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Abstract

A state reduction is the state change caused by a measurement on a quan-
tum system conditional upon the outcome. A rigorous theory of the state
reduction is developed with mathematical formalism, physical interpretation,
and models. A special emphasis is on the pure state reduction which trans-
forms a pure prior state to the pure posterior state for every outcome. Mathe-
matical structure of general pure state reductions is discussed and it is proved
that every pure state reduction is decomposed into just two types, called the
von Neumann-Davies (ND) type and the Gordon-Louisell (GL) type; a state
reduction ¢ +~ ¢, is of the ND type if the mapping ¢ — P(.’L‘l’(l’)l/z’d’w is
linear, where P(z|¢) is the probability density of the outcome z, and of the
GL type if ¢, depends only on the outcome z (independent of the prior state

).

1. Introduction

From a statistical point of view, a quantum measurement is completely specified by
the following two elements: the probability distribution P(dz|p) of the outcome x de-
pending on the initial state p and the state reduction from a prior state (represented
by a density operator) p to the posterior state p, conditional upon the outcome z.
If two measurements on a system share the same outcome probability distribution
and the same state reduction, they are said to be statistically equivalent. The
problem of mathematical characterizations and realizations of all the possible quan-
tum measurements in the standard formulation of quantum mechanics [Yue87] has
considerable potential importance in engineering [YL73, Hel76, Oza80, Hol82] and
precision measurement experiments [BV74, CTD*80, Yue83, Oza88]. As a general



solution to this problem, it is proved in our previous work [Oza84] that a measure-
ment is realizable in the standard formulation if and only if there is a normalized
completely positive (CP) map valued measure X such that X(dz)p = p,P(dz|p)
where the CP maps X(A) is defined on the space of trace class operators for all
Borel subsets A of the space of outcomes. The statistical equivalence classes of
measurements are thus characterized as the normalized CP map valued measures.

In this paper, we shall develop the quantum theory of measurement based on
the above characterization. We shall investigate further the structure of a class of
measurements which are important from both foundational and experimental points
of view. A measurement is said to be pure if it reduces pure prior states (represented
by vectors) ¢’ to pure posterior states ¢, with probability one. It is proved in [Oza86]
that such measurements are characterized by the property that the state reduction
decreases the entropy in average. The state reductions caused by typical examples
of pure measurements fall into the following two characteristic types. Those of one
type, called the von Neumann-Davies type, are characterized by the property that
the mapping W : ¢ — P(x|y))/?), is a linear isometry from H to L*(A, p, H),
where H is the Hilbert space of the object and p is a measure on the space A of
outcomes such that P(z|¢)u(dx) = P(dx|y). Those of the other type, called the
Gordon-Louisell type, are characterized by the property that the posterior state 1),
depends only on the outcome x (independent of the intial state ). We shall prove
that the state reduction of a general pure measurement is decomposed into the
above two types in the sense that the space A of outcomes has such a decompositon
A = A;UA,; that the state reduction is of the von Neumann-Davies type on Ay and
of the Gordon-Lousell type on Ayy.

Throughout this paper, any quantum system is a system with finite degrees of
freedom without any superselection rules and every Hilbert space is supposed to be
separable so that the states of the system are described by density operators on a
Hilbert space and that the observables by self-adjoint operators (densely defined) on
the same Hilbert space. We shall denote by E“ the spectral measure corresponding
to a self-adjoint operator A. A standard Borel space is a Borel space A endowed with
a o-field B(A) of subsets of A which is Borel isomorphic to the Borel space associated
with a Borel subset of a complete separable metric space; it is well-known that two
standard Borel spaces are Borel isomorphic if and only if they have the same cardinal
number and that the only infinite cardinals possible are X, and 2% [Mac57).
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2. Measurement models

In the physics litei"atllre [vN55, AK65, Cav85, 0za88, 0za90] models of measurement
are described as experiments consisting of the following processes: the preparation
of the probe, the interaction between the object and the probe, the measurement for
the probe, and the data processing. In what follows we shall give a mathematical
formulation for general features of such models of measurement.

Let ‘H be a Hilbert space which describes a quantum system S, and A a standard
Borel space which describes the space of possible outcomes of a measurement. A
measurement model for (A, 'H) is a 5-tuple M = [K, 0, H, (M, ..., M,), f] consisting
of a Hilbert space K, a density operator ¢ on K, a self-adjoint operator H on H® K,
a finite sequence (M, ..., M,) of self-adjoint operators on K, and a Borel function
f from R"™ to A.

According to the following physical interpretation of the measurement model M,
the Hilbert space K describes the probe, o describes the preparation of the probe, H
describes the interaction between the object and the probbe, (M, ..., M,) describes
the measurement for the probe, and f describes the data processing.

The measurement model M représents the mathematical features of the following
physical description of a model of measurement. The probe P is a microscopic part
of the measuring apparatus which directly interacts with the object S. The probe P
is described by the Hilbert space K. The probe P is coupled to S during finite time
interval from time ¢ to t+ At. The time ¢ is called the tume of measurement and the
time t + At is called the teme just after measurement. The system S is free from the
measuring apparatus after ¢t + At. The state p of S at the time of measurement is
called the prior state. In order to assure the reproducibility of this experiment, the
probe P is always prepared in a fixed state o, called the probe preparation, at the
time of measurement. The composite system S + P is thus in the state p© o at the
time of measurement.

Let Hg and Hp be the free Hamiltonians of S and P, respectively. The total

Hamiltonian of the composite system S + P is taken to be
Hs,p=Hs®1+1® Hp+ KH (1)

where H represents the interaction and K the coupling constant. The coupling is
assumed for simplicity so strong (1 <« K) that the free Hamiltonians Hg and Hp
can be neglected. The duration At of the coupling is assumed so small (0 < At < 1)

that we can choose the units such that KAt = 1 ~ h. Thus the unitary operator
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U, called the time evolution operator, on 'H ® K representing the time evolution of

the composite system S + P from time ¢ to ¢t + At is given by
U= exp(—-%H). (2)

At the time just after measurement the composite system S 4+ P is in the state
U(p® a)UT.
Note that, even in the case where the above assumptions on K and At cannot

apply, if the interaction H is perturbed as

1
H— H - —(Hs ©1+1® Hp) (3)

then Eq. (2) may give the time evolution of S + P in the units with KAt = 1;
see [vN55, pages 352-357] for the discussion on the time of measurement and the
perturbations of measuring interactions.

At the time just after measurement, the systemsk S and P have no interaction,
and in order to obtain the outcome of this experiment a finite sequence (M, ..., M,)
of compatible observables, called the probe observables, of the system P is measured
by the subsequent macroscopic stages of the measuring apparatus. By this process
the probe observables M, ..., M, are transduced to the macroscopic meter variables
m;,...,m, so that the joint probability distribution of the meter variables in the
prior state p obeys the Born statistical formula for the joint probability distribution
of My, ..., M, in the state U(p ® o)UT, i.e.,

Prfm; € Ay,...,m, € A,|lp] = Tr{[l ® EMI(AQ e EMn(An)]U(,@ o)UY (4)

for all Aq,...,A, € B(R), where B(R) stands for the Borel o-field of the real line
R. After reading the meter variables, the observer obtains the outcome of this
measurement by the data processing represented by a Borel function f from R" to
a standard Borel space A, called the outcome space, so that the outcome variable x

of this measurement is obtained by the relation
x = f(my,...,m,). (5)

3. Outcome distribution

The outcome distribution of the measurement model M is the probability distribu-

tion Pr[x € Al|p] of the outcome variable x in the prior state p, where A € B(A).
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In order to obtain the outcome distribution, let E(M-Mn) : B(R™) — L(K) be the

joint spectral measure of My,..., M, i.e.,
EMises Mn)(A1 XX Ap) = E’M‘(Al)---EM"(An) (6)

for all A,...,A, € B(R), and E/Mi-Ma) - B(A) — L(K) the spectral measure
defined by

Ef(Ml ..... M")(A) — E(Ml ,,,,, Mﬂ)(f__l(A)) (7)
for all A € B(A). From Eqgs. (4), (5), the outcome distribution is given by
Prix € Allp] = Te{[l @ E/MoM)(ANU(p ) 0)U '} (8)

for all A € B(A).
Denote by L(H)' the space of positive linear operators on H. A probability
operator-valued measure (POM) for (A,H) is a map F : B(A) — L(H)t which

satisfies the following two conditions:

(1) For any disjoint sequence Aj, Ay, ... € B(A),
F(JA) =) F(A)
=1 =1
where the sum is convergent in the weak operator topology.

(2) F(A) =1.

It is easy to see that for any POM F and density operator p the function A
Tr[F(A)p| is a probability measure on B(A). Obviously, a spectral measure is a
POM which is projection-valued.

For any A € B(A), let F*(A) be defined by

F*(A) = T {UTL @ BAMe-M(A)U (L @ o)} (9)

where Tty stands for the partial trace over K. Then the map F* : A+ F*(A)is a
POM for (A, H). By Eq. (8) we have

Pr{x € Al|p] = Tr[F*(A)p] (10)

for any prior state p where A € L(A). The above POM F is called the POM of M.

A measurement which is described by the measurement model M with the out-
come variable x is called an x-measurement. An x-measurement is called a mea-
surement of an observable A if A = R and F* = E4. Let Ay,...,A,, be mutually
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commutable observables of S. An x-measurement is called a simultaneous measure-
ment of Ai,...,Am if A = R™ and F* = E{4u-A=)  In general, for any Borel
function ¢ : R™ — A an x-measurement is called a measurement of an observable
g(Ay, ... A,,) if F*X = B9(AuAn),

4. State reduction

The state reduction of the measurement model M is the state transformation p +—
Pix=-} Where x € A which maps the prior state p to the state px—,) of S at the
time just after measurement provided that the measurement leads to the outcome
x = z. In this case, the family {prx—r;| * € A} of states is called the family of
posterior states for the prior state p. The family {p(x=s}| © € A} of posterior states
is postulated to be a Borel family, i.e., the function x + Trlap(x—,}] is a Borel
function of A for all @ € L(H), and that two such families are identical if they differ
only on a set A € B(A) such that Pr[x € Alp] =0.

By the measurement statistics we mean the pair of the outcome distribution and
the state reduction. Two measurement models for (A, H) are said to be statistically
equivalent if their measurement statistics are identical.

Consider an ensemble E of samples of the system S described by a density
operator p; in this case we say that the system S is in the state p if S is considered to
be chosen randomly from this ensemble. Suppose that an x-measurement described
by the measurement model M is carried out for every sample in the ensemble E
in a prior state p. For any A € B(A) with Pr[x € Aflp] > 0, let Efxca} be the
subensemble of E consisting of the samples satisfying x € A. Let pixea} be the
state of the ensemble Eqyxcay at the time just after measurement. In this case we
say that the system S is in the state pixea} at the time just after measurement if S
is considered as a random sample from Exca} or equivalently if the observer knows
the occurrence of x € A but no more details.

Since the family {pix—,}| + € A} of posterior states is a Borel family, there is a
sequence of 7c(H)-valued simple Borel functions F;, on A such that lim,, || F,,(x) —
Pix=z}||re = 0 for all & € A, where 7¢(H) is the Banach space of trace class operators
on ‘H with trace norm ||-||,., so that the family {px=,}| * € A} is Bochner integrable
with respect to every probability measure on B(A) [HP57]. The state pixea) is
naturally considered to be the mixture of all pyx—.} for x € A with relative frequency
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proportional to the outcome distribution Pr[x € dz||p] and hence we have
1
- —y Pr[x € dz|lp 11

Pxes) = i e A7) /Ap{x y Prf 1] (11)
where the integral is Bochner integral, provided that Pr[x € Al|p] > 0. When Pr[x €
Allp] = 0, we assume for mathematical convenience that pixeca} is an arbitrarily
chosen density operator. Note that if Pr[x € {z}||p] > 0 then pix—.} = pixefa}}
from (11). The state transformation p +— pixea} where A € B(A) is called the
wntegral state reduction of the measurement model M.

5. Integral state reduction

Suppose that an x-measurement described by the measurement model M is followed
immediately by a y-measurement described by a measurement model M’ for (A',H)
so that the time just after the x-measurement is the time of the y-measurement.
Let p be the prior state of the X-measurement. Then if the outcome of the x-
measurement is X = z then the state of S at the time of y-measurement is Pix=z}
Thus the conditional probability distribution Pry € I'|x = z||p] of y given x = z in
the prior state p of the x-measurement is given by the outcome distribution of the

Y-measurement in the posterior state pjx—.y}, i.e.,
Prly € Tlx = x|lp] = Prly € T'llppx=r}]- (12)

By the definition of the conditional probability distribution in probability theory,
the joint probability distribution Pr[x € A,y € T'||p] of the outcome variables x and

y in the prior state p of X-measurement satisfies the relation
Prix e A,y €T||p] = //:\Pr[y € I'lx = z||p] Pr[x € dz||p]. (13)
From the integrability of the posterior states, we have

Prx € Allp] Prly € T'l|pgxea)]
— Te{FY(T) /A pixesy Prlx € dallp] by Eq. (10), (11)
- /A Tr[FY () pyxeay] Prlx € dap]}
= [ Prly € Tllpxen)] Prix € dzflg] by Eq. (10).
Frorﬁ Eq. (12), Eq. (13) we obtain

Prlx € A,y € T||p] = Pr[x € Al[p] Prly € I'||pxeasl- (14)
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Recall that, if Pr[x € Al|p] > 0, the conditional probability distribution Prly €
Tlx € Al|p] of y given x € A is defined in probability theory by

Prx € A,y € T'||p|
“PrxeAld

Prly € T|x € Allp] = (15)
Therefore we have the following statistical interpretation of the state pixeay for
A € B(A) with Pr[x € Al|p] > 0:

Prly € I'l|pixea}] = Prly € T'|x € Aflp]. (16)

In order to determine the integral state reduction of the measurement model M,
suppose that the y-measurement is a measurement of an arbitrary observable A of
S. Recall that the outcome x of the x-measurement at time ¢ is obtained as the
outcome of a measurement of an observable f(My, ..., M,) of P at time ¢+ At. On
the other hand, the outcome of the y-measurement is obtained as the outcome of
a measurement of an observable A of S at time ¢ + At. Thus the jdint probability
distribution of x and y is obtained by the Born statistical formula for the jb’ir’lk

probability distribution of the observables in two different systems, i.e.,
Pr[x € A,y € T)|p] = Te{[EA(T) @ /MM (AU (pw o)UY (17)

where A € B(A), T' € B(R) for any prior state p. Thus, if Pr[x € Aljp] > 0, by (16)
and (17), we Liave - ' :

r[EA c < ff(My,....M2) ; 1 .
TEA (D) ppxeny] = T2 ToAlL c«; ﬁxz A“f‘:] CY UL A S

Since A is arbitrary, pixea} is uniquely determined by the above relation, and hence

by (8) we have

o Il @ B M (AU (p @ 0)U T}
PIxes) = {1 & BIOh M (A)U (p @ 0)0T)

(19)

Therefore, we have determined the integral state reduction p — pixeay of the mea-

surement model M.

6. Operational measures

In this section, we shall introduce a useful mathematical notion which is to represent

the statistics of a measurement model in a single mathematical object.
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A linear map T on 7¢(H) is said to be completely positive (CP) if

n

> &I mel)ler) 2 0

k=1
for all finite sequences ;,...,&, and ny,...,7n, in H. We shall denote the space of
CP maps on 7¢(H) by CP[rc(H)]. Every CP map is positive and bounded. For a
bounded linear map T" on 7¢(H), the dual of T is a bounded linear map T* on L(H)
such that Tr[aT(p)] = Tr[T*(a)p] for all a € L(H) and p € T¢(H). The dual of a
CP map T on 7¢(H) is a CP map on L£(H) in the sense that

n

2 {&IT" (afar)lée) > 0 (20)
5,k=1
for all finite sequences ay,...,a, in L(H) and &, ..., &, in H; for a general definition
of CP maps on C*-algebras or their duals we refer to [Tak79, p. 200].
A map X : B(A) — CP[rc(H)] is called an operational measure for (A, H) if it

satisfies the following two conditions:

(1) For any disjoint sequence Ay, Ay, ... in B(A),
X(J A) = X(Ay),
=1 =1

where the sum is convergent in the strong operator topology of CP[rc(H)).

(2) For any p € Tc(H),
Tr[X(A)p] = Trp.

A map X : B(A) — CP[rc(H)] satisfying only condition (1) is called a CP map
valued measure for (A, H). A CP map valued measure is said to be normalized
if (2) holds, so that the operational measures are the normalized CP map valued
measures. General theory of operational measures are developed in [Oza84, Oza85b,
Oza85a, Oza86, 0za93], where they are also called CP instruments.

For any operational measure X, the relation
F(A) =X(A)"1 (21)

where A € B(R) determines a POM F', called the POM of X. Conversely, any
POM F has at least one operational measure X such that F' is the POM of X
[Oza84, Proposition 4.1]. '
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Let X be an operational measure for (A, H). A Borel family {p,] « € R} of
density operators on H is called a family of posterior states for (X, p) if it satisfies
the relation

X(A)p = [ ps Te[X(dx)y] (22)
for all A € B(A). For the existence of a family of posterior states, the following

theorem is known [Oza85b].

Theorem 6.1. (Existence of posterior states) A family of posterior states
for (X, p) always exists for any density operator p on 'H and any operational measure
X for (A,H) uniquely up to almost everywhere with respect to Tr[X(-)p] in the
following sense: if {p'| ¥ € A} is another family of posterior states for (X, p), then
P = pz almost everywhere with respect to Tr[X(-)p].

We call any Borel family of density operators satisfying (22) as (a wversion
of) the family of posterior states for (X,p). Let {p,| x € A} be a version of
the family of posterior states for (X, p). Then for any a« € L(H), the function
A+ Tr[aX(A)p] is a finite signed measure on B(A) such that the Radon-Nikodym
derivative Tr[a X(dz)p]/Te[X(dz)p] of Tr[aX(-)p] with respect to the probability
measure Tr[X(-)p] is given by the function z — Tr[ap,]. As suggested by this fact,

we shall also write

X(dz)p
o e =
WX (d2)7]
for almost every x € A with respect to Tr[X(-)p].

(23)

7. Measuring processes

In order to discuss measurement statistics in the most general framework, a math-
ematical notion of measuring process is introduced in [Oza84]. A measuring pro-
cess for (A,’H) is a 4-tuple X' = [K,0,U, E] consisting of a Hilbert space K, a
density operator o, a unitary operator U on H ® K, and a spectral measure F
for (A,K). According to the physical interpretation of the measuring process X,
the Hilbert space K describes the probe system, the density operator o describes
the probe preparation, the unitary operator U describes the time evolution of the
object-probe composite system during the measurement, and the spectral measure
E describes the probe observable with the data processing. The measurement

model M = [K,0,H,(M,...,M,), f] gives thus naturally a measuring process
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X (M) = [K, 0,U, E] such that

U = exp(—%H)
E = Ef(le-an)_‘

The measurihg process X (M) is called the measuring process of M. The following

proposition asserts that every measuring process arises in this way.

Proposition 7.1. Any measuring process X for (A,’H) has at least one mea-
surement model M for (A,’H) such that X is the measuring process of M.

Proof.‘ Let X = [K,o0, U, E] be a measuring process for (A,H). Since A is a
standard Borel space, there is a Borel isomorphism g of A onto a Borel subset Q of
the real line R. (The subset ) can be taken to be R, N, or a finite set, where N
stands for the set of natural numbers.) Let M be a self-adjoint operator on K such
that EM(A) = E[g7" (A N Q)] for all A € B(R). Let f be a Borel function of R
into A such that f(z) = ¢ '(z) for all x € Q and f(z) is arbitrary for all z € R\ 2.
Then we have E = Ef(™)_ By the function calculus, it is easy to sce that for the
unitary operator U there is a self-adjoint operator H such that U = exp(—iH/h).

Thus .V is the measuring process of the measurement model M = [K, 0, H, M, f]. O

Let X = [K,0,U, E] be a measuring process for (A, H). It is easy to check that
the relation :

X(A)p =Tre{[1 @ E(A)|U(p@ a)UT} (24)

where A € B(A) and p € 7¢(H) defines an operational measure for (A, H), which is
called the operational measure of X.
The following theorem, proved in [Oza84], asserts that every operational measure

arises from a measuring process.

Theorem 7.2. (Realization Theorem) For any operational measure X for
(A,H), there exists at least one measuring process for (A,H) such that X is the
operational measure of X.

Proof. Follows from Theorem 5.1 and Corollary 5.2 of [0za84]. O
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8. Measurement statistics

Let M = [K,0,H,(M,...,M,), f] be a measurement model and x the outcome
variable of a measurement described by M. Let X be the operational measure of
the measuring process X'(M) of M, which will be called as the operational measure
of M. Then the statistics of measurement model M is represented by X as follows.
By (8), the outcome distribution of M is given by

Prfx € Allg] = TX(A),] (@)

for any prior state p where A € B(A). By Eq. (19), the integral state reduction of
M is given by
. _ XAy
14 p{XEA} - TT[X(A)/)]
for any prior state p where A € B(A). By Eq. (11) and Eq. (22), the state reduction
of M is given by '

(26)

X(dz)p :
PP = X (da) ) (27)
for any prior state p and almost every z with respect to Pr[x € dz||p]. We have
shown that the measurement statistics of a measurement model is determined by its
operational measure. The following theorem states that two measurement models
are statistically equivalent if and only if they have the same operational measure

and that any operational measure has at least one associated measurement model.

Theorem 8.1. The correspondence from measurement models M to their oper-
ational measures X giwes a one-to-one correspondence between the statistical equiv-

alence classes of measurement models for (A, H) and the operational measures for

(A, H).

Proof. By Eq. (25) and Eq. (27), two measurement models are statistically equiv-
alent if they have the same operational measure. Conversely, if two measurement
models are statistically equivalent, then by Eq. (11) they have the same integral
state reduction so that by Eq. (26) they have the same operational measure. It
follows that the correspondence M + X gives an injective mapping from the sta-
tistical equivalence classes of measurement models to the operational measures. To
show this mapping is surjective, let X be an operational measure for (A,?). By
the Realization Theorem, there is a measuring process X associated with X. By
Proposition 7.1, there is a measurement model M such that X = X(M). Then the
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operational measure X is the operational measure of M. It follows that for any
statistical equivalence class of measurement models there is an operational measure
associated with it. O

9. Statistics of pure measurements

Let H be a Hilbert space and A a standard Borel space. In what follows, we shall
consider an operational measure X for (A, H) and a measurement with the outcome
variable x the measurement statistics of which is described by X. In the context
where the reference to x is obvious, we shall write P(A|p) = Pr[x € Allp] and
Pz = Pix=s} for the measurement statistics determined by X.

In most examples from real physical experiments, the state reduction reduces a
pure prior state p to a pure posterior state p, for all possible outcomes 2. Thus the
characterization of this kind of statistics has a particular importance in applications.
For this purpose, we say that an operational measure X for (A, H) is pure if for
any pure state p the family {p,| * € A} of posterior states for (X, p) satisfies the
condition that p, is a pure state for almost all x € A with respect to Tr{X(-)p|; such
operational measures are said to be “quasicomplete” in [Oza86]. A measurement
model is said to be pure if its operational measure is pure. For a pure measurement

model, the measurement statistics is represented for prior state vectors ¢ as follows:

outcome distribution:  P(dz|y),

state reduction: ¢ — iy,

where P(dz|y) = P(dz| |¢)(¥]) and {¢,| * € A} is a family of state vectors such
that () (4] = 190

10. Information theoretical characterization

The pure measurement models are know to have the following information theoret-
ical characterization. Let p be the prior state of a measurement. Then the entropy

of p, called the prior entropy, is

S(p) = —Tr[plog p]. | (28)

If the measuring process is given by X = [K,0,U, E], then the object-probe inter-

action changes the object state as follows:

p—= X(A)p = Tr[U(p © o)UT]. (29)
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This process is an irreversible open-system dynamics which increases the entropy b
p A

the amount

S(X(A)p) — S(p) > 0.

The observer is, however, informed of the outcome x = x of the measurement. This
information changes the state from X(A)p to the posterior state p,. This process
gains the information on the system, or equivalently decreases the entropy of the

system, in average by the amount
S(X(A)p) = [ S(pe) Te{X(dx)p] 2 0. (30)

If the outcome gives enough information about the system, we can expect that
this information gain compensates the dynamical entropy increase so that the total

information gain is nonnegative, i.e.,
1(Xp) = S(p) = [ S(p2) X (de)p] > 0. (31)

Relation (31) is a quantum mechanical generalization of Shannon’s fundamental in-
equality [Khi57, p. 36]; note that original Shannon’s inequality describes the classical
process in which the information on the state of a system is obtained without any
dynamical interaction so that the first process of entropy increase is neglected. For
a von Neumann-Liiders measurement [Lud51] of a purely discrete observable A, the

operational measure of which is given by

X(A)p =2 B ({ahpE*({a}), (32)

acA
where A € B(R), inequality (31) was first conjectured by Groenewold [Gro71] and
proved by Lindblad [Lin72]. The following theorem characterizes generally the mea-

surements which satisfy this inequality [0za86].

Theorem 10.1. (Generalized Groenewold-Lindblad Inequality) An op-
erational measure X is pure if and only if it satisfies I(X|p) > 0 for every density
operator p with S(p) < oo.

Theorem 10.1 clarifies the significance of pure measurement models. In order to
start the structure theory of pure measurement models, we shall consider typical

constructions of pure operational measures in the following subsections.
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11. Von Neumann-Davies type

Let p be a o-finite measure on B(A). The space L?(A, p, H) is defined as the linear

space of H-valued Borel functions f on A satisfying

[ UF@)IP w(de) < oo.

With identifying two functions which differ only on a g-null set, the space L*(A, p, H)
is a Hilbert space with the inner product defined by

(floy = [ (F(@)lg(@) ()

for all f,g € L?(A,p,H). Then, by the correspondence f(-){ — £ © f for all
f e LA, ,u) and ¢ € H, the Hilbert space L%(A, u, H) is isometrically isomorphic
to H & L*(A, ).

Theorem 11.1. Let W be a linear isometry from H to L*(A, p,’H). Then the
Bochner integral formula

Xw(A)IENEl = [ IWOEN(WE @) ude), (33)
where A € B(A) and £ € 'H, defines uniquely a pure operational measure Xw .

The pure operational measure Xy is called the operational measure for (A, H) of
the von Neumann-Davies (ND) type determined by W. The measurement statistics

represented by Xy 1s given by

outcome distribution:  P(dz|v) = ||[(Wv)(2)||* u(dz),
state reduction: ¢ > ¢, = (W) ()]~ (W) ().

It is easy to see that the dual of Xy (A) is given by
Xw(A)a=Wa® xa)W
for all « € L(H). Thus the POM Fyw of Xy is given by
Fyw(A) =W"(1® xa)W

for all A € B(A).

For the later discussion, we say that a CP map valued measure X is of the
von Neumann-Davies type if it is of the form of Eq. (33) with a bounded linear
transformation W : H — L*(A, pi, H).



12.  Gordon-Lousell type

Another type of pure operational measure is given as follows. Let {W,] x € A} be a
fixed Borel family of state vectors in i and F a POM for (A, H). Then the relation

X(A)p = /A [0, ) (P, | Te[p F(dir)] o (39)

for all A € B(A) and p € 7¢(H) defines a unique pure operational measure X

[Oza85a, appendix], the measurement statistics of which is given by

outcome distribution:  P(dx|y) = (| F(dx)|y),

state reduction: oy, =W,

We shall call this type of pure operational measure as the Gordon-Louisell type
[GL66. Oza89]. A pure operational measure X of the von Neuwmann-Davies type
is also of the Gordon-Louisell type if the linear isometry W is given by a family
{A4,] © € A} of rank one operators on ‘H such that (W¢)(x) = A& for almost all
€ €A

For the later discussion, we say that a CP map valued measure X is of the
Gordon-Lousell type if it is of the form of Eq. (34) with a positive operator valued

measure F : B(A) — L(H).

13. Structure of pure measurements
The following Stinespring type dilation theorem is obtained in [Oza84].

Theorem 13.1. For any operational measure X for (A, H). there exist a (sep-
arable) Hidbert space K. a spectral measure E for (A, K), and an isometry V : ' H —
H o K such that

X(AYa =Viao E(A)V | (35)

forall a € L(H) and A € B(A) and that
Hoo K ={[ae E(A)VE a € LIH), A€ B(A), £ € HV, (36)
where & stands for the operation of orthogonal complement.

The triple (K, E. V) satistfying the above conditions is called a mianimal dilation

of an operational measure X.
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Let p be a o-finite measure on B(A). An operational measure X for (A, H) is
called pr-continuous. in symbols X < g, whenever p(A) = 0 implies X(A) = 0
for all A € B(A). A o-finite measure g is called a base measure of an operational
measure X whenever p(A) = 0 if and only if X(A) = 0 for all A € B(A).

Proposition 13.2. Any operational measure for (A, 'H) has 1ts base easurc.

Let M and A7 be von Neumann algebras. For any normal CP map ¢ : M — A,
denote by ®, the predual map ®, : N, — M, defined by (a, ®,0) = (B, o) for
all « € M and ¢ € N,. Denote by L™(A, p, L{H)) the von Neumaun algebra
of essentially bounded weakly* p-locally measurable £{H)-valned functions on A.
The predual of L=(A, yi, L(H)) is the space LY(A, p, 7¢(H)) of Bochner p-integrable
Te(H )-valued functions with duality pairing

(A, F) = A Te[A( ) F ()] plda)

for all A € L*(A, . L(H)) and F € LY(A, p,7e(H)) [SakTl, p. 68]. The p-

continuous operational measures are characterized as follows.

Theorem 13.3. Let p be a o-finite measure on B(A). The Bochner integral
formula

X(A)p = /A< @, p)() pu(dx), (37)

where p € T7¢(H) and A € B(A). sets up a one-to-one correspondence between the
ji-continuous operational measures X and the unit-preserving normal CP maps @

from L>(A.p. L(H)) to L(H).

The unit-preserving normal CP map ® in Eq. (37) is called the operational

distribution for (X, ji).

The following corollary is an immediate consequence from the proof of Theorem
13.3.

Corollary 13.4. Let p be a o-finite measure on B(A). Let X be a p-continuous
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operational measure for (AH), ® the operational distribution for (X, ), and

(K,E,VY the minimal dilation of X. Then, there is a nondegencrate normal *.

representation w2 L°(A, i, L(H)) — L(H @ K) satisfying the following conditions:

(1) For all a € L{H) and A € B(A),



(2) 7[L*(A . LCHNIVH =H o K.

The following proposition shows that the relation hetween the family of posterior

states and an operational distribution.

Proposition 13.5. Let p be a o-finite measure on B(N). Let X be a p-

continuous opcrational measure associated with an operational distribution ®. Let

{p.| ¥ € A} be a version of the famaly of posterior states for (X, p). Then we have

Te| X () pj .
((I)*p)(,r} = 3[——-(:—[—p]-[), (38)
je{da)
p-almost everywhere on Ao and
(e[ X(da)p)\ |
pr = (E’—le—’;’i}) (®.p)(r) (39)
plde)

Te[X(-)pl-almost everywhere on A.

Let X, and X, be CP map valued measures for (A, H) and (Ay, H). vespectively.
Suppose Ay N A, = 0. The direct sum of X and X, is a CP map valued measure X
for (A} UAy, H) such that X(A) = X (ANAN)+ X (ANAy) for all A € B(A UN).
The following theoremi shows that pure measurements are classified essentially into

two types, the ND type and the GL type.

Theorem 13.6. Every pure operational measure is a direct sum of two CP map

valued measures of the ND type and of the GL type.
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