of A(E/D) to E. We denote by 2f* - - - 2%~ the functions of A(E/D) for (k1y-- . kn)
in Z7 with respect to a complex coordinates (zi,...,2,), where Z, = {k € Z |k > 0}.
Let (z{cl -+~ 2k}~ be the pull back of zfl -2k to E. Then there exists a nowhere
vanishing smooth function f on E such that {(z}* - z5%)~f} for {(ky,...,k,)} in A
are in L>(E/D, x,,%). Then

(25 2h )~ Flas s 0) ™ F) =0, (kayeeyka) # (oo la) € 27
We now show the following lemma:

Lemma 1.2.5. Let G be a simply-connected connected solvable Lie group of type I.
Then G = Gy U Goo. |

Proof. We use the above observation. Let 7 be an element of &, which is equivalent
to some indprgx,. If ® = &, then H N $H = B¢c. Hence H = O¢. It implies that
©([®,®]) = 0. Thus ¢ is in (6*)°. Therefore m = x,,.
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Next suppose that © # &. If dim(E/D) > 0, then L?(E/D, x,, %) is infinite dimen-
sional. If dim(E/D) = 0, then E; = {1}, namely £ = D. Since Dy contains (G,)o
which is the connected component of G, containing the unit,

D/DO = G<pD0/D0 = an/(DO n G<p) = Gw/(G(P)&

Thus dim D = dim Dy, which implies dim(G/E) > 0. Hence, indpjeXx, is infinite

dimensional. [
Moreover, the following lemma holds:
Lemma 1.2.6. Let G be a connected Lie group. Then Gy is closed in G.

Proof. Let m be in the closure of Gy. Let ¢r ¢ be the state of C*(G) defined by

ore(a) = (r(a)él€)

for a in C*(G) and ¢ in the representaton space H, of m with ||¢|| = 1 where (-|-) means

the inner product of H,. By [D; Theorem 3.4.10], we have that
prgla) = lim " aixi(a)
=1

for {x;} in Gy and {o;} in C. It follows that x¢(ab) = g ¢(ba) for a,bin C*(G). Since
¢ is arbitrary, w(ab) = n(ba). From the irreducibility of =, it belongs to G;. Therefore
él is closed in G. O

Remark 1.2.7. The similar result also holds for arbitrary C*-algebras.
Combinig Lemma 1.2.5 and 1.2.6, we have the following:

Lemma 1.2.8. Let G be a stmply-connected connected solvable Lie group of type I and
C*(G) its C*-algebra. Let J be the closed ideal of C*(G) corresponding to Goo and
C()(él) the C*-algebra of all continuous functions on G1 vanishing at infinity. Then

the following exact sequence is obtained:

0—J— C*G) — Co(Gy) — 0.

Remark 1.2.9. The similar result also holds for connected solvable Lie groups where 3

is é\él
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1.3. MAIN THEOREMS IN THE FIRST HALF .

First of all, we recall the definitions of stable rank and real rank respectively.

Let 2 be a unital C*-algebra. We denote by sr(2) the stable rank of 2. Then
sr(2A) < n if every element (a;)2; of the n-direct sum A™ of 2 can be approximated by
| the element (b;)7; of A™ such that ) ., brb; is invertible in 2. If there exists no such
n, then we let sr(A) = co. If A is non unital, then the stable rank of U is defined by
sr(2l) where 2 means the unitization of 2, We use the basic results of stable rank in
[R] later.

Let A, be the set of all self-adjoint elements of A. We denote by rr(2) the real rank
of A. Then rr(A) < n means that every element (a;)?_, of A% can be approximated

by the element (b;)?_, such that Y b7 is invertible in 2(. If there exists no such n,

then we let rr(2) = co. If 2 is non unital, then real rank of 2 is defined by rr(2) (cf.
[BP]).

Next result is useful for computation of stable rank, and related in a certain sense
with the formula such that sr(2 ® K) < 2 for arbitrary C*-algebra 2 where K is the

C*-algebra of all compact operators on a countably infinite dimensional Hilbert space.

Proposition 1.3.1. Let U be a separable C*-algebra of type I such that every element
of A is infinite dimensional. Then sr(2A) < 2.

Proof. Let {Z,}32, be a composition sereis of A with Zo = 0 such that {Z,/Z,—1}52,

are of continuous trace. Consider the following exact sequences:
0-7Z,/Tn1— (ZTn/Tn-1)" —-C—0
for every n. By Nistor’s result [N; Lemma 2],
st((Zn/ZTn-1)~) < 2Vsr(C) =2,

where V means maximum. Hence sr(Z,/Z,-1) < 2 for every n. Next consider the

following exact sequences:

0—>Tp/Tr—y = Tn/Tho1 = In/Z — O
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for 1 < £ <n — 1. Again by Nistor’s result,
st(Zp/Ti—1) < 2V sr(Z,/Tk)

for 1 < k <n—1. It follows that sr(Z,) < 2 for every n. By the density of U2 ,Z, in
2, we conclude that sr(A) < 2. O

As a first step of the computation of stable rank of the C*-algebras of simply-

connected connected solvable Lie groups of type I, we have the following:

Lemma 1.3.2. Let G be a simply-connected connected solvable Lie group of type I, Gy
its character space and C*(QG) its C*-algebra. Then

<2 f dim Gy = 1,
O S Ay
= dim¢(Gy)  if dim Gy > 2
where dimc(+) = [dim(-)/2] + 1 and [-] is Gauss symbol.
Proof. Put A = C*(G). Let {Jx}32; be a composition series of 2 with Jo = {0} such
that {Jr/Jr-1}%2, are of continuous trace. We coﬁsider the following exact sequences:

0—3NTg — T = Co(G1 N (Te \ (INTL)N) — 0

for every k, where J is the closed ideal of 2 as in Lemma 1.2.8. Then {JNJ,}%_; is the
finite composition series of JNJ;. Put D, =INT; for 1 < s < k with D = {0}. Next

we consider the following exact sequences:
0 - 93/93_1 g 3k/@3_1 - jk/@s g 0

for 1 < s < k. Note that {D,/D,_1}*_, are of continuous trace, and every element of

(Ds/Ds-1)" is infinite dimensional. Then applying Nistor’s result [N; Lemma 2},
st(Jr/Ds-1) <2V sr(Tp/Ds)

for 1 < s < k. By repetition, st(Jz) < 2V sr(Co(G1 N (T \ (INT)N))). Hence, we
obtain sr(Jz) < 2V dime(Gy) for every k.
Now put m = 2V dim¢(Gy). Let (a;), be an arbiti'a,ry element of A™. Then for a

large enough n > 1, there exists an element (b;)™,; of J7 such that |la; — b;|| < €/2 for
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1 <2 < m. Since s1(J,) < m, there exists an element (c;)7; of J7 such that > ;- clc;
is invertible in J, and ||b; — ¢;]| < e/2for 1 < ¢ < m. Thus |ja; —¢;|| <efor1 <i<m
and )", cfc; is invertible in 2. Therefore sr(2A) < m. O

We now show that Lemma 1.3.2 extends to the case of connected solvable Lie groups

of type L.

Proposition 1.3.3. Let G be a connected solvable Lie group of type I, Gy its character
space and C*(G) its C*- algebra. Then

<2 if dimGy =0 or 1,
=dim¢ G, if dim G, > 2.

st (G

Proof. Let G be a connected Lie group of type I and G its universal covering group. We
denote by ¢ the quotient map from G to G and by I' the kernel of q. Then we define
the map @ from G to ()" by ®(x)(g) = 7(gT) for 7 in G and g in G. It follows from
Lemma 1.2.5 that G = Goo U é’l. Therefore Lemma 1.3.2 holds for connected solvable
Lie groups of type I. O

Remark 1.3.4. This result suggests that stable rank of C*(G) is controlled by the char-
acter space Gy of G. By Remark 1.2.2, Gy is not replaced by (#*)€ in general.
We give the application of Proposition 1.3.3 to show the product formula of stable

rank in the case of the C*-algebras of connected solvable Lie groups of type I as follows:

Corollary 1.3.5. Let G, H be two connected solvable Lie groups of type I, and C*(G),
C*(H) their C*-algebras respectively. Then

st(C*(G) ® C*(H)) < st(C*(G)) + st(C*(H)).

Sketch of proof. First of all, note that C*(G) ® C*(H) is isomorphic to C*(G x H). We

also have that
dim¢ (G x H)} < dime Gy + dime Hj, st(C*(Q)) + st(C*(H)) > 2.

By Proposition 1.3.3, the proof is complete. O



71

Remark 1.3.6. The above product formula gives an affirmative answer to a question

raised by M. A. Rieffel [R], whether for any two C*-algebras 2 and B,
st(A R B) < sr(A) + sr(B).

We proceed to refine Lemma 1.3.2. Next lemma is useful in computation of stable

rank. To prove it we use the basic results of K-theory and a generalized index theory

(refer to [W]).

Lemma 1.3.7. Let G be a simply-connected connected solvable Lie group and C*(G)
its C*-algebra. Then st(C*(G)) =1 if and only if G = R. |

Proof. If G = R, then by Fourier transform, C*(G) = Cp(R). Hence sr(C*(G)) = 1.
Conversely, let dimG = m + 1 > 2. Then G is considered as a semi-direct product
N xR where N is a simply-connected connected solvable Lie subgroup of G and dim N =

m. By Lemma 1.2.8, the following exact sequence is obtained:
0— Iy — C*(N) — Co(Ny) = 0

where Jy is the ideal corresponding to an open subset N \ N1 of N. Moreover, since

N, is R-invariant closed, the following exact sequence is obtained:
0—JIxy xR— C*(N) xR — Co(Ny) xR — 0.

Note that N, is homeomorphic to a Euclidean space R™ for n = dim(N;) > 1.
Denote by RT the set of all ¢ in R™ such that R, = R where R, means the stabilizer
of ¢ under the coadjoint action of R. Since R} is R-invariant, we have the following

exact sequence:
0 — Co(R*\R}) x R — Co(R™) xR — Co(RT X R) — 0.

If R} # {0}, then sr(Co(R} x R)) > 2. It implies that st(C*(G)) > 2.
Next consider the case R} = {0}. Then we have the following six-term exact sequence:

Ko(Co(R™\ {0}) ¥ R) —— Ko((Co(R") ¥ R)) —— Ko(Co(R))

d !

K1(Co(R)) —— Ki((Co(R™) 1 R)) ——— K;(Co(R™\ {0}) ¥ R)
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Using the Connes’Thom isomorphism,
K;((Co(R™) x R)) = K;11(Co(R™)) = Kiy144(C)

for i =0 or 1. If n is even, say n = 2m > 2, then

K1+2m(C) =0 1f1,=0

K;((C R? x R)) =
(ol ) ) { Koron(C)=Z ifi=1.
If nis odd, say n = 2m + 1 > 1, then

K1+2m+1(C) =7Z ifi= 0

Ki((Co(R*™) x R)) = { Kopoms1(C) =0 ifi=1.

Again, using the Connes’Thom isomorphism,
Ki(Co(R™\ {0}) ¥ R) = K;41(Co(R™ \ {0})) = Ki11(C(S™™) ® Co(R4))-

Then using the Kiinneth formula, K;11(C(S™"!) ® Co(R;)) =

{ (Ko(C(S™ 1)) ® K1(Co(R))) & (K1(C(S™ 1)) ® Ko(Co(R))) iféi=0
(Ko(C(S™1)) ® Ko(Co(R))) ® (K1(C(S™ 1)) ® K1(Co(R))) if i = 1.
Note that K;(C(S™ 1)) = K;(Co(R* 1)@ C) =

{ Ko(Co(R™ 1) @ Z = Ko 1(C)®Z ifi=0
K1(Co(R™ 1)) =2 K,(C) if 4 = 1.
Hence, if n = 2m > 2, then K;(Co(R*™ \ {0}) x R) =

{((KZm—l(C)®2)®Z)@(sz(c)®0)%'Z ifi=0
(Kam-1(C)®Z)®0) ® (K142m-1(C)®Z)=Z ifi=1.

If n =2m + 1> 1, then K;(Co(R?™*1\ {0}) x R) =

{ (Kom(C)DZ)®Z) ® (Kom+1(C)®0)=ZDZ ifi=0
(Kam(C)®Z)®0) & (Kom4+1(C)®Z) =0 ifi =1.
Thus, the above six-term exact sequence is equal to the following diagram:

Z 0 0

5T l if n is even,

Z Z Z
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77 Z 0
4 l if n is odd.
Z 0 0

Note that the index map § from K;(Co(R))(=Z K1(C(S?))) to Ko(Co(R™ \ {0}) x R) is
non zero in both cases.

- Putting J = (Co(R™ \ {0}) ¥ R) ® K, we have the following exact sequences:

0 > 3 (CoR™) xR)~) @K —— C(SY)®K —— 0
H gl |
0 > J , M(3) —2 . M@/ —— 0

where M (3J) is the multiplier algebra of J. Then the following six-term exact sequence

is obtained:

Ko(Co(R™\ {0}) xR) —— Ko(M(3)) ——  Ko(M(3)/3)

"] ]
K1(M(3)/3) — Ki(M(J)) —— Ki(Co(R™\ {0}) xR)
From the fact that K;(M(A®K)®%B) = 0 for : = 0,1 where A and B are C*-algebras
and B is unital [W; Theorem 10.2], we have K;(M(J)) = 0 for i = 0, 1. Thus,

Ki(Co(R™\ {0}) ¥ R) = K;41(M(3)/TF), fori=0,1(mod2).

Then the above six-term exact sequence is equal to the following diagram:

Z —— 0 Z

nT l if n is even,
vi 0 Z
77 . 0 0

nT l if n is odd.
77 0 « 0

Let D be an element of (Co(R™) x R)™ such that o(D) = id where id(z) = z for
z in S, which is identified with a diagonal matrix in M, ((Co(R™) x R)™) having the
diagonal entries (D,0,...). Then the class [o(D)] in K;(C(S')) is a genarater. By
generalized index theory, the index of u(D) is defined by

index(p(D)) = n([g(x(D))]) in Ko(Co(R™\ {0}) x R)
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where [q(u(D))] is in K1(M(J)/J). We take a unitary w in M2((Co(R™) x R)™) such
that o(D) ® o(D)* = o(w). Then 7(c(D)) ® 7(0(D)*) = 7(o(w)). It follows that
q(u(D)) @ ¢(u(D))* = q(u(w)) and p(w) is a unitary in My(M(J)). By the definition
of the index map,

§([o(D)]) = [wpzw*] — [pa] # 0

where p; is a rank 2 projection in (Cp(R™ \ {0}) x R)~ ® K, which is identified with a
diagonal matrix in M ((Co(R™ \ {0}) x R)™) having the diagonal entries (1,1,0,...).
On the other hand,

n([g(u(D))]) = [u(w)pap(w)*] — [p2] = [wpaw™] — [pa).

If s1(C*(G)) = 1, then sr(Co(R™) xR) = 1. Hence, sr((Co(R™) xR)~®K) = 1. It follows
that invertible elements of M (J) are dense in u((Co(R™) x R)~ ® K). By the property

of the generalized index, we deduce that index(u(D)) = 0 which is a contradiction.

Therefore sr(C*(G)) > 2. O

Remark 1.3.8. Let G be as in Lemma 1.3.7. If dimG = 2, then sr(C*(G)) = 2. In
fact, it is known that G is isomorphic to R? or the real az + b-group which is treated in
Example 1.4.1 later. Thus sr(C*(G)) = 2. However, the converse of the implication is
false in general. For example, R® is a counter example.

Combining Lemma 1.2;1, 1.3.2 and 1.3.7, we obtain the following main result in the

first half:

Theorem 1.3.9. Let G be a simply-connected connected solvable Lie group of type I,

C*(G) its C*-algebra and (&*)C the fized point subspace under its coadjoint action.
Then

st(C*(G)) = (dimg(6*)% vV 2) A dim G.

Proof. By Lemma 1.3.7, we know that sr(C*(G)) = 1 if and only if dimG = 1. By
Lemma 1.2.1, we replace Gy in Lemma 1.3.2 with (8*)¢. By Lemma 1.3.2 and 1.3.7, if
dim G > 2 and dim(®*)¢ = 1, then

st(C*(G)) = 2 = (dimc(6*)¢ v 2) A dim G.



75

By Lemma 1.3.7, if diim G > 2 and dim(&*)€ > 2, then

st(C*(@)) = dime(6*)% = (dime(8*)¢ V2) AdimG. O

Remark 1.3.10. This result extends our estimation in the case that G is a simply-
connected connected nilpotent Lie group. It also suggests that stable rank of C*(G)
is controlled by the geometrical structure of G. If G is abelian, then C*(G) = Co(G).
Thus sr(C*(G)) = dim¢ G. By Lemma 1.2.3, the formula in Theorem 1.3.9 is replaced
by

st(C*(G)) = (dime(G/[G, G)" V 2) A dim G.

Therefore, Theorem 1.3.9 extends naturally the abelian case.

Next, we apply Theorem 1.3.9 to compute real rank as follows:

Corollary 1.3.11. Let G be a simply-connected connected solvable Lie gr;oup 6f type
I, C*(G) its C*-algebra and (6*)C the fized point subspace under its coadjoint action.
Then

r(C*(G)) =1 if dimG =1,
dim(6*)¢ +1  if dim(&*)€ is even,

. *\G *
dim(&") < rr(C*(G)) < { dim(6*)C V3 if dim(®*)C is odd.

if dimG > 2,

Sketch of proof. We use the following inequality:
rr(C’o((@*)G)) <rr(C*(Q)) £ 2sr(C*(Q)) - 1.
See [BP] for the second inequality. Applying Theorem 1.3.9, the proof is complete. O

1.4. EXAMPLES
In this section we give several examples which support Theorem 1.3.9 in what follows:
Example 1.4.1. Let G be the extended real az + b-group, i.e. the semi-direct product

R™ x R defined by all (n + 1) x (n + 1) matrices of the following form:

et 0 a

= (5 5) ()

0 et G,
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for each t,ai1,...a, inR. Put g = (t,a1,...a,). If n = 1, then G is the real az +b-group.
The Lie algebra & of G is defined by all (n+1) X (n+ 1) matrices of the following form:

‘I 1 0 1 '
n _ . _ | -
X_<o 0)’ I = N A )

0 1
for each ¢,z1,...z, in R. The real dual space &* of & is defined by all (n+ 1) x (n+1)

matrices of the following form:

o (1 0). mem

m 0

for each I,m;,...m, in R. We let ¢ = (I,my,...m,). The duality is defined by
@(X) = tr(Xy) for X in & and ¢ in &* where tr is the natural trace of M, 1(R). Then

the coadjoint action of G is given by
Ad*(exp X)p = (I — (nt)"He™* = 1) Zwimi, e tmy,...,e"tmy).
=1

Thus (6*)€ consists of all matrices of the form (I,0,...,0). Hence dim¢(6*)¢ = 1. By
Theorem 1.3.9, we conclude that sr(C*(G)) = 2.
On the other hand, let g = (¢,a1,...,a,),h = (s,b1,...,b,) be in G. Then

ghgT T = (0,(1 ~ €®)ay + (1 = )by, -+, (1= €*)an + (1 — €')bn).
It follows that [G,G] contains all matrices of the form (0,a1,...,a,). Thus we see
G/[G,G] = R. Hence (G/[G,G))" = R.

Next we consider the structure of C*(G). Then the following exact sequence is

obtained:

0 — Co(R™\ {0}) x R — C*(G) — Co(R) — 0.

Then Co(R™\ {0}) x R = C(S™!) ® K where S™~! is the (n — 1)-dimensional sphere
and S° = {~1,+1}. If n > 3, then sr(C*(G)) = 2. In the case of n = 1 or 2, we have
st(C*(Q)) is either 1 or 2. By Theorem 1.3.9, we conclude that st(C*(G)) = 2.

From the above observation,
dimc(®* ® 8*)%¢ =2, (G x G/[G x G,G x G))" 2 R2.

Applying Theorem 1.3.9, we obtain sr(C*(G x G)) = 2.
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Example 1.4.2. Let G be the split oscillator grodp, i.e. the semi-direct product H xR
defined by all 3 x 3 matrices of the following form:

a

et

0

g:

OO -
Ll

for t,a,b,c in R where H is the 3-dimensional Heisenberg group. Put g = (¢,q,b,¢).
Then G is a simply-connected connected exponential solvable Lie group. The Lie algebra

& of G is defined by all 3 x 3 matrices of the following form:

X =

o OO
O+ 8
O N

for t,z,y,z in R. The real dual space * of & is defined by all 3 x 3 matrices of the

following form:
0 0 0
I uw 0

m n 0

(p:

for u,l,m,n in R. We let ¢ = (u,l,m,n). The duality is the same as in Ekample 1.4.1.
Then the coadjoint action of G is given by

Ad*(exp X)p = (v, el +t7e* — D)zm,m, e tn +t71(e™t — 1)zm)

where u' = t~1(et — )zl — t~1(e™* = 1)zn — 2zym + u. Thus (&*)C consists of all
maitrices of the form (u,0,0,0). Hence dimc(Qj*)G = 1. By Theorem 1.3.9, we conclude
that st(C*(G)) = 2.

On the other hand, let g = (¢, a1,0,0),h = (s,a2,0,0) be in G. Then

ghg 'Rt = (t,et (1 — e %)a; + e *(e7t = 1)asy,0,0).
Let g = (¢,0,0,¢1),h = (5,0,0,¢c2) be in G. Then
ghg™th™1 =(0,0,0,(1 — e®)c; + (&' — 1)ca).

It follows that [G, G] contains all matrices of the form (0, a,0,c). Let g = (0,a1,b1,c¢1),
h = (0,a3,bs,cz) be in G. Then

ghg™'h™! =(0,0,a1cy — azcy,0).
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Note that (0,a,b,c) = (0,a,0,c)(0,0,b,0). Since [G,G] is a subgroup of G, it contains
all matrices of the form (0,a,b,c). It follows that [G,G] = H. Thus G/[G,G] = R.
Hence (G/[G,G))* £ R.

From the above observation,
dime(&* @ 8*)9*% =2, (G xG/[G x G,G x G))* =2 R>.

Applying Theorem 1.3.9, we obtain sr(C*(G x G)) = 2.

Example 1.4.3. Let G be the semi-direct product R? x R defined by all 3 x 3 matrices

of the following form:

_(o(t) a _ [ cost —sint _(a
g—( 0 1)’ a(t)_(sint cost)’ a—(az)

for each t,a,,a; in R. Put g = (¢,a1,a2). Then G is the only non exponential simply-
connected connected solvable Lie group with dimensions < 3 up to isomorphisms (cf.

[LL]). Actually, the Lie algebra & of G is defined by all 3 x 3 matrices of the following

0 -t L1
X = t 0 I

0 0 O

form:

The real dual space &* of & is defined by all 3 x 3 matrices of the following form:

0 m O
p=1-m 0 O
0

L Iy

Put ¢ = (m,l;1,l3). The duality is the same as in Example 1.4.1. Then the coadjoint

action of G is given by
Ad™(exp X) = (m/, lycos(—t) + lasin(—t), —lysin(—t) + lycos(—t))

where m' = m + (2¢) "I (sin(—t)(z2ls — z1l2) + (1 — cos(—t))(z1l1 + z2l3)). Note that
G, =R?*%Zfor ¢ = (0,13, 1) with non zero I3, l5. It is known that if G is an exponential
Lie group, then G, is connected for every ¢ in &* (cf. [LL]). Thus G is non exponential.
Then (&*)€ consists of all matrices of the form (m,0,0). Hence dimc(®*)¢ = 1. By
Theorem 1.3.9, we conclude that sr(C*(G)) = 2.
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On the other hand, let g = (¢,a1,a2),h = (s,b1,b2) be in G. Then

ohg=1h-t — (agn (13 = afs))a + (2(0) - 1z>b> L= (é g)
Thus [G, G] consists of all matrices of the form (0, a1, az). Hence G/[G, G] = R. Thus
(G/1G,G])" =R.

From the above observation,
dime(&* @ 8*)*¢ =2, (G x G/[G x G, G x G)) = R2.
Applying Theorem 1.3.9, we obtain sr(C*(G x G)) = 2.

2.1. INTRODUCTION OF THE SECOND HALF

In the first half, stable rank of the C*-algebras of the radical part of simply-connected
connected Lie groups of type I has been computed. In the second half, we first focus
our attention on the non radical part of connected Lie groups, i.e. connected non
compact real semi-simple Lie groups. They are non-amenable so that we only consider
their reduced C*-algebras. We show that stable rank of these algebras is handled by
real rank of those groups. This result extends to the case of connected reductive Lie
groups and partially even to the case of connected non-amenable Lie groups of type I
As a corollary, we show that the product formula of stable rank holds for the reduced
C*-algebras of locally compact, o-compact non-amenable groups of type L.

Let G be a locally compact group and G, its reduced dual which is the support of
the regular representaton of G. Let C(G) be the reduced C*-algebra of G, which is
generated by the image of the regular representaton of G. We identify the spectrum
Cx(G)" of C*(G) with G,.

2.2. THE CASE OF SEMI-SIMPLE LIE GROUPS

First of all, we give some basic properties of connected non compact real semi-simple
Lie groups (refer to [Kn]).
Let G be a connected non compact real semi-simple Lie group with its Lie algebra

g. Let 6 be a Cartan involution of G, which is an automorphism of G such that % = 1.
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Let K = {g € G|6(g) = g} be the maximal compact subgroup of G corresponding to
6. Let df be the differential of 6. Since (d6)? = 1, we have a Cartan decomposition
g =t @ p of g where &, p are +1, —1 eigenspaces of g under df respectively.

Let a be a maximal abelian subspace of p and a* its real dual space. We identify a*

with a Euclidean space. For every ¢ in a*, let g, be its root space defined by
{X € g|[Y, X] = (Y)X for every Y € a}.

If g, # {0}, we call ¢ a root of g. Let A be the set of all roots of g. Fix a basis {p;}7,
of a*. We call ¢ positive if ¢ = > &, z;¢p; with z; = 0(1 < ¢ < k) and zg41 > 0 for
some k > 0. Let AT be the set of all positive roots of g. Put n = > pea+ 8o whichis a
nilpotent Lie subalgebra of g. Then g decomposes into the direct sum g=¢@® a®n.

Let K, A and N be the Lie sﬁbgroups of G corresponding to €, a and n respectively.
Then G has an Iwasawa decomposition G = KAN. Define by rr(G) the dimen'sion‘ of
A, ie. real rank of G. Let M = Zg(a) which is defined by

{g € K|Ad(9)X = X for every X € a}.
It is a compact subgroup of G v‘}ith its Lie algebra 3¢(a) which is defined by
{X €t|[Y,X]=0for every Y € a}.

Then P = M AN is a Lie subgroup of G, which is called a minimal parabolic subgroup
of G determined uniquely up to conjugacy.

Let W be the Weyl group defined by the quotient Ng(a)/Zk(a) where Ng(a) is
defined by {g € K |Ad(g)a = a}. Then W acts on M x A as follows:

w-o(m)=c(u mu) ceM,meM, w-x,(a)=x.(u"tau) acA
where u is any representative of w in W, s is in a* and x,(exp X) = ¢**(X) for X in a.
We identify x, in A with s in a*. Let (0, s) be an element of M x A. We denote by
[(0, 5)] the orbit of (¢, s) under W and by (M x A)/W the orbit space of M x A.
Then the induced representations indprg(c®x;s) of c®x, to G are in é’r where cQx,
are the unitary representations of P defined by o ® xs(man) = o(m)x;(a) for m in M,
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ain A and n in N. Put 7(0,s) = indpyg(c ® x;). Then 7 (o, s) is unitarily equivalent
to m(o’,s') if and only if there exists an element w of W such that w - (0, s) = (¢/, 5').
Thus we denote by ([(c, s)]) the equivalence class of 7 (o, s).

We refer to [L] for a topology on G,. Then the following lemma is obtained:

Lemma 2.2.1. Let G be a connected non compact real semi-simple Lie group and

Cr(G) its reduced C*-algebra. If r1(G) > 2, then st(CX(G)) > 2.

Proof. 1t is known that 7([(1,s)]) is irreducible for every s in A where 1 is the
trivial representation of M [Ko]. Since {1p} X A is. W—-inva.ria,ntkclopen subset of
M x A, we see that ({11} x A)/W = A/W is clopen in (M x A)/W. Thus there
exist the direct summands J and & of C}(G) such that C*(G) = J@ R, I = A/W
and R is the complement of A/W in (M x A)/W. Since C*(G) is liminal, so is 7.
As A/W is a locally compact T>-space, J is is‘omorphic to the C*-algebra associated
with the continuous fields on J [D; Theorem 10.5'.4.]'. We take a closed ideal £ of J,
which is of continuous trace. It is also isomorphic to the C*-algebra associated with the
continuous fields on £. By its local triviality [D; Theorem »iO.Q.S.], there exists ar closed
ideal £ of £, which is isomorphic to Co(£) ® K. Since dim A > 2 and W is finite, we see
dim(A/W) > 2 so that dim € > 2. Thus sr(€) = 2. Therefore st(Cx@)) >2. O

We refer to [BM] for a topology on G, in the case rr(G) = 1 Then we have the

following lemma.

Lemma 2.2.2. Let G be a connected non compact real semi-simple Lie group and

Cr(G) its reduced C*-algebra. If r1(G) = 1, then st(C*(G)) = 1.
Proof. If r1(G) = 1, then A = R and W = {1,w} where w is the unique non trivial
element of W. It acts on M x A as follows:

1-(o,s) = (0,8), w-(0,8)=(w-0,-5) (0,s) €M x A.

Then (M x A)/W is a locally compact T3-space. Let F' = {0 € M |w-0o =o0c}. Then
(F x A)/W = F x [0,00). Then F x (0,00) is embedded in G,. Each point (c,0) of

F x {0} corresponds to two irreducible representatons {r}, 7>} of G. The topology on
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({o} x (0,00))U{r},n; } is the usual topology except that {(o,s)} converges to 7}, 7

as s tends to 0.
Let C be the complement of F' in M. Let (o,s) be in C x A. Then we have that
({o} x Au{w -0} x A)/W = R. It follows that (C x A)/W = Ug/wR. Then G,

decomposes into the following fashion:

~

G, = Gp U éz U éd, ép = (F X (0, OO)) U (UC/WR), é( = Ugep{ﬂj—,ﬂ’;},

and G’d is the discrete series of G.
We construct a finite composition series {J;}3_, of C*(G) with Jp = {0} and J3 =
C*(G) as follows: J; = G, (J2/31)" = G and (J3/F2)" = G4. Then

J1 =2 (Bc;ywCo(R) ®K) & (&rCo((0, 00)) ® K),
33 =2 er(KeK), J3/J2= EBédK.

Then {Jx/Jr-1}3_, have stable rank 1 and {Jx/Jx_1}3_, have connected stable rank
1 (cf. [R]). Therefore st(Cx(G))=1. O

Next result is useful in the computation of stable rank.

Proposition 2.2.3. Let G be a locally compact, o-compact non-amenable group of type

I and CX(G) its reduced C*-algebra. Then sr(Cr(G)) < 2.

Proof. Tt is known that if G # G, then every element of G, is infinite dimensional [F].
By Proposition 1.3.1, the proof is complete. O

We give an application of Proposition 2.2.3 to show the product formula of stable
rank in the case of the reduced C*-algebras of locally compact, o-compact non-amenable

groups of type I as follows:

Corollary 2.2.4. Let G, H be two connected locally compact, o-compact non-amenable

groups of type I, and C}(G), CX(H) their reduced C*-algebras respectively. Then

st(C7(G) ® C7(H)) < s1(C7(G)) + sr(Cr(H)).
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Proof. Let eq,eq and egy g be the units of G, H and G x H respectively. Let 1g,1x
and lgyx g be their trivial representations, and Ag, Ay and Agyx g their regular repre-

sentations respectively. Then by [FD; Corollary 12.18, 13.6],

A ~ ind 1 ~( ind 1lg)®( ind 1lg)~Ag®A
Gxm =, ind g loxH ({eG}TG G) ({eH}TH H)~Ac ® Ay

where =~ is unitary equivalence. Thus C}(G x H) is isomorphic to C}(G) ® C;(H). By
Proposition 2.2.3, st(C*(G) ® C*(H)) < 2. Therefore the proof is complete. O

Combining Lemma 2.2.1, 2.2.2 and Proposition 2.2.3, we have the following theorem:

Theorem 2.2.5. Let G be a connected non compact real semi-simple Lie group and

Cx(G) its reduced C*-algebra. Then
st(Cr(G)) =rr(G) A 2
where A\ means the minimum.

Remark 2.2.6. This result suggests that stable rank of the reduced C*-algebras of con-
nected non compact real semi-simple Lie groups is controlled by the real rank (i.e. the
geometrical structure) of G. Note that rr(G) = 0 if and only if G is compact. Then G is
discrete. Thus C;(G) is isomorphic to @, 5Mn, (C) where My, (C) is the C*-algebra
of all n) x n) complex matrices. Hence sr(Cy(G)) = 1.

We give some examples which support Theorem 2.2.5 in what follows:

Example 2.2.7. Let G be a connected real semi-simple Lie group with rr(G) = 1.
Then it is known that G is locally isomorphic to one of the following groups (cf. [HV]):

SO¢(n,1), SU(n,1),
Sp(”? 1)’ F4(—20)7 (TL > 2)
Thus their reduced C*-algebras have stable rank 1.

Example 2.2.8. Let G = SL,(R) for n > 2. Its Iwasawa decomposition is obtained
as follows: Then K = SO,(R). A consists of all diagonal matrices such that

ay 0

0 an
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where a; > 0 (1 <4 < n) and II{L ;a; = 1. It is isomorphic to (R%)™~! where R} is
the multiplicative group of positive real numbers. N consists of all upper trianguler
matrices such that . . |
0 . 1
Thus rr(G) = 1 if and only if n =2. Therefore we obtain that
1 ifn=2

(SN ={ ) "2
Example 2.2.9. Let G = Sm) be the universal covering group of SL,(R) for n > 2.
It is known that G is a non linear semi-simple Lie group. Since the fundamental group
of SL,(R) is equal to Z (n = 2) and Z; (n > 3), we have that G/Z = SL,(R) and
G/Zy = SLn(R) (n > 3) respectively. Since Z and Z; are amenable closed normal
subgroups of G, we know that C}(SL,(R)) is the quotient of C}(G) (cf. [Ka; p.1349]).
By Example 2.2.8, sr(C;(G)) > 2 if n > 3. If n = 2, then 11(G) = 1. Therefore we
obtain that

st(Cr (SLa(R))) = { 2 ifn>3

2.3. THE CASE OF REDUCTIVE LIE GROUPS

In this section, we show that Theorem 2.2.5 extends to the case of connected reductive
Lie groups. First of all, we examine the structure of these groups.

Let G be a connected real reductive Lie group with its Lie algebra g and @ its
universal covering group. Then g has Levi decomposition g = 3 @ [g, g] where 3 is the
center of g. It is known that any two simply-connected Lie groups with the same Lie
algebras are isomorphic (cf. [Kn; Appendix A.114]). Thus, G is isomorphic to the direct
product Z x S where Z is the Lie subgroup of G with its Lie algebra 3 and S is the
semi-simple Lie subgroup of G with its Lie algebra [g, g]. Then the center Z5 of G is
of the form Z x Zs where Zg is the center of S. Let I' be a discrete subgroup of G
contained in Zs such that G = (Z x S)/T". Then T is isomorphic to the direct product

'z x I's where I'z and I's are discrete subgroups of Z and Zs respectively. Thus we
have G = (Z/Pz) X (S/Fs)
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Let G, = Z/T'z be the abelian direct factor of G and G, = S/T's the semi-simple one
of G. Note that G, is equal to the commutater subgroup [G, G] of G. By the same reason
in Corollary 2.2.4, C*(Q) is isomorphic to C*(G,) ® C*(G,). Thus G, = G4 X (G)s.
Hence G # @, if and only if rr(G,) > 1. Since Gy, is isomorphic to R* x T"~* for some
k> 0and n =dim Z > 0, C;(G,) is isomorphic to Co(R* x Zn—F).

vWe denote by Zg the center of G. Then Zg = ‘Ga X Zg, where Zg, is the at most
countable center of G,.

Then we have the following theorem:

Theorem 2.3.1. Let G be a connected non-amenable real reductive Lie group with its

center Zg and CX(G) its reduced C*-algebra. Then

st(C*(G)) = (x2([G, G]) V (dim(Ze)" + 1)) A 2

where V means the mazimum.

Proof. If G, is compact, and 11(G,) = 1, then C*(G) is isomorphic to Co(Z") ® C*(G5)
for n = dim(G,). Using the structure of C}(G;) in Lemma 2.2.2, and tensoring Cp(Z"™)
with CX(G,), we conclude that st(C (@) = 1. On the other hand, since dim(Zg)" = 0,
we have that (rr([G,G]) V (dim(Zg)* + 1)) A2 =1. |

Next, by the methods of Lemma 2.2.1, C*(G,) has a closed ideal J which is isomorphic
to Co(J) ® K where dim(J) = rr(G,). Then Co((Gs)") ® J is a closed ideal of C*(Q),
which is isomorphic to Co((Gy)" x 5) ® K. If G, is non compact and rr(G,) = 1,
or rr(G,) > 2, then dim((G,)" x J) > 2. Thus sr(Co((G,)* x J) ® K) = 2. Hence
st(C*(QG)) > 2. By Proposition 2.2.3, we see sr(C*(G)) = 2. On the other hand, since
dim(Zg)" > 1 or 1r([G, G]) > 2, we have (rr([G, G]) V (dim(Zg)" + 1)) A2=2. O

Remark 2.3.2. We consider the case that G is amenable. If G, is compact, and rr(G,) =
0, then G is compact. It follows that sr(C*(G)) = 1.
If G, is non compact, and rr(G,) = 0, then G is of the from R*¥ x T"~* x G, for

k> 1and n =dimG,, and G, is compact. Then

C*(G) = Co(R¥) ® Co(Z™ %) ® C*(G,)

= (@z--+Co(R")) ® (8¢, Mn, (C)) = @zn—s sci. (Co(RF) ® M, (C)).
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Thus we obtain that

st(C*(G)) = sup st(Co(R*) ® My, (C))
A€EqG,

= sup ([(st(Co(R*)) = 1)/na]1 +1) = sup ([([k/2])/na] +1)
AEG, AEG,

where [-] is Gauss symbol, [z] = [z] + 1 for z in R\ Z and [z] = z for z in Z (cf. [R]).

Next we give an example which support Theorem 2.3.1 as follows:

Example 2.3.3. Let G = GL,(R)o be the connected component of GL,(R) con-
taining the unit of G for n > 2, which consists of all invertible matrices with posi-
tive determinant. We consider the mapping ® from G to R} x SL,(R) defined by
®(g) = (det(g), g/det(g)) for g in G. It is clear that ® is a Lie group isomorphism.

Since G, is non compact, we conclude that

st(Cr(GL,(R)o)) =2 formn > 2.

2.4. THE CASE OF NON-AMENABLE LIE GROUPS OF TYPE I

In this section, we show that Theorem 2.3.1 extends partially to the case of connected
real Lie groups of type L

Let G be a connected real Lie group of type I and R its radical, which is the maximal
connected solvable normal Lie subgroup of G. It is known that if G/R is compact,
then G = G, [D; Proposition 18.3.9]. Thus, if G # G,, then G/R is non compact. We
only consider this case. Since R is amenable, we know that C(G/R) is the quotient of

C*(G) (cf. [Ka; p.1349]). Then we have the following result:

Theorem 2.4.1. Let G be a connected non-amenable real Lie group of type I with its

radical R and C}(G) its reduced C*-algebra. Then

1or2 ifrr(G/R) =1,

st(Cr(G)) = { 9 if it(G/R) > 2.

Proof. By Proposition 2.2.3, we know sr(C*(G)) < 2. By Lemma 2.2.1, if rr(G/R) > 2,
then sr(C}(G/R)) > 2. Thus st(C¥(G)) > 2. Therefore, we obtain sr(Cr(G)) =2. O
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Remark 2.4.2. The above formula is the best inequalitity. For example, let G be the
direct product T x S where S is a connected real semi-simple Lie group with rr(S) = 1.
By Theorem 2.3.1, we know that st(C}(G)) = 1. On the other hand, let G be the
direct product R x S where S is the same as before. By Theorem 2.3.1, we have that
st(Cr(G)) = 2.

Finally, we give an example which support Theorem 2.4.1 as follows:

Example 2.4.3. Let G be the direct product H xS Lﬁ(R) for n > 2 where H is the real
3-dimensional Heisenberg group. Then G is a connected real non reductive Lie group
of type I If n > 3, then rr(G/H) > 2. By Theorem 2.4.1, we have st(C}(G)) = 2. Next
we consider the case n = 2. Then 1r(SL2(R)) = 1. Note that G = H x (SLz(R))’\.
Thus G, = H x (SLy(R))}. It follows that C2(G) & C*(H) ® C*(SL2(R)). It is known

that C*(H) decomposes into the following exact sequence:
0 — Co(R\ {0}) ® K — C*(H) — Co(R?) — 0.
Teﬁsofing C}(SLy(R)) with this sequence, we have that
0 — Co(R\ {0}) ® K ® C7(SL2(R)) — C7(G) — Co(R?) ® C; (SLa(R)) — 0.

Using the structure in Lemma 2.2.2, we know that C*(SLy(R)) has K as a quotient.
Thus C}(G) has Co(R?) ® K as a quotient. Hence sr(C*(G)) > 2. Therefore we have
that

st(Cr(H x SL,(R))) =2 ifn>2.
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