OOoo0O00oOooon
9570 1996 0 1-15 1

Towards a Non-linear Extension of Stochastic Calculus

Luict ACCARDIM, YUN-GANG Lu?? AND NOBUAKI OBATAY

1) Graduate School of Polymathematics, Nagoya University, Nagoya, 464-01, Japan
2) Centro Matematico Vito Volterra, Universitd di Roma, Roma, 00133, Italia
3) Dipartimento di Matematica, Universita di Bari, Bari, 70125, Italia

Introduction

In a series of recent works [3], [4], [5], [6] @ new approach to quantum stochastic calcu-
lus has been launched out through the study of stochastic limit of quantum theory. This
new approach is not based upon a quantum It6 theory but upon a new type of distribution
theory on simplexes and reveals intrinsic features of quantum white noise. Meanwhile, inde-
pendently of that, quantum stochastic processes have been discussed on the basis of white
noise (Hida) distribution theory [11], [12], [19], [20], [21]. This approach seems useful for
studying differential equations for Fock space operators involving higher powers of quantum
white noises, at least for the existence and uniqueness of a solution in a distribution sense
[22]. Thus it is quite natural to ask what can be said by combining the above two ideas to-
gether. In the present paper we discuss the simplest problem of a unitary equation driven by
b2 and b2, which is already beyond the reach of the It6 or Hudson—Parthasarathy stochastic
calculus. Although our argument stays at somehow formal level, it is most plausible that we
are led along a new direction towards a non-linear stochastic calculus.

1 Classsical and quantum stochastic calculi

Classsical stochastic calculus was initiated by Ito [14]. It gives a meaning to equations

of the form ‘
df (X:) = Zf(X;)dt + Lf(X,)dW;, , - (1.1)

where W = W, is the standard R%valued Brownian motion starting at zero, L and Z are
respectively a second order and a first order differential operators on R? and f € S(RY).
Here the Schwartz test function space can be replaced with a larger function space but for
the moment we stick to this choice. Equation (1.1) is interpreted as a symbolic notation for
the integral equation: ’

f(X) = F(X0) + [ Z(X.)ds + / CLA(X,)dw,, (1.2)

where the second integral is a stochastic integral. Equation (1.2) can be shown to admit
a unique solution for any initial condition of the form X (0) = X,, where X, is a random
variable wich is measurable with respect to a o-algebra independent of that of W.



Quantum stochastic calculus was initiated by Hudson and Parthasarathy [13]. It gives a
meaning to equations of the form

AU, = (DdBI — DYdB, + (—g- D'D + zH) dt) Uy,  Uo=1, (1.3)

where ‘the pair (BI , By) is the Fock Brownian motion with variance v > 0 acting on the
Boson Fock space I'(L*(R)), and D, H = H* are operators on a Hilbert space Hg. Thus
U will be an operator acing on Hs ® I'(L*(R)). More generally, one can replace L?(R) by
L*(R) ® K, where K is any Hilbert space, see e.g., [17], [23]. Equation (1.3) is interpreted
as a symbolic notation for the integral equation

’ i ’ i ‘
Ui=1+ [ (DdB} - D'aB,) U, + [ (—% DiD + iH) dsU, (1.4)
0 0

where the first integral is a quantum stochastic integral. Equation (1.3) can be shown to
admit a unique solution which is a unitary operator on the space Hs ® I'(L?(R)) whenever
the operators D and H satisfy some conditions.

Quantum stochastic calculus includes the classical one. Let (2, P, F) be the probability
space of W. Then each random variable of the process X; defines an homomorphism j; :
S(RY) — S(RY) ® L>(12, P, F) by

() = F(Xo). (1.5)

The family of homomorphisms j; characterizes the process and constitutes a natural algebraic
characterization of it. On the other hand, the classical Brownian motion W can be realized
as an operator process (i.e. W; = B, + B}) on the Fock space I'(L*(R)), Hs is a Hilbert
space corresponding to a space of possible initial conditions for the Itd equation (1.1), the
process f(X;) can be thought as a multiplication operator on the space Hgs ® I'(L*(R)) and
the classical flow j;, defined by (1.5), is given by

3(f) = F(Xe) = U f(Xo)Us,

where U, is the solution of a QSDE of the form (1.3) for an appropriate choice of the
coefficients operator D, see [9], [10], [23]. Thus, the flow j, plays a crucial role in the link
between classical and quantum stochastic processes, see e.g., [7].

2 Stochastic limit

As is clear from the previous section, for a generalization of stochastic calculus funda-
mental object to start with is the flow j; or the associated one-parameter family of unitary
operators U;. The stochastic limit of quantum theory developed recently in [6] suggests a
new possibility of constructing unitary operators Us.

The starting point of this theory is not a stochastic equation but a usual Schrédinger
equation in interaction representation: ’

8U, = —AH(O)U,, Uy =1, (2.1)



where A > 0 is a coupling constant. For example, H;(t) is given as
Hi(t) = ™ (D ® A'(9) + D' ® A(g))e™,  Ho = Hyystem + Hieservoir,
which is known as a Hamiltonian of laser type. A simple case would be
Hi(t)=D® Al +D'® 4, A = A(S:9).

The (formal) solution of (2.1) is given by the iterated series:
14
U, = I+(~i\ /0 dt, Hy (1)U,

i t t1 tn—1
= T+ (=) /0 dt, /0 dty- - /O dtnHi(t) Hi(ts) - Hilts).
n=1

Particularly interesting is the scaling limit of (2.1) according to the law ¢ — t/A?, which
is motivated both by mathematics (central limit theorem) and by physics (Friedrichs—van
Hove rescaling). The rescaled solution is

) o m /A2 ty tn—1
U = T+ (=ia [ dn [“dtaeo [T dtuHi(t) Hy(t) - Hi(ta)
n=1

/A2 /)2 t
= I-i) f dt, Hy(ty) — A2 / dt; / dty Hy(t) H(ts) + - - (2.2)
0 0 0
and the rescaled equation is of the form:
aUN = —i(D® AM + D' @ AU, UM =1 (2.3)

It was proved in [3] that the iterated series solution (2.2) converges as A — 0 to the solution
of the quantum stochastic differential equation (1.3) with H = kDD, x € R, in the sense
of quantum convergence in law.

More recently, it has been proved in [5] that the iterated series solution (2.2) converges
term by term to the same limit in the same sense as above to the iterated series solution of
the distribution equation

8Ui = (Dbl + D' @b)U;,  Up =1, (2.4)

where b}, b, are the annihilation and creation operators of the Boson Fock white noise with
variance

72/_00(9, S.g)dt > 0.

It is known that b}, b, are characterized (up to unitary equivalence) by the algebraic relations

b, b6]] = ~6(s—t), ts€ER, (2.5)
bt¢ = 0, tER,

where @ is the Fock vacuum.



3 The white noise approach to stochastic calculus

Equation (2.4) has a well-defined meaning in terms of matrix elements in the number
vectors. Let us recall from [5] how to give an intrinsic meaning to equation (2.4). This shall
be useful for comparison with the nonlinear extension of this equation to be discussed below.

The number vectors are defined by the realtion

bIl bIkQ: |t17'°',tk>7 (31)
which has to be interpreted in the distribution sense, i.e. for any test functions ¢y, -, @ €
S(R), one defines

bi(gy)--- bl (d)® = /dt1"'/dtk B1(te) - -~ dr(te)|ts, - -+ ). (3.2)

In what follows we put D = I for simplicity. Then (2.4) becomes
8U, = —i(bl + b)),  Up=1, (3.3)
and its weak formulation is |
By(s1,- - > snlUslts, -y th) = —i(s1, -+, su| (b + U, -, i)
= — Zh:lry_&(t — 5].)<317 - ,gj’ ce 73h]Ut‘t1, cee ,tk>
=

—"<t7 81,0 7shlUt|t17 e ’tk> (34)

The right hand side of equation (3.4) is still a distribution. To reduce everything to ordinary
functions one interprets (3.3) as the integral equation

i
Uy=1- z/ (bt + b,)U.ds. - (3.5)
0
‘Then

(s1,°+, Su|Ublte, - -, te) =

— (sla"’ashltly"'atk>

h t
=i Y [ 8s = s)on, ey salUilty, - 1) ds
j=1

i
_Z\/O <S7317 T ShlUsltl, ce ,tk>d$

= <317" 'ashltlv'f : 7tk>

h
_"”Y ZX[O,t](Sj)<31, e 7'§j, te ,3h|U5jit1, T 7tk>
=1

—1 ‘/RX[O,t](S)<Sa 81, )Sh‘Usltla e ,tk>ds- (36)



In view of Uy = (0,Us, X[0,4(5)), we replace x[o, in (3.6) with ¢ € S(R) to obtain

('51: R Shl (83[]3, ¢> |t13 e atk> =
= ('917' : ')5h|t17 e 7tk>

h
—?:’YZQS(Sj)(Sl, ot 'ag\jf v ashlUsttla e 7tk>

i=1

—ZA¢(3)<S7 1,0, shIUs|t.1a e )tk>d3-

So the equation (3.3) has an meaning weakly on number vectors. A similar discussion can
be done for the exponential vectors.

In order to identify the distribution equation (3.3) with a quantum stochastic equation,
it is convenient to write equation (3.3) in normal form. Since

@Ut = —'l(bIUt + Utbt + [bta Ut]),

in order to bring equation (2.4) into a normal form we have to calulate the commutator
[b+, U;]. This is done through the following result [1], [6].

Theorem 3.1 If U, is a solution of (1.3) with H = kDD, then

[btyUt] = ’)/_DUt, Y- = 'g‘ — 1K.

where the identity is understood weakly on the exponential or number vectors.

The proof of Theorem 3.1 is based upon two fundamental principles of the quantum white
noise theory on the standard simplex established in [5].

¢ The causal commutator rule When the operators &;, b;’ in the iterated series for
U; are brought into a normal ordered form, we must not use the usual commutation
relation (2.5) but the causal commutation relation defined by

[bs, bl] = y_6.(0 — 7), o>, - (3.7)

where y_ is a complex number and 6, is the causal delta function on a simplex.
Notice that the causal commutator is defined only for ¢ (the time index of annihilator)
greater than 7 (the time index of creator). So the causal commutator rule should not
be interpreted as a new commutation relation, but only as a rule to bring in normal
order the creation and annihilation operator which appear in the iterated series.

e The principle of consecutive times Any commutator of the form

t
/ [bt, Us] dS
0 .

vanishes identically. This is, in fact, a corollary of the principle of consecutive times
but is all we shall need in the present paper.



From Theorem 3.1 it follows that the normal form of (3.3) is given by
8:U, = —i(BlU, + Upb, + v_Uy). (3.8)
Similarly, the normal form of (2.4) is given as
8,U; = —i(DbU, + D'U;b, + v_D' DU), (3.9)

where short hand notation such as D = D®I, b, = I®b, is used. This result solves the above
conjecture affirmatively. In fact, by taking matrix elements in the exponential vectors of both
sides of the two equations (3.3) and (3.8) one easily obtains the same ordinary differential
equation.

The above argument suggests a new approach to stochastic calculus based directly on
white noise and not through the intermediate Brownian motion. The basic idea of this
approach can be formulated as follows:

1. Write an equation in normal form:
8tUt - AbIUt + BUtbt + CUt, UO = I, (310)
where A, B, C are system operators.

2. Prove the existence and uniqueness of the solution in terms of operator symbols

Qt(fv g) = (1/jf, Ut‘/{q) 3
where 1,1, are exponential vectors.

3. Prove a regularity condition showing that the solution of equation (3.10) is a bona fide
operator and not only a distribution.

4. Formulate the unitarity condition for U,, namely, U;U; = U,U; = I, and prove it.

In the paper [5] this program was realized for the usual (classical and quantum) stochastic
calculi. The advantage of this formulation with respect to the traditional ones lies in the fact
that it naturally suggests the problem of extending equation (3.3) to the case of an equation
which is still normally ordered, but now depending on higher powers of the white noise
bl,b;. Such equations had already been studied in the theory of white noise and existence
and uniqueness theorems in the space of Hida distributions are already available [22]. It is
therefore a natural program to combine the result of [22] with the above mentioned ones and
to investigate regularity and unitarity.

4 Non-linear white noise stochastic calculus

In order to realize the program described at the end of the previous section we have to
overcome two competing requirements. On the one hand, we would like to start with an
equation in a normally ordered form. On the other hand, we come to a non-trivial task of
recognizing the unitarity condition in an equation in normal form. The advantage of the
singular Hamiltonian formulation of equation (2.4) is that the formal unitarity condition is



automatically satisfied. Namely, one can hope that, if one starts from a formally unitary
equation and then puts it in normal order, one obtains an equation whose solution is ef-
fectively unitary. We are more interested in realizing this program in the non-linear case.
Again we can apply the two basic principles formulated in the previous section, because they
are universally valid in the Fock space and do not depend in any way on the linearity of
the equation. In fact, they do not depend at all on any particular equation but are intrinsic
properties of the Boson Fock white noise calculus.

Thus our starting point shall be the equation .

8U, = —i(b> + )U,, Up=1, (4.1)

or in the integral form:

t .
U, = Lﬂ/@?+@m@. (4.2)

Our first goal is to give a meaning to it. Contrary to the linear case, equation (4.2) has
no meaning even weakly on the number vectors. In fact, if we calculate formally the ma-
trix elements of the both sides of (4.2) with respect to two number vectors, we obtain the
expression:

<31) ce ',ShIUtltl, e )tk> -
= (81, -, 8nlty, k)

t
—1 Z 72A 5(3 - sa)5(3 - sﬁ)(sl, Ty g7 T @7 e 73h|U3|t1’ ce ,tk)ds
B

t
_Z/O <S,S,81, e 75h|Us‘t1a' o 7tk>d37

which involves the ill-defined product of two é-functions.

In order to give a meaning to equation (4.1) we adopt a different approach, which can
be considered as an elaborated version of the scheme of thought one applies when, in usual
distribution theory, one wants to give a meaning to the derivative of a non-differentiable
function. We use the commutation relations to write equation (4.1) in normal form. In doing
so we shall meet some ill-defined quantities such as §(0) — the §-function evaluated at zero!
However, as we shall see below these ill-defined quantities appear only as formal additive
constants in the Hamiltonian equation and therefore can be eliminated by a subtraction
procedure which is well known in physics under the name of renormalization. Once written
in this form and once the ill-defined quantities have been subtracted, the equation has a
weak meaning on the number vectors. We take this normal form as the definition of the a
priori meaningless equation (4.1).

Lemma 4.1 Any (formal) solution of equation (4.1) satisfies the following commutation
relations:

by, Us] = —2iy_blU,
by, U] = 26y_U;b}
WﬁﬂumTUh
[U:, b ] —2iy=b,U,

I~ A~~~
el
Sy O W W
N’ N N N’



PROOF. Writing equation (4.1) in the integral form:

1
U=1—i / (b2 4 B2)U, ds,
0

we obtain
b, U] = [b, 1] —i /0 '[bs, (B2 + 2)U, ds
_ /:[bt, (o + 82U, ds — i [ (b 4 8)[b,, U] ds.
Using

[be, (b2 + 83)] = [b1, b17] = [bs, bL]B] + bl By, bl] = 27-8..(t — )b
and the time consecutive principle
1
[ s UlJds = o,
0

we see that the right hand side of (4.7) becomes
t
- —i/ 26 (t — s)bU, ds = —2iy_bjU,.
0
This proves (4.3). The remaining relations are proved similarly.

Lemma 4.2 We have formal identities:

(62, U] = —idy_blUb, — 2i7% 6, (0)U; — 4422,
U7, 6% = i4y_b[U; b + 20726, (0)U; — 472 U;5;
b7, U7] = 4(67- — ¥2)blU;by — 8(]y-[* + 1v-) U B} + 272U, 6. (0),

where 8,(0) = [b;,bl] is a formal quantity.
ProoF. Note first that
(02, U] = by[bs, Us] + [bs, Us]be.
Since [by, Us] = —2iy-bjU, by Lemma 4.1 (4.3), we obtain

[btz, U] = bt(—Qi’Y—bIUt) + (—2i7—bIUt)bt
—2iy_byblU, — 2iy_blU,b,
= —2iy_([b, bI] + blbt)Ut = 2i'7—bIUtbt-

i

Introducing a formal quantity

64(0) = [b,b],

qged

(4.8)
(4.9)
(4.10)



we continue the calculation:
= —2iy_(7_8(0) + blb,)U, — 2iy_blU,b,
= —2iy26(0)U, — 2y_blbU, — 2iy_biUb,
= =2iy25(0)U; — 2i7-b{([br, U] + Usbe) — 2iy_bjUsb,
= —2iy28(0)U; — 2iy_bl(—2iy_blU, + Usb,) — 2iv_blU,b,
= —2i726(0)U, — 42 bi°U, — 2iy_blU,b, — 2iy_blU,b,
= —2iy26(0)U, — 442 bI2U, — 4iy_blU,b,.
This proves (4.8) whose adjoint is (4.9).
We then prove (4.10). Note that
(b, U] = 20y _Urb}
2iy_([U7, b]] + b]U7)
2iry_(207_U}b, + biUY)
= —4)y_|U;b, + 2iy_blU;. (4.11)

il

Then
3, U7] = bulbs, U] + [b1, U0y
= b(—4ly-[PUSb, + 2i7-blU7) + (—Aly-[PUs b, + 2iy-U7 )b,
= —4)y_|2b, U, + 26y_bbIUY — Aly_|PUB2 + 2iy_blUb,. - (4.12)
The first two terms are to be computed. In view of (4.11) we have
—4|7-[be Ul = —Ay-[*([b:, Uy + Uy )by
= —Aly- (=4l [PUbe + 20y bJU; + Usby)be
~Aly-P(1 = 4y UP B - 8ily_ [Py bU b
and
2y _bbiUr = 2iy_([be, b] + blb,) U}
= 2iy_(7-64(0) + blb,)U;
= 22 6,(0)U; + 2iy_bib, U} o
= 2iy26,(0)U; + 2iy-bl([be, US] + Uy by).
Using (4.11) to obtain ' :
2y bbiUF = 2iv26,(0)UF + 2iy_bl(—4|y_|[?U;b, + 2iy_blU; + U}'b,)
= 20726,(0)U; + 2i7-(1 — 4|y [)blU;b, — 492 6]°U; .
Then (4.12) becomes
07,U7] = —4lv-[P(1 — 4y P)U;b} — 8ily_[y-blU; D,
+2i735(0)U; + 2"")’—(1 - 4’7—|2)bIUt*bt - 4’)’3bIZUt*
—4ly_[PUE; + 2iy_b[U b,
= —8y_[*(L = 2y- YU} + 4iy_(1 — 4]y [P)blU; b, + 2in2 5(0) U},
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as desired. ged

Proposition 4.3 The normal form of equation (4.1) is
8,U, = i(4y2 — 1)bi2U, — 4y_blUb, — iUb? — 272 6,(0)Us,
whose adjoint form is
BU; = —i(472 — 1)UFB2 — 47 _blUsb, +ibl*Uy — 27°.6,(0)U;.
Proor. This follows from Lemma 4.2 and the identity
8,U, = —i(bi® + B)U, = —ibl>U, — iUb2 — i[b?, Uy).

qed

We have thus put equation (4.1) in normal form. Then, as an application of a general
theorem on normally ordered equations driven by white noise [22], we can guarantee the
existence and uniqueness of its solution, at least in the space of white noise (Hida) distribu-
tions. To be more precise, let (E) C I'(L*(R)) C (E)* be the Gelfand triple of white noise
functions, for more details see [15], [18].

Lemma 4.4 Let A, B,C be bounded operators on Hg. Then the differential equation
8,U, = Ab*U, + BblUb, + CUWME,  Up = I,
admits a unique solution in the space L(Hs ® (E), Hs ® (E)*).

The proof follows by modifying the result [22, §5] where the initial space Hs is not taken
into account.
5 The normal form of the flow equation

In order to study the isometricity condition for the solution of the equation (4.1), we
start with the flow equation '

]t(w) = UzU; = 4, (5.1)

where z commutes with b; and bI. We need some preliminary lemmas.

Lemma 5.1 It holds that

1 207 _
*b} — _WUUNb + ————UUb? 2
Ui tUtbt 1 — 4‘7_'2 tUt Ut t + 1 _ 4|’)/_|2 Ut Ut o (5 )
1 2
trre trrs v- t277%
btUt btUt m btUt Utbt b m bt Ut Ut. (53)
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PrROOF. By a direct calculation one obtains
UBUD, = blUFUD, + [Ur, b])Usb,
= BlUUb, + 207_U;bUsh,
BiUUb, + 207 _Up([be, U] + Ushy)b,
= bUUb, + 207_U;(—2iy_bU; + Usb,)bs
= blUFUb, + 4|y-[PUrbI U, + 2i7_UUB2.

Therefore
(1 — 4}y- |2 U Bl U, = bJU; Usby + 267 _U; Ui,
which proves (5.2). qed
Lemma 5.2 Denoting
1
T
one has
. —24y% — 8i|y_|* . .
Ur2U, T 16|'y_||4 5, (0)UU, + o*UUb?
—4iy_a?blUFUb, — 472 02U U, (5.4)

PrRoOF. For the proof we first compute
USBAU, = U2, Uy) + U Ub2
We know from (4.8) that
62, Uy) = —idy_blUb, — 2026, (0)U; — 472 b}*UL.
Hence
UrlU, = Ur(—idy_biUsb, — 20726, (0)U; — 442b1°U,) + UL UGB,

= —diy U Ub, — 2iv2 6, (0) U} Uy — 442U U, + UL ULb;

= UrUWBE — 2i72 6, (0)UF U, — 4iy_UpbiUb, — 472U B (5.5)
It follows from (5.2) that

8ly-|?
1—4y_|?

—4gy_

— 4y _UrbiUb, = BUFUb, +

On the other hand,
— 42 UrbPU,
= —4y2([U}, 6% + 02U U,
= 42 (i47_blUsb, + 2726, (0)U; — 472U b2 + b*U)U,
= — 42 (147 _bjU;b, + 2072 8, (0)U; — 472U;8] + b}°U; ) U
— —163|y_ |y blUb,U, — 8ily_|*6:(0)U; Uy + 16]y_|*U; bIU;, — 42 b{°U; U,
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Then (5.5) becomes
UiU, = UUb? — 226, (0)U T,
—4iy_ 8ly-I
A i bT b L 2
+1_4| ke UrUsbs + 5 T U;Ub?
—16iy-|*y_bjU; b Uy — 8i|v_|*6,(0)U U, + 16]y_|[*U}b2U, — 442 02U} U,
Hence |
(1= 16]y_|YUBU, = UUb, — 2iv*6,.(0)U; U,
_427— trrx 8‘7—|2
T e P
—16i]y_|2y_bjUb,U; — 8ily_|*6, (0)UU, — 472 bJ2U} U,
1+ 4y |?
1—4|y-?
—4uy_
1—dly_|?

+ UrUb?

U;Ub; + (—2i72 — 8ily-|*)6..(0)U; U

+ iU Ushy — 16i|y_|>y_blU;b,U, — 442 b12U} U,

In view of (5.3) one obtains

—16i|y_|2y- . 32|y_|?
Iv-|*y DU b, — v |*y

—16i|y_ |2y bl U} b, U, = e
Zl’)’ l7 tYe VtUe 1_4|7_l2 i 1_4‘7 [2

bT2U U,.

Hence

(1~ 16}y-[Y)Us b3, =
14y )?
S 14y
—16i[y_[*7- 4 32|y- 42
ZEL ) yoruge, - 2L
T el e
1+4y_|2 . . .
= ﬁ% Ut Utbtz + (-21’)’3 - 82]7_|4)5+(0)Ut Ut
—diy- — 16ily-[*7- 4, =32[7-[*y2 =42 (1 - 4]r-1?)
Ty U T= P
144y ]?
S 14y
—4iy_(1+47-|*) 4 —42(1+4]7-) 1
BUUb, +
A

, . —4iry
UrUb2 + (=2iv2 — 8ily_ |16, (0)UU, + ———Lll—?bTU*Utbt

+ b2UU, — 4v2 62U,

b2UrU,

U; U + (—2i72 = 8ily-[*)6..(0)U; U

Ui Uy,

which completes the proof. qed

Lemma 5.3 The equation satisfied by x; = UzU,; is
Oy, = 4Re(v2)6,(0)z, — ibi2z, + iz, b2. (5.6)



ProoF. Differentiating by the Leibnitz rule equation (5.1), we find

By, = b}, — iz, b?
+i(47% — 1)U zblU, + (hec.) — 4y_U; zblUsb, + (h.c.)
—4Re(72)6,(0)z;.

The result then follows using Lemmas 5.1 and 5.2. In fact, we compute

i(4y2 — VU zbl*U, + (h.c.) — 4y_U;zbiUpb, + (h.c.) =

= i(4y2 — DU} zb}’U, — i(47% — VU2 U, — 4y_UFzbiUsb, — 47_b;fUt*btx*Ut.

13

With no loss of generality we can omit  from the equation. Inserting the results obtained

above we find
i(4y2 — 1)U, =

2072 + 8i|y_|*

1—16]y-|*
+4i7_o®b[U; Usb, — 472 a*U; U} )
—2(472 - (72 + 4=

1—16[y_*

—4(492 — 1)7_a?b[U; Upb; — 4i(492 — 172 *U; U B2

= i(47% — 1)(o®}*U; U, + 5, (0)UU,

=i(4y* — 1)a®*U U, +

6+ (0)U; U,

Similarly
—i(472 — VU B*U, =
—2(472 = D(v2 +4h-I*)
1—16y_|*
—4(47%. — 1)y_®b[U; Uiby + 4i(47° — 1)y2 *b[°U; U,

On the other hand,
—4y_U;ablUpb, = —4y_(abiU}Ush, + 2i7_alU}Ub?)
and |
—47_bjU; xb,Uy = —47_(ablU; Usb, — 2iy_abl*U; Uy).
Summing up the above four expressions one finds
(2-32r- (¥’ +72)
1—16]y-|* |
+i{—(1 - 16]7-[*)e? + 8aly- [}l U U,
+i{(1 — 16}y_[*)a® — 8aly_[2}U; U2
4o (v +7) — 162 |y-P(v- +7_) — da(y- +7) LU Uiy
= 4Re(y?)8,(0)U;U, — ib12U} U, + iU U b2,

L) U*U

This completes the proof.

qed
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6 Renormalization and formal unitarity of the solution

Starting with
(U, = —i(b> + YU,  Up=1, (6.1)

we have found the normal form:
8,U; = i(4y2 — )bV, — 4y_blUb, — iU, — 2426, (0)U, (6.2)

see Proposition 4.3. Note that (6.2) involves the ill-defined quantity 26, (0)U, where v_ is
a complex number. However, the addition of a quantity of the form py = p6.(0), where p is
a real constant, to the Hamiltonian in (6.1) does not change the basic quantity of interest,
which is not the operator U, itself but the flow UzU;. After this addition we obtain

8U, = —i(bl* + b2 + pb6,. (0)U,,  Up =1, (6.3)
and its normal form:
QU = i(42 — )b, — 4y b[Ub, — iUkb; — 4(Re(72) + i{Im(72) — p/4})64(0)UL.

Therefore, if Re(y2) = 0, then by putting p = 4Im(y2) we see that the ill-defined quantity
vanishes identically.
On the other hand, by a direct computation we obtain

Lemma 6.1 The right hand side of equation (5.1) is identically zero for any choice of y_.

The above result shows that the normal form equation (6.2) satisfies the formal uni-
tarity condition. Therefore the right hand side of (5.7) is identically zero as we expected.
Notice that the same condition (Re(y2) = 0) which renormalizes the equation for U also
renormalizes the equation for the flow j;.

Our next task is to investigate the regularity and unitarity condition for U, or j; obeying
the renormalized equation. The research is now in progress.
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