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Introduction

After the famous paper by Hudson-Parthasarathy [11] quantum stochastic processes on the
(Boson) Fock space I'(L*(R)) have been developed considerably by many authors, see the
excellent books by Meyer [14] and by Parthasarathy [23] and references cited therein. In those
works the annihilation process {4;}, the creation process {A;} and the number process {4;}
are considered as primary quantum noises and the bulk is devoted to establishing a quantum
analogue of It6 theory, where the role of infinitesimal increment of the Brownian motion dB;
in the classical It0 theory is played by dA;, dA} and dA;. Thus quantum stochastic differential
equations to be discussed are typically of the form '

Here, at the request of physical applications an initial Hilbert space or a system Hilbert
space H being taken into account, L; are operators acting on H and the solution U, will be
an operator process acting on H ® I'(L*(R)). -

On the other hand, in view of the white noise approach to classical stochastic analysis
(see, e.g., Kuo [13]), one expects that white noise distribution theory (WNDT) leads to
a breakthrough in quantum stochastic analysis. In fact, during recent years white noise
approach to-quantum stochastic processes has initiated by a series of papers [18], [19], [20],
[21], [22], etc., see also [9], [10]. The essence of this approach lies in the fact that every
quantum stochastic process is expressible in terms of two quantum noises {a;} and {a}},
which are time derivatives of the annihilation and the creation processes, that is, dA, = a,dt
and dA} = a;dt. From that viewpoint (0.1) is reduced to

dU ‘ o
E = (Lla:a‘t + L2a, + Lga: -+ L4)U, (02)
of in the normal form:
dUu . . , ,
—_ = L]_Gzt Uat + LgUG;t + LgatU + L4U (03)

dt
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Moreover, during the lectures of Accardi [2] a new.type of a quantum stochastic differential
equation such as ' '

%: (Mg + MU (04)
comes within our scope (though the above equation is understood just formally at the mo-
ment). Note that an equation as in (0.4) is highly singular from the usual aspect.

The main purpose of this paper is to give a first step toward a new theory of quantum
stochastic differential equations on the basis of WNDT. We introduce the Wick product
(or normal product) of operators by means of the characterization theorem of operator
symbols. We then discuss existence and uniqueness of a solution of a certain class of quantum
stochastic differential equations which possess fairly singular coefficients. It turns out that
the refreshed WNDT due to Kuo [13], where the Hida-Kubo-Takenaka space is replaced with
the Kondratiev—Streit space, is more suitable for our purpose. This generalization, however,
causes no new difficulty since most basic results obtained so far for the Hida-Kubo—Takenaka
space [15] admit straightforward generalizations to the Kondratiev—Streit space. We hope
that our theory is also applied to some problems in quantum dissipation discussed by Accardi
[1], [2], Arimitsu [4], Gardiner [8], Saito—Arimitsu [24], etc.

1 WNDT - White noise distribution theory

Let H = L*(R, dt;R) be the real Hilbert space of R-valued L?-functions on R. The norm

and the inner product are denoted by ||, and (-, -), respectively. Then consider the real

Gelfand triple ; ‘ ‘
E = S(R) C H = I*(R,d;R) C E* = S'(R).

Being a natural extension of the inner product of H, the canonical bilinear form on £E* x E
is denoted by the same symbol (-, -). Let g be the standard Gaussian measure on E* and
L*(E*, ) the Hilbert space of C-valued L2-functions on E*. The celebrated Wiener-Ito—
Segal theorem says that L?(E*, p) is unitarily isomorphic to the Boson Fock space I'(Hc),
where H is the complexification of H. The isomorphism is a unique linear extension of the
following correspondence between exponential functions and exponential vectors:

®2 n
be(z) = =060 (1,6,5 € )

T

where £ runs over Ec. If ¢ € L*(E*, p) and (fn)52, € I'(Hc) are related by the Wiener-
[t6—-Segal isomorphism, we write

for simplicity. It is then noted that

1ol =3 n!lfals, (1.1)
n=0

where || ¢ ||, is the L®-norm of ¢ € L*(E*, u).
In order to introduce white noise distributions we need a particular family of seminorms
defining the topology of E = S(R). By means of the differential operator A = 1+1t%—d?/dt?
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we introduce a sequence of norms in Hc in such a way that [{|, = | AP¢|,. Let E, be the
Hilbert space obtained by completing F with respect: to the norm: | [ Then it is known
that o

E = proj hm E,, E = ind hm E_p,

p—0

where the dual space carries the strong dual topology. The norms |- | » are naturally extended
to the tensor products E®" and their complexification E§™. The canonical bilinear form (-, -)
is also extended to a complex bilinear form on (EE")* x E&™.

Throughout the paper let § be a fixed number with 0 < ,8 < 1. For ¢ € Lz(E L) we
introduce a new norm

I6l2s =2 )P fal2, ¢~ (fa)- | (1)

n=0

Then (Bp)s ={9; | ¢ |3 <0}, p > 0, becomes a Hilbert,s‘pace and
(E)s = projlim(E,)s

a countable Hilbert nuclear space. Similarly,

o

16105 = X1 0lyy o~ (3)

n=0

defines a Hilbertian norm on L?(E*, 1) and we denote by (E_,)_s the completion. Then the
dual space (with the strong dual topology as usual) of (E)g is obtained as

(E)p = indhm(E_p) p=U(EB)-p

p>0. .

The resultant Gelfand triple » : L
(E)s C L*(E", 1) C (E) (14)

is called the Kondratiev-Streit space. The canonical bilinear form on (E) X (E)ﬁ will be
denoted by ((, -)). Then ‘ : o

(@, ) =S nl(Fu fa), S~ (F)E(E) é~(f) (B (L5)

n=0

We note that (1.1), (1.2), (1.3) and (1.5) are all compatible each other. The standard Hida~
Kubo-Takenaka space is the case of § = 0 in (1.4). Moreover, there holds a natural inclusion
relation:

(B)s C (E)o = (B) C L*(E*,4) C (B)* = (E); C (E)j.

2 Operator symbols

The essence of white noise approach to Fock space operators consists of effective use of
pointwisely defined annihilation and creation operators, integral kernel operators, Fock ex-
pansion and operator symbols. Observing Kuo’s discussion [13] carefully, we are convinced
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that most results obtained for the Hida-Kubo-Takenaka space in [15] admit straightforward
generalization to the case of Kondratiev-Streit space.

We first recall pointwisely defined annihilation and creation operators. For any ¢ € R
there exists an operator a; € L((E)g, (E)p) uniquely determined by

ape = E(t)pe, € € Ec.

The above a, is called the annihilation operator at a point t and its adjoint a7 € L((E)z, (E)p)
the creation operator at a point t. It is easily seen (cf. [15, §4.1]) that

2

(1-p)/2
(1-p)p 7
| a'td’“p,ﬂ < (-—m‘“ | 6 |_(p+q) I ¢“p+q,ﬂ’ o€ (E)p, peER, ¢>0,
where p = || A7 ||pp = 1/2.

Recall next operator symbols. Since the exponential vectors {¢,; £ € Ec} span a dense
subspace of (E)g, every continuous operator = € L((E)g, (E)p) is determined uniquely by
its symbol

EEn) = (5 o),  &me Ec (2.1)
For instance, for an integral kernel operator =y, (x), & € (Eg(l+m))*, we have
Erm(8)"(6m) = (8, 1% @ O™ o™, £,m€ B, (2:2)

where an integral kernel operator = ,,(x) admits a formal integral expression:
— * *
:fl,m(K') - AHM K'(sh ce a‘slatla tee atm)a5l ce a’sza‘tl oo atmdsl te dsldtl v dtma

for a rigorous definition see [15]. As a result, =) ,(k) is uniquely determined by (2.2).
We next need a stratification of the space of operators L((E)g, (E)3). By the kernel
theorem there is a canonical isomorphism:

L((E)g, (E)p) = (E)s ® (E)p)" = U (E—p)-5 @ (Ep)-p-

p20

Let £,((E)g, (E)3) denote the sapce of all operators = € L((E)g, (E)j) which correspond
to elements (denoted by the same symbols) in (E_,)_g ® (E_p)-g. The norm is denoted by
| Z||_,_p- Then, by definition we have

(50, ¥ =1(E, 6@ YN <N EN_, sl Sllpsll¥llpss &% € (E)s.

In particular, in view of

2

e ls < 2Pex{(1-p2%F (€7}, ¢ebe (23)

which is found in [13, §5.2], we have

(266 8] < 212 pexp {(1- 0257 (16157 +1057) },

or equivalently,

(EEI <N E e {0028 (1EFT+1ET) ) (29)
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Theorem 2.1 For a C-valued function © : E¢c x E¢ — C to be the symbol of an operator

E € L((E)p, (E)p) if and only if

(O1) for fized &, {1,n,n1 € Ec the complex function (z,w) — O(z€ + &, wn + 1) is entire
holomorphic on C x C;

(02) there exist constant numbers C > 0, K > 0, p > 0 such that

O < CexpK (157 +[0F7),  &me Be

The proof given in [15, §4.4] for the case of § = 0 is adjusted to the general case of
0 < B < 1, see [13]. Note also that condition (02) follows from (2.4).

Theorem 2.2 Let T be a locally compact space satisfying the first aziom of countability and
let to € T be a fized point. Then for the map t — 5, € L((E)g, (E)), t € T, the following
three conditions are equivalent: :

(i) t — =, is continuous at t = to;

(ii) there ezist p > 0 and an open neighborhood U of to such that

{Et; e U} C EP((E)ﬁ, (E)E) and }LI% ” Et - Stq “_P,_p =0.

(iii) there exist C >0, K >0, p > 0 and an open neighborhood U of &y such that

~ 2 2
Een)| <Cok (167 +10lF7),  &neBe, teU,  (25)

and

lim £(¢m) = Eu(&m),  &Em€ Ee

ProoF. (i) < (ii) follows from the general result in Appendix.
(ii) = (iii) In view of (2.4) we have

= a —_ —_ , 26-1 ] 25
2t~ Bulen)] < L1 5= 2l e {1 =925 (16177 +10F7 )},

from which the assertion is clear. ‘
(iii) => (i) By a similar argument as in [15, §4.4] there exist ¢ > 0 and M =
M(K,p,q) > 0 such that

I Et¢|l—(P+q+1),—ﬂ <CMl|¢ ||p+q+1,ﬁ’ ¢€(E)p, teU,

and hence
| =t ”—(P+q+2),—ﬂ < CM| F(A)-l H%IS’ tel.

By assumption )

(E: — Etes be ® b)) = ((Z¢ — Zty )¢, $)) — 0, t = to.
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Since the exponential vectors span a dense subspace of (E)g, for any w € (E)g ® (E)g and
¢ > 0 there exists a linear combination of exponential vectors v’ = ¥, ¢51 ® ¢y, such that
|w = ' || p4q424 <€ By the triangle inequality

[(5: = S, W)
< (& = Sy w = P+ (S — B, S

< 5 -5y ”—(p+q+2),—ﬂ |w— ' I|p+q+2;ﬁ +

Z «St - Eto’ ¢€i ® ¢7h'»

1

IN

Z «Et - Eto’ ¢’Ei ® ¢7h'>>

7

€ (“ St ”"(P+41+2)1—ﬂ + ” Z, ”—-(p+q+2),—ﬂ) +
— 2%CM| T s, t—to

Therefore =5, converges to 5, as t — t, with respect to the weak topology of ((E)s ® (E)s)*,
and hence with respect to the strong topology due to the first countability of 7. Since
(E)s®(E)g)* = L((E)s, (E)j) with respect to the strong topology, it follows that t — =; €

L((E)s, (E)3) is continuous at ¢ = . qed

Theorem 2.3 Let ©, be a sequence of C-valued functions defined on Ec X E¢ satisfying the
following two conditions:

(i) for fized &,&,m,m € Ec the complex’ function (z,w) — On(2€ + &1, wn + 7]1) is entire
holomorphic on C x C;
(ii) there exist C > 0, K > 0 and p > 0 such that

If for any &,m € Ec the limit
O(¢,n) = lim 0,(¢,n)

ezists, then there exists Z € L((E)g,(E)j) such that E = 0. In that case, denoting by
En € L((E)p, (E)j) an operator of which symbol is O, the sequence =, converges to = in

L((E)g: (E)p)-
ProoF. Let £,&1,7n € Ec be fixed. For simplicity we put

9n(2) = On(26 +€1,m),  g(2) =O(26+&,m), z€C.

We shall prove that g(z) is holomorphic on C. Suppose that v is a smooth closed curve in
C. Since g,(2) is holomorphic by (i),

[ygn'(z)dz =0.

On the other hand, since v is a compact set, by assumption (ii) there exists some M > 0
such that :

_2 2
19a(2)] < C exp (|zg+511;,—ﬂ +|n|;-ﬁ> <M, zey n=1,2--.
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It then follows from the bounded convergence theorem that -
0= lim /gn(z)dz = /g(z)dz.
. BTy 2]

Therefore g(z) is holomorphic by Morera’s theorem. It is then clear that © satisfies the same
conditions (i) and (ii), and therefore by Theorem 2.1 there exists = € L((E)g, (E)j) such

that £ = ©. Thus condition (iii) in Theorem 2.2 is satisfied, and consequently, =, converges
in £in L((E)g, (E)j)- qed

Remark For an operator 5 € L((E)g, (E)3) the function

:';(6:77) = « ¢£) ¢7]>> Eﬂ,) : 6)77 € EC)
is called the Wick symbol, see [5], [6]. The symbol and Wick symbol are related in an obvious

manner: .
2(&n) = E(¢,n)e Cm,

It is then easy to see that the above mentioned statements are also valid when the “symbol”
is replaced with “Wick symbol.”

3 Wick product of operators
We start with the following

Lemma 3.1 For two operators 51, =3 € L((E)g, (E)j) there exists Z € L((E)g, (E)j) such
that

I:'-"’:'(67 ) - ‘—'1(6777)*—'2(5 7’) f,"l) €’7] € EC7 . (31)
"PrROOF. We apply Theorem 2.1. For simplicity we put

O(&,m) = Ei(&,m)E(E,me e, £ ne B
Obviously, condition (O1) in Theorem 2.1 is fulfilled. By ’assumption, we have
2 o -1 (1 2p 2 )
Elen)| PN EN, e {1 -p2%F (1657 +19157)}, =12,

for some p > 0, see (2.4). On the other hand, in view of an obvious inequality a? < 14a%(1~#)
we have

wmwap(m+mwepm—ﬂwﬂﬂm).
Then,

o] < 22|51, 515208
i 26-1 =5 25
xexps2(1—P3)27F (|€]p" +|nlp
7 P e 27
Xe exp - €™ +[nlp
2 —_ —
= 2% || E1 sl E2llp s

xaﬂ@emﬁ+§ﬂmﬁ+wﬁﬂ}(w>

N
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Thus O satisfies condition (O2) in Theorem 2.1, and hence there exists = € L((E)g, (E)j)
whose symbol is O. qed

The operator = defined in Lemma 3.1 above is denoted as

1]
n
53]

10 =2

and is called the Wick product. By definition

((E10 Z2)¢e, D)) = (E10e, da)) (E20¢, bn)) e, (3.3)
Remark In terms of Wick symbols one has

(51 o 52)~(€7 17) = :;1(£>77)§2(E’ 77)’
which is slightly simpler than (3.1). However, to avoid confusion we use hereafter only
operator symbols.

Here are some algebraic properties of the Wick product. The proofs follow directly from
(3.3).

Sol=52 (3.4)

El05 =505 (3.5)
(E1053) 053 =510(E205)) (3.6)
(E10 52 =Ef0E; (3.7)

Proposition 3.2 The Wick product is a separately continuous bilinear map from

L((E)s, (E)p) x L((B)s, (B)3) into L((E)s, (E)p)-

PROOF. Suppose 51,5 € L((E)g, (E)j) and put = = Z; o Z. It follows from (3.2)
that

~ 2 2
12 < ClIE o I Z2lpopexp K (€1 + 107

for some C > 0 and K > 0. Then, observing the proof of Theorem 2.2 carefully, we see that
for any p > 0 there exist C' > 0 and g > 0 such that

[Z10 22l g S C NI ELIL I 2l 51 52 € Lo((E)gp, (B)p)- (3.8)

Suppose = is fixed. Then (3.8) means that =; — =, ¢ =5 is a continuous linear map from

L,((E)p, (E)p) into Lyi4((E), (E)j), and hence into L((E)g, (E)p). Since
L((E)s, (E)p) = indlim L,((E)g, (E)p),

5, +— 51 0 5, is a continuous linear map from L((E)g, (E)j) into itself. qed

Proposition 3.3 For an operator 2 € L((E)g,(E)j) the following conditions are equiva-
lent: ’

(i) Eo2=ER forany E € ﬁ((E)Za, (E)E);
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(i) 2* 0 5 = 2*E for any E € L((E)g, (E)g);
(iil) the Fock expansion of {2 contains only annihilation operators, i.e., is of the form:

Q = Z Eo’m(lﬁoym).
5)

) m=0
In that case, if 2 € L((E)p, (E)g) in addition, then 502 = Z( for any = € L((E)g, (E)j).
PROOF. (i) <= (ii) is obvious because these are obtained by duality from each other.
(i) = (iii)) Put
0= 50:(¢) = /R ((Hardt, ¢ € Ec.
(EZ01()de ¢)) -

Then
(EO,I(C) < E)A(fa’ﬂ) - §0,1(<)(£777)5(5’77)6_“’") = <C> g) g(f, 7’)

=0,1

(¢) by assumption, we obtain

Z0,1(¢),

(:EEc.

Since £ 0 551(¢) = £

183}

Eoa(¢)E =
It is proved [17] that any operator commuting with Zp;(¢) contains no creation operators
0 Z0.m(Kom). Then for £2 c E((E)};, (E)};), »

— "\

in its Fock expansion.
m=

(iii) = (i) Assume that =
(22)° () = X (2Zom(ram)de, dn)

m=0
= 2_:0 <K'0,m) £®m> <<Q¢E7 ¢n»
= Y (Zom(rom)de, $n) €M (2¢, ¢)).
m=0
o
Then, since the series

5% Eom(sam) € L((E)s (E)p).

Il

This implies that 2% =
Finally, assume that {2
converges in L((E)g, (E)g), we have

) = {

(562) (&) 02¢¢, bn))

Zom(Kom)Pe, Pn))

(= Z0m

N

I
8

3
I
o

<’{'O,ma €®m> «5¢€’ d)fl»

I
M8

3
[

0
(&, meGmQ(E,m).
| qed

(1)

Consequently, = o 2 = =2
A similar assertion as above has appeared in Huang-Luo [10].
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Corollary 3.4 For any = € L((E)g, (E)3) it holds that

* * = * g
ay <oy Say oy, = 5o (ag o ag,
In particular,
T Toat Zaq, = 5
aiZ = Zoaj, Za; = Eoay,
* k%
aloa; =ala;.

and
* *
a; o a; = a,ay,

Qg O A = A0y,
4 Wick exponential function
Given = € L((E)g, (E)j) with Fock expansion

00
E= Z El,m(nl,m)a
l,m=0

v:OO:I

we put deg 5 = sup {l + m; Kim # 0}. It can happen that deg = = oo. For simplicity we

put
Er=Fo-. 05
N e’

n times

Theorem 4.1 Let = € L((E),(E)*). Then
(4.1)

converges in L((E)g, (E)j) if and only if deg = < 2/(1 = B). In particular, (4.1) converges

in L((E), (E)*) if and only if deg £ < 2.
Given = € L((E), (E)*) we consider the partial sum:

Proor.
N
1 —on

In view of a general formula:
1009 En)A(ga 77) = :’:‘1(67 17) e én(§>77)e_(n_1)<€’">,

—
—
o)

il (é(g,n)e—“v'ﬁ)” el6m

we have
n!

N
Sn(&,n) = Z;Ll—' (Be,m)" e e =
: n=0

n=0

and hence R R
lim Sy(é,m) = exp(E(&,m)e " +(&m),  &me e
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Then by Theorem 2.3, Sy converges in L((E)g, (E)j) if and only if there exist some constant
numbers C > 0, K > 0 and p > 0 such that

lexp(é(f, n)e~&m 4 (¢ 7)))' <CexpK <|§[;*Lﬁ + | ﬂlﬁ)

or equivalently, such that
exp(Z(€, me )| < Cexp K (1157 + [nfF7). - (42)
First we assume that d = deg = < 2/(1 — 3). Choose p > 0 such that
K = !Iinn?%(d| nl,mll_p < 00.

Since the symbol of = is of the form:

5"(6,7)) = Z <K'I,m, 77@1 ® £®m> e(ﬁﬂl))
I+m<d

we have

d

fmitoc)]

1 m
< _exp{ ~|f€1,m!_p‘77|p|§|p}

|exp(Z(€, m)e=®™)| < ~éXP{ ,
I4+m

IA

+m<d

< exp{K' > lnlél&l;”} ‘ - (43)

I+m<d

Using an obvious inequality a'd™ < a'*™ 4+ b'+™, a,b > 0, we have

> Ini;.lﬁl;”slz (™ +1€5™) = R+ 1)Ul +1€15).

I+m=k +m=k

Then (4.3) becomes

k=0 1l4+m=k

d
lexp(E(¢, me6m)| < exp{K'Z > IUILM!Z‘}

< exp{K’Z(k+1)(ln|';+|€|';)}

k=0

< exp{K'<d+ D3l + Iél’;)}~ (4.4)

In view of an inequality 1 +a+a®+--- +a? <14 d+da?, a > 0, (4.4) becomes

< exp{K'(d+1)(1+d+d|nli+1+d+d|¢]D)} |
= exp {2K'(d+1)* + K'(d+ 1)d(|n|¢ + | £]9)} ~ (45)
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We put
C' = exp (2K’(d+ 1)2) :

Since d < 2/(1 — ), we have |17]i <1l+]|n |12,/(1_ﬂ). Hence (4.5) becomes

< C'exp {K(d+ a2+ |7 +] €17 .

Finally we put
C = C'exp(2d(d + 1)K"), K =K'(d+ 1)d.

We obtain , ,
exp(E(6,mee)| < Cexp K (10157 +1€77 ).

Hence (4.2) is fulfilled.
Conversely we assume (4.2). For simplicity we put

0(z) = E(z¢,n)e &, ze€C.

Then F(2) = €(*) becomes an entire holomorphic function without zeroes of order < 2/(1—
B). It then follows from Lemma 4.2 below that 6(z) is a polynomial of degree < 2/(1 — §3),
i.e., Sim(k1m) = 0 whenever | > 2/(1 — ). Similarly, we see that 5y m(%1m) = 0 whenever
m > 2/(1 —3), and hence d = deg £ < co. We shall show that d < 2/(1 — ). By definition
Kim # 0 for some I, m with [ +m = d. Hence there exist {,n € Ec such that

w= Y <m,m, 7% ® §®m> # 0.

l+m=d

We may assume without loss of generality that w > 0. In that case (4.2) implies that

exp{ > {kim, n®’®§®’">}

2 _2
<CewK (|nlF" +1¢157).
I+m<d

Hence for any z € C we have

exp{ > (ki 1 ©6°™) Z“”"}

I4+m<d

2 -2
< Cexp KIz/7 (|0l +1¢157),

namely,
2
‘exp {wzd + Pd_l(z)}l < Cexp (w']zifﬁ) , (4.6)
where \ \
o =K (|05 +1¢E7) >0
and P;_;(z) is a polynomial in z of degree at most d — 1. Then (4.6) becomes

’exp {wzd + Pi1(2) — w'|z|1—%5}| < C. (4.7)

Inequality (4.7) holds for any z € C and hence for any z =t > 0. Obviously this can happen
only when d < 2/(1 — ). ged
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Lemma 4.2 Let F(z) be an entire holomorphic function with no zeroes in C of finite order

a > 0, where
log1l
a = lim sup 0808 V1) M(r)
r—00 logr

, M(r) = max|F(z)].

|z|=r

Then there exists a polynomial P(z) of degree < a such that F(z) = eP(®).

ProOOF. Thisis a simple consequence from Hadamard’s factorization theorem for entire
holomorphic functions, see e.g., Ahlfors [3]. , qed

The convergent series introduced in Theorem 4.1 is called the Wick exponential function
of = and is denoted by

Note that the Wick exponential is defined only for = € L((E),(E)*) with finite degree, or
equivalently, only for finite sums of integral kernel operators.
Lemma 4.3 Let =; € L((E),(E)*) with deg Z; < 00, ¢t = 1,2. Then
(wexp 1) o (wexp E2) = wexp (51 + 53). (4.8)
In particular,
wexp = owexp(—5) =1.
PROOF. In view of definition we observe that
((wexp Z1) o (wexp Z2))7(¢,n) =

= (wexp 51)7(€,7) - (wexp Z1)7(¢,m) - e=©7

— ol&m exp( W(&,m)e % 17) Sl&m exp( 2(€,m)e” é,n) Cemem

= el exp ((Z1(&,7) + Z2(6,m) (6, m)e™E™)

= (wexp (51 + £2))7(€, 1)
Then (4.8) follows. qed

Lemma 4.4 Assume that = € L((E),(E)*) is of finite degree < 2/(1 — ). Then z +—
wexp (25) € L((E)p, (E)p) is an entire holomorphic and
d

— wexp (25) = Z o wexp (2£)

dz
holds in L((E)g, (E)z)-
Lemma 4.5 Assume that £ € L((E),(E)*) is of finite degree < 2/(1 — ). Lett — Z; €

L((E),(E)*) be a continuous map defined on an interval T C R. Then t — wexp(Z;) €
L((E)g, (E)p) is continuous. If in addition t — =, € L((E),(E)") is differentiable,

d d=
5 Wexp (Z) = —; O Wexp (%)

holds in L((E)p, (E)j).
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The above lemmas are proved with the help:of Theorem 2.2 (iii) by studying the symbol
of a wick exponential function:

(wexp Z)7(&,m) = exp (({, n) + é(ﬁ,h)e‘(&")) )

Remark Note that = +— wexp = is not continuous. In fact, the Wick exponential is
defined only for = with finite degree and such operators do not constitute an open set in

L((E), (E)")-

Remark In the recent paper Cochran-Kuo-Sengupta [7] they introduced a further gener-
alization of white noise functions. It is plausible that the Wick exponential wexp = converges
for any = € L((E), (E)*) in a suitably extended space of operators. A further detailed study
in this connection will appear elsewhere.

5 Quantum stochastic differential equations

Lemma 5.1 Let {L;} C L((E),(E)*) be a quantum stochastic process, i.e., t +— L, is

continuous for t € T, where T is a time interval. Then the quantum stochastic integral
defined by

t
M= [ L,ds
a
15 also a quantum stochastic process with deg M; < deg L;. Moreover,

dM,
dt

= I,
holds in L((E), (E)*).

ProoF. That M, is a quantum stochastic process satisfying dM;/dt = L, is known [18].
Let the Fock expansion of L, is given as

oo

L, = Z El,m("f'l,m(t))'

I,m=0

It is known that the map ¢ +— &;,,(t) is continuous for any I, m. Then, obviously

/a CEim(kim(8))ds = Sin(Aim®),  Aiml(t) = /at Kim(3)ds.

Therefore

[ o]

t
Mt:/ Ls ds = Z El,m(Al,m(t))7

l,m=0 )

which proves the assertion. qed
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Theorem 5.2 Let {L:}ier C L((E),(E)*) be a quantum stochastic process, where T C R
s an interval containing 0. Assume that there ezists a number § with 0 < B < 1 such that
deg L, <2/(1 — ), t € T. Then the initial value problem

d=
‘at—t = St < Lt
(5.1)
Z|_, =2 € L((B),(B))
has a unique solution in L((E)g, (E)j) which is expressed in the form.:
i
=y = Zp o wexp / L,ds.
0
ProOF. The assertion follows by combining Lemmas 4.5 and 5.1. qed

Here are a few examples, some of which have appeared in Huang-Luo [10] taking no
notice of convergence of wick products or existence of solutions.

Example 1 Let {L;} € L((E),(E)*) be a quantum stochastic process. Assume that
deg L; < 2/(1 — () and that the expansion of L, involves no creation operators. (In that
case L, € L((E), (E)) follows automatically.) Consider the quantum stochastic differential
equation:

—
—
bt f

dt
where the right hand side is a usual product. Taking =,L; = = ¢ L, into account, we apply
Theorem 5.2. There exists a unique solution in L((E)g, (£)j) which is given by

= EtLt, o (52)

1 t
=y = Zp 0 wexp / L,ds = EOOexp/ L,ds.
0 0

By a more precise argument in terms of an equicontinuous generator one sees that the solution
lives in L((E)g,(E)p). A similar argument is applied to

d.:t * —
o rE,

which is dual to (5.2).

Example 2 As a particular case of Example 1 one may consider

Et d.:t

— % —
— = 0y —_— =4,
dt ’ dt L
and their linear combination:
5t s = C 5.3
—(—l—t- = w1 =10 + Waly =g, wi,wy € C. ( . )

Equation (5.3) appears in a problem of quantum stochastic limit of an interacting quantum
system [1]. Since
w1E4as + wea; 5y = 5y 0 (wras + woaay)
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and deg(wya; + wpa?) < 1, it follows from Theorem 5.2 that equation (5.3) has a unique
solution in L((E), (E)*).

Example 3 Consider

d=;

—E = a;‘Etat. (54)
In terms of Wick product we have
d=; .
—d—t—t' = =; 0 (atat),

hence the solution to (5.3) is given as

¢

11
= 5 ¢ wexp / asasds.
0
Here t
A= / a,a,ds
0
is called the number process or the gauge process. Consequently, the solution becomes

— —

=, = Zy owexp A,
and lives in L((E), (E)*).
Example 4 There is no difficulty of discussing

d=;

dt

—

= Sta? + a:zE't. (55)

In fact, since

—

-2 20 o 2 *2
Zal +a;’5, = Eo(a; + a;°)

and deg(a? + a}2) = 2, equation (5.5) has a unique solution in L((E),(E)") and is given by

8]

t
s = S © Wexp / (a2 + a%?)ds.
0

Example 5 Let L; and M, be quantum stochastic processes in L((E), (E)*) and consider
d_E_
dt

If deg L, < 2/(1 — B), the solution to (5.6) lies in L((E)g, (E)j) and given as

=ZoLi+ M, (5.6)

89]

1
- (/ M, o 04D ds+50) o 2,
0

where

1 t
2, = Wexp/ L,ds, .Qf(_l) = Wexp (—/ Lsd3> .
0 0
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Appendix

Let X be a countable Hilbert space over R or C. Then there exists a sequence of Hilbert
spaces { Hp}52 _, such that ’

"'CHP+1CHPC"'CH0C"'CH_pCH_(p+1)C"'

and :
X = projlim H,, X" 2indlim H_,,.

p_}w p—voo

If X is a nuclear space, we may assume without loss of generality that the natural injection
Hpi1 — H, is of Hilbert-Schmidt type for any p > 0. We denote by |- |p the norm of H,.

Proposition A.1 Let X be a countable Hilbert nuclear space and H, the same as above. Let
12 be a locally compact space. Then for a map f: 2 — X* the following two conditions are
equivalent:

(i) f is continuous;

(ii) for each wy € {2 there exists p > 0 such that f(wo) € H_, and

lim | f(w) — f(wo) |_p = 0.

w—rwp

In that case for any compact subset 2o C {2 there exists p > 0 such that f : 2o — H_, is
continuous. ’

ProOF. (i) = (ii) Let V C 2 be an open neighborhood of wy with compact closure.
Since f is cotinuous, f(V) C X* is compact and hence bounded. Then f(V) C H_, is
bounded for some p. In other words, there exists M > 0 such that

f@)_, <M, weV

Let {e;}$2; be a complete orthonormal basis of H,;. Then by definition,
| (@) = f(wo) 2 piz) = 20 (F() = Flwo), &)

o j=1

We note that
(f(w) — Flwo), &) <|f(w) = flwo) I, &5 2 < 4M e 2, weV.
Given € > 0 we choose N such thé,t
2 2 _ €
4M Z }ej |p < 5,
>N

which is possible since Hpy1 — H, is of Hilbert-Schmidt type and hence 22, | e; |12) < 0.
On the other hand, w + (f(w), ¢;) is continuous by assumption. Then for each j =1,---, N
one may find an open neighborhood U; C 2 of wy such that

€

(), &) = (flen) e) | < yfseen W €U
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Put U=V NU;N---NUy. Then

| 7w) = F@0) Py = A7) = Fwo), )2+ 3 (F(@) — Flwo), €5)?

Jj=1 >N
al 2 2
< Yom TAME Y el
=1 2N >N T
€ €
N X —+4 - =
< X2N+2 €, weU

This is the assertion of (ii).
(ii) = (i) The topology of X* is defined by the seminorms

| fllp =sup|(f,w)|, feZX
wEB
where B runs over the bounded subsets of X. Then for any B we have

| @)= fwo)lls < sup| Fw) = fun) |y ],
= 1Bl IfW) ~ S|, — 0, w—wo

by assumption, which shows that f is continuous at wy.
The rest of the statement is already clear. qed

| Corollary A.2 Let {z,} be a sequence in X* and let x € X*. Then x, converges to x in X*
if and only if there exists p > 0 such that lim, o |2, — T |_p = 0.

ProoF. Consider 2 = {0,1,1/2,1/3,---} equipped with the relative topology induced
from [0,1]. Set f(1/n) =z, and f(0) = z and apply Proposition A.1. qed
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