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On the Spin-Boson Model

Asao Arai (FrHaim)"
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Masao Hirokawa (/| E5)
Advanced Research Laboratory, Hitach: Ltd., Hatoyama, Saitama 350-03, Japan

The existence and uniqueness of ground states of the spin-boson Hamiltonian Hgg are con-
sidered. The main results in the case of massive bosons include: (i)(existence) there exists
a ground state without restriction for the strength of the coupling constant ; (ii)(uniqueness)
under a mild (nonperturbative) condition for the parameters contained in Hsg, Hsp has
only one ground state ; (iii) (degeneracy) under a certain condition for the parameters of
Hsp which is weaker than that of (ii), the number of the ground states is at most two. In
the case of massless bosons, the existence of a ground state of Hgg is shown as a limit of
ground states of the massive case. The methods used are nonperturbative. A generalization
of the model is proposed.
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1. Introduction and the main results

The spin-boson model, which describes a two-level quantum system coupled to a quan-
tized Bose field, has been investigated as a simplified model for atomic systems interacting
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with a quantized radiation or phonon field ([1, 2, 5, 6, 7, 9, 14] and references therein).
The ground states of the model are of particular interest. Spohn [14] discussed properties
of ground states defined as zero-temperature limits of positive temperature equilibrium
states. Analysis related to the work of Spohn was made by Amann [1] in terms of the
notion of algebraic ground states, although it treats only a discrete version of the model.
Recently attention has been paid to the ground states as the eigenvectors of the Hamil-
tonian Hgp of the model with eigenvalue equal to the infimum of its spectrum to analyze
spectral properties of Hgg and the process of radiative decay in the model [8, 9]. In [8]
Hiibner and Spohn showed that, under certain conditions for the dispersion w for bosons,
the coupling function, the coupling constant o and the spectral gap p of the unperturbed
two-level system, there exists a unique ground state of Hgsp and identify the spectrum of
Hsp. »

In this paper we focus our attention on the existence and uniqueness of ground states of
the spin-boson Hamiltonian Hsg. We first consider the case where the bosons are massive
(i.e., m := infr w(k) > 0) and show that, as far as the existence of the ground states is
concerned, no restriction is needed for the coupling constant o, which greatly improves the
result on the existence of ground states in [8] (in the massive case). The basic idea to do it
is as follows: we first do a unitary transformation for Hgp to convert it to an operator more
tractable in a sense and then apply the method of constructive quantum field theory [7] to
the latter operator. Moreover, by employing the min-max principle, under an additional
condition for the parameters m, 4 and «, which is nonperturbative, we show that Hsg has
a unique ground state. We also suggest the possibility for Hsg to have degenerate ground
states by showing that, under a weaker condition for m, 4 and «, there exist at most two
ground states of Hgp. In the case of massless bosons (i.e., m = 0), we construct a ground
state as a weak limit of ground states in the massive case.

We now describe our main results. For mathematical generality, we consider the
situation where bosons move in the v-dimensional Euclidean space R with v > 1. We
take the Hilbert space of bosons to be

F = F(L*(R")) é ®7L*(RY)], o (1.1)

n=0

the symmetric Fock space over LZ(R”) (®2K denotes the n-fold symmetric tensor product
of a Hilbert space K, ®2K := C ). Let w and X be functions on R” satisfying the following
conditions

(A.1) For all £ € R”, w(k) > 0 and there exist constants -y >0 and C > 0 such
that
lw(k) —w(k") < Clk—K'|", k,k' eR". , (1.2)

(A.2) The function X is real-valued and continuous with A\, A/\/w, A/w € L%(R¥)
and there exist constants ¢ > v/2 and Ky > 0 such that, for all |k| > K,,

(k) . D

w(k)| = 1+ k|




18

with D a constant (which may depend on ¢ and Kj).

Throughout this paper, we assume (A.1) and (A.2).
A typical example of w satisfying (A.1) is w(k) = 1/|k|?> + m? with my > 0 a constant.
We denote by dI'(w) the second quantization of the multiplication operator w on

'Lz(R") and set
H, =dl'(w) = /d"kw(k)a(k)*a(k), (1.3)

where a(k) is the operator-valued distribution kernel of the smeared annihilation operator
a(f) = [a(k)f(k)*d"k (f € L?(R¥)) on F (f* denotes the complex conjugate of f). The

Hamiltonian of the spin-boson model is defined by

1
Hsp = SHO RI+IQHy+ ac, ®(a(A)* + a(A)) (1.4)

acting in the Hilbert space :
H=CQF=F&F, (1.5)

where 0,0, are the standard Pauli matrices, # > 0 and a € R are constants denoting the

spectral gap of the unpertubed two-level system and the coupling constant, respectively,

and I denotes identity.

, For a linear operator T on a Hibert space, we denote its domain by D(T'). It is well
known that Hsg is self-adjoint with D(Hgg) = D(I ® H}) and

2

A

7o

Hsp > —g —a? , (1.6)

L2

where || - ||z> denotes the norm of L*(R”).
For a self-adjoint operator T' bounded from below, we denote by E(T') the infimum of
the spectrum o(T') of T
E(T) = info(T). (1.7)

In this paper, an eigenvector of T' with eigenvalue E(T) is called a ground state of T (if it
exists). We say that 7' has a (resp. uniuqe ) ground state if dimker(7T — E(T')) > 1 (resp.
dimker(T — E(T)) =1).

The following estimate for E(Hsg) is well known (see (2.10) below) :

2 2

A
Jo

_E_ 2

- (1.8)

< B(Hsp) < £ IMllie o2

A
Vwlige 73
Let

m = klenllg” w(k) (1.9)

We have the following result on the existence of ground states of Hgp :
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THEOREM 1.1. Assume (A.1), (A.2) and m > 0. Then Hsg has purely discrete spectrum
in the interval [E(Hgsp), E(Hsg) + m). In particular, Hsp has a ground state.

Remark: Theorem 1.1 implies that, under the same assumption, inf o.s(Hsp) >
E(Hsg) + m, where 0ess(+) denotes essential spectrum, i.e., Hsp has a spectral gap. In a
forthcoming paper, we shall show that, in fact, oess(Hs) = [E(Hsp) + m, o0).

To state our result on the uniqueness of ground states, we introduce
W
wy/w

A

w

. 'LL 4a2 2
K.(a,p) = min {m(1 - ), £} - ==F

- 2|0‘|#H NCRT)

£

L2 L2

with X such that \/wy/w € L*(R”).
Remark: If m > 0, then A € L?(R”) implies that, for all s > 0, A\/w® € L*(R”).

THEOREM 1.2. Assume (A.1), (A.2) and m > 0. Suppose that

sup K.(a,p) > g (1 - eIl (1.11)
0<e<1

Then Hgg has a unique ground state.

Remark: By applying regular perturbation theory (e.g., [12, Chapt.XII]), one can
easily show that there exists a constant o > 0 such that, for all & € (—ag, ), Hsp has
a unique ground state. For arbitrarily fixed m > 0 and p > 0, (1.11) is satisfied if | is
sufficiently small. Thus Theorem 1.2 may be regarded as a result which improves the one
obtained by regular perturbation theory. Note that (1.11) is a nonperturbative estimate
in a, since the right hand side (RHS) of (1.11) is non-polynomial in a. We believe that
(1.11) is a relatively good estimate to ensure the uniqueness of ground states of Hsp (see
th proof of Theorem 1.2 in §5.2).

As is easily seen, in the case p = 0, Hsp has two-fold degenerate ground states. This
fact suggests that Hgg with p > 0 also may have denenerate ground states. In this respect,
we have the following result:

THEOREM 1.3. Assume (A.1), (A.2) and m > 0. Suppose that
H -2 || A/ w||?, .
m>§(1——ez “/”L). (1.12)

Then the following (a) and (b) hold:

(a) There are at most two eigenvalues (counting multiplicity) of Hsp in the
2 2
interval [E(HSB),——'zie_za IMwllze ®|| A/ vwl|32].
(b) The Hamiltonian Hsg has at most two ground states, i.e., dimker(Hsp —
E(Hsg)) < 2.
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Remark: Condition (1.11) implies (1.12), i.e., the latter condition is weaker than the
former.

In the case of massless bosons, we have the following result on the existence of ground
states of Hsg:

THEOREM 1.4. Assume (A.1), (A.2) and m = 0. Suppose, in addition, that w) € L?(R?)

and 1
la| < —F——. 1.13
el (113)

Then Hgsp has a ground state.

Remark: To our best knowledge, Theorem 1.4 is the first which establishes the exis-
tence of ground states of the spin-boson Hamiltonian Hgp in the case of massless bosons.

The present paper is organized as follows. In Section 2 we review some basic facts on
the spin-boson Hamiltonian Hsg. We recall a well known unitary transformation which
converts Hsp to an operaotr H simpler in a sense. We analyze the operator H. To prove
the exsitence of ground states of H, we introduce in Section 3 a finite volume approximation’
Hy (V >0) for H. In Section 4 we prove that Hy converges to H in the norm resolvent
sense as V — oco. In Section 5 we prove Theorems 1.1 — 1.4. In the last section we propose
a generalization of the model.

2. Some basic facts

It is well known that, for all f € L2(R¥), the operator
P(f) :==a(f)" —a(f)} (2.1)
is essentially self-adjoint on the finite particle subspace
Fo ={¥ = {¥(™}> € F| only finitely many ¥,’s are not zero}. (2.2)
We denote the closure of P(f) by the same symbol. Let
Uy = eFiaPQ/w), (2.3)
Then

1 (Uy U-
oo (% %) o

is unitary on H. Moreover, we have

2

U 'HsgU = H — o? (2.5)

S
N

L2
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with : u
H:I@H,,+5(A®U1+A*®U3), , (2.6)

4o 0 0
() .

Based on (2.5), we shall consider, instead of Hsg, the operator H defined by (2.6).
An advantage of this approach is in that the perturbation term

where

Hp:= %(A QU2 + A" @ U?) (2.8)

of H is a bounded self-adjoint operator. The operator norm ||H;|| of Hr can be exactly
computed:

LEMMA 2.1. We have u
18] = . (2.9)

PROOF: We need only to use the relation Hy = £U~1(0,®I)U and the fact ||o,®I|| = 1. N

It follows from (2.9) and the variational principle (cf. [2, 4]) that

—f?f- < E(H) < _ge‘“z”*/“’”iz <0. (2.10)

LEMMA 2.2. Assume, in addition to (A.1) and (A.2), that w) € L*(R”). Let ¥ be any
eigenvector of Hsg. Then ¥ € D((I ® Hb)s/z).

PROOF: By the assumption, we have Hsg¥ = EV¥,¥ € D(Hgg) = D(I ® Hp) with E an
eigenvalue of Hgg. Hence

(I® H,)¥ = E¥ — g(az ® )V — ao, ® [a(\)* + a(\)]V.

The vectors on the RHS except for the last one is in D(I ® H;). We denote by a(-)#
either a(-)* or a(-). It is known that, if wf, f/\/w € L*(R"), then a¥(f) maps D(H,) into
D(H;/z)[?), Lemma 2.4]. Hence o, ® [a(A)* + a(A\)]¥ € D((I ® Hy)*/?). Thus we conclude
that (I ® H;)¥ € D((I ® Hp)'/?), which implies the desired result. i

Let
N =dI(I) = /d"ka(k)*a(k),‘ (2.11)

the number operator on F. ,

In general we denote by ( -, - )x and || - ||x the inner product (complex linear in the
second variable) and the norm of a Hilbert space K, respectively, but, we sometimes omit
the subscript K if there is no danger of confusion.



22

LEMMA 2.3. Assume, in addition to (A.1) and (A.2), that w) € L*(R"). Then, for every
normalized ground state ) of Hsg,

2

w

(Q,I® NQ)y < o? (2.12)

L2

PROOF: Let f be a function such that wf, f/\/w € L*(R¥) (then f € L*(R”)). It follows
from Lemma 2.2 and a mapping property of a(f)# [3, Lemma 2.3 that a(f)Q € D(I ®
H,) = D(Hsg). Since Hsp — E(Hsg) > 0, we have

0 < (I®a(f)Q,[Hsg — E(Hsp)] I ® a(f)0)
= (I ®a(f)Q [Hss, I ® a(f))
= (I ®a(f)(-I®a(wf) — a(oz ® I)(f,A)12)Q).

Hence

(,1® a(f) a(wf)Q) + alf, Ni2(0= ® a(£)R, Q) < 0. (2.13)

There exists a sequence {f,}2; of functions such that w f,, fn/\/w € L*(R”) for all n > 1
and {\/@fn}22; is a complete orthonormal system of L*(R”). By (2.13), we have for all
N=1,23,-

N
Y (1@ a(fn)*a(wfz)Q) + alos ® a(FN)Q, Q) <0,

n=1

where Fy = Ef:,:l(fn, A2 fn. It is not so difficult to show that
N .
lim > (2,18 a(fa) a(wfa)) = (2,1 ® NQ),

N —oo
n=1

lim
N—>o0

(0 ® a(FN)Q, Q) = (0, ®a (3) Q,Q).

Hence (2, I ® NQ) + a (s ®a (2)Q,0) < 0. Since (2,1 ® NQ) > 0, it follows that
(crI ®a (%) Q,Q) is real and

(Q,I®NQ) < —a <az ®a (3) 99) : (2.14)

Applying the well known estimate
la(f)¥ll= < |Ifllz|IN*2¥||,  fe L*(R"), ¥ € D(N'/?), (2.15)
to the RHS of (2.14), we obtain

A
(2T@NO) <ol |

It ® )2,
L2
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which implies (2.12). B

Inequality (2.12) gives an upper bound for the mean of boson numbers in any normal-
ized ground state of Hsg. Note that inequality (2.12) is independent of whether bosons
are massive or massless.

3. A finite volume approximation

Let V > 0 be a parameter and

2nZ” 2mn; .
I'v = % lz{k:(kl,“-,k,,)kj———--—ITl,njEZ,]—_—l,---,V}. (3.1)
Let -
Fv = F(E(Tv)) = @ [874(Tv)] (3.2)
n=0

the symmetric Fock space over £2(I'y'), which describes state vectors of bosons in the finite
box [-V/2,V/2]”. Each element ¥ in ®¢*>(T'v) can be identified with a piecewise constant
function in ®”L?(R”) which is a constant on each cube of volume (27 /V)™ centered about

a lattice point
(kl’.“ 7kn)EI‘V X oo XFV ZFT‘)}.

With this identification, Fv is regarded as a closed subspa,cve of F.
For each k = (ky,--- ,k,) € I'v, we define a function xz v on R” by

Xk,V(Z) = X[kl—é,k1+$](£1) o 'X[k,—%,k,,+%](£v), = (b, --,4,) R, (3.3)

where X[, 3 denotes the characteristic function of the interval [a,b]. We introduce

av (k) := (%)m a(xkv) = (%)m /[_T/V,W/V]» a(k + £)de. (3.4)

It is easy to see that, for all k,Z € T'y,
lav(k),av(€)"] = bke, [av(k),av(£)] =0, (3.5)

on Fy.
We define
wV(k) = w(kv), ke R”, (3.6)

with kv a lattice point closed to k:

kv € T'v, IkJ - (kV).7| < J=1-,0 (37)

<1

Let
Hyy = dl(wy) = / 4 kwy (k)a(k)* alk). (3.8)
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LEMMA 3.1. We have
D(H,v) = D(Hy) (3.9)

and there exists a constant ¢ > 0 independent of V such that, for all ¥ € D(N),

(Ho = Hyv)¥|| < 3 N2 (3.10)

PROOF: By (1.2) and (3.7), we have for all £ € RY, |w(k) — w(kv)| < ¢/VY with ¢ =
CrYvY/?, from which (3.9) and (3.10) follow. B

The following fact is well known:

LEMMA 3.2. The operator Hy v is reduced by Fy and

Hyv | Fv = Z w(k)av (k) av(k).

kely

For notational simplicity, we set

g(k) = t\((kk)) :

(3.11)
For K > 0, we define a function gx,v on R” by

9K,V = > g(k)xx,v-
k€T v |k; |<K,j=1,- v

LEMMA 3.3. The function g v converges in L>(R”) as K — oo.

ProoO¥F: For a constant K > 0, we put
27\” .
skv= Y )tk
kerv,lkj‘SK,j"—'l,"- sV
Then, by the growth condition for A\/w in (A.2), we have

sve Y (Y werer S (%) ooy

kerV’IkISKO kEI‘ValklZKO

o2r\” 1
< =7 k 2 2 N2 - .
< ¥ (V) 1g(R)2 + a2 D Av(1+|qu)2dk<w

kely ,|k|<Ko
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Hence Sk,v is uniformly bounded in K. Since Sk v is monotone non-decreasing in K, it
follows that the infinite series Sv = ) ;cp, (2—‘}5)'/ |g(k)|? converges. Let K' > K. Then
we have (g9x,v,9x',v)r2 = Sk,v — Sv (K — o0), which implies that {gx v}k is a Cauchy
net. i

We write
gy =1IL° - lim gxv = > glk)xk,v- (3.12)
k€T y
Then we have P
(27" N
Par) =i () 3 ak)av() - avih) (313)
keTlv
on Fg.
Let '
Ui(V) = eFiPlov), (3.14)
and L
Hy =I@Hyv+5{4® Ur(V?+A*U_(V)Y). (3.15)

LEMMA 3.4. The operator Hy is self-adjoint with D(Hvy) = D(I® H}) and bounded from

below with
Hy > —g. (3.16)

PROOF: Since the operator

Hy(V) = g{A RUL(V) + A* @ U_(V)?) (3.17)
is bounded, the Kato-Rellich theorem gives the self-adjointness of Hy with D(Hy) = D(I®
Hyv) = D(I ® Hy) (Lemma 3.1). Inequality (3.16) follows from the fact ||H;(V)|| = &,

which can be proven in the same way as in Lemma 2.1. B

In the next section, we show that Hy is a finite volume approximation for H in a
suitable sense. ’

4. Convergence of the finite volume approximation

In this section we prove the following theorem:

THEOREM 4.1. For all z € C withImz # 0 or z < —p/2,
Jim [|(Hy - 2)7 - (H - )| = 0. (41)

To prove this theorem, we prepare some lemmas.
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LEMMA 4.2.
Jim {lgv — gllzs = 0. (4.2)

PROOF: By the growth condition for A/w in (A.2), one can easily show that

lovie= 3 (5) 0P > [ amgF = gl (Vs o). (43)

kel'y

Let f € C°(RY) and supp f C {k € R”| |k;| < Kyf,j = 1,--- ,v} with a constant Kj.
Then we have

e =Y () 1@ a0 +1v,

LeTy

where

I — e * * 14 .
v Ol I G (Ch Ll

ZEPV’MJISK)‘)J=177V %1‘&/"*‘%]

Since f is uniformly continuous, for any € > 0, there exists a constant Vp > 0 such that,
if |k; — £ < m/Vy, then |f(k) — f(£)| < e. Hence, for all V > Vy, we have |Iv| < Dve,
where Dy = Eeer‘v,lleSKf =1 (27") g(£). Note that

1/2
jim Dy=Di= [ lg(h)jdk < ( / |g(k)12d”k) (2K 7)"1? < oo.
[-K;,Ky]” [—Kys,Ky]”

V—oo

Hence imy 00 |Iv| < De. Since € > 0 is arbitrary, we conclude that limy o Iv = 0.
Thus we obtain

(f,9v)ez = (f,9)rz (V= o). (4.4)

By (4.3), (4.4) and a limiting argument using the denseness of C§°(R”) in L%(R?), we
obtain (4.2). B

We say that two self-adjoint operators T} and T, on a Hilbert space strongly commute
if their spectral measures commute.

LEMMA 4.3. Let Ty and T> be strongly commuting self-adjoint operators on a Hilbert
space. Then, for all ¥ € D(Ty) N D(T3),

1T = T )| < (T2 — T2)ll.



27

PRrROOF: Let E; be the :;pectral measure of T;. Then there exists a unique two-dimensional
spectral measure E such that, for all Borel sets By, By in R, E(B; X By) = E1(B1)E»(B2).

In terms of E, we have
T; = /,\jdE(,\l,Az), e'li = /ei*de(,\l,Az), i=1,2.

By the functional calculus and the inequality e —e¥¥| < |z — y|,z,y € R, we have for all
¥ € D(Ty) N D(T3)

T = eyl = [ Je = B, M)l
< [ P = 2Pl B, )l
R2
= (T - Ty

Thus the desired result follows. B

LEMMA 4.4.
N(UL(V)? = UL)(N + )72 < 4]lgv — g]|- (4.5)

PROOF: For all real-valued functions fi, f» € L%(R”) and all s,t € R, ¢?*P(f1) commutes
with e*P(f2) (e.g., [11, Theorem X.43]). Hence, by a general theorem (e.g., [10, Theorem
VIIL.13], P(f1) and P(f;) strongly commute. Applying this fact, we conclude that P(g)
and P(gv) strongly commute. Hence, by Lemma 4.3, we have for all ¥ € Fo,

I(U£(V)* - UL)¥| < 2[|(P(gv) — P(9))¥l|
< 2(|la(gv — 9)¥ + llalgv — 9)"¥|)).

By (2.15) and the complementary estimate to it
la(£)*@|l < lIfllz2lI(NV + D)'/?®||, @ D(N'?),f € L*(R"),

we obtain

(U£(V)? = U3)¥|| < 4llgv — gll - (N + I)* /2.

Since F, is a core of N1/2, we can extend this inequality, via a simple limiting argument,

to all ¥ € D(N'/2). Thus (4.5) follows. W

Proof of Theorem 4.1
We prove (4.1) in the case Im z # 0 (the other case can be similarly treated). Writing

I®Hb==H—HI
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and using Lemma 2.1, we have
I ® Hy¥|| < [|H||+ 5I1¥]|, ¥€D(IoH,).
Let L = I ® N + I. By the fact that | N®|| < ||H,®||/m,® € D(H,), we obtain
1 ©,
Iz -Dwl<—(IlEe+£lel), ¥eDIeH),

which implies that, for all z € C\ R, L(H — z)~! is bounded. By Lemma 3.1, (I ® Hy —
I® Hy,v)L™? is bounded with

C

_ -1
(T ® By~ 1 ® Hyy)L 7| < o5

(4.6)

We write

(HV — z)—l - (H — Z)—l Z(Hv — z)‘l(I QH,—-1I® Hb’v)L—lL(H - Z)_l
+(Hy — 2)"Y(Hr — H(V))L™Y2LY2(H - ).

Hence
Ity = =)™ = (8 = )71 < s (I~ Ba) 27 2 = 27
# (s = E(V)L |2 - )7 ).
We have

Hy— Hi(V) = £{A@ (U} —Un(V))) + 4" @ (U2 - U_(V)))}.

Hence, by Lemma 4.4, ||(H;—H(V))L™*/?|| < 4p-||gv —g||, which, combined with Lemma
4.2, implies that imy o |[(Hr — Hr(V))L™%/?|| = 0. By (4.6), we have limy o ||(Hs —
Hyv)L7'|| = 0. Thus we obtain (4.1). B

5. Proof of the main results

5.1. Proof of Theorem 1.1

Let
Hy = C? @ Fy.
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LEMMA 5.1. The operator Hy | Hy has purely discrete spectrum.

PROOF: It is well known or easy to see that I ® Hy v [ Hy has compact resolvent. Since
Hp(V) is bounded, it follows that Hr(V)(I ® Hpyv +i)~! [ Hy is compact. Hence, by
a general theorem [12, §XII1.4, Corollary 2|, Oess(Hv [ Hv) = 0ess(I ® Hpv [ Hyv) = 0.
Thus the desired result follows. R

LEMMA 5.2.
Hy | Hy > E(Hy) +m.

PRrOOF: We decompose L?(R”) as L?(R*) = Fiv @ Fi}, with Fiy = L*(R”) N Fy. Then

F=FveF(Fy)=Pr?,

§=0

where FU) = Fy®[®I Fiv]. Hence Fiy = @;’;1 FD and Hip = C?QF¢ = @;‘;1 C?RFW,
On each C2® F), Hy has the form S®I+I1® T with S = Hy | Hy and T is a sum of j
copies of H} v, each acting on a single factor F7,. Since T > jm on ®J Fyy, the assertion
of the lemma follows. B

LEMMA 5.3 [13, LEMMA 4.6]. Let T, and T be self-adjoint operators on a Hilbert space,
which are bounded from below. Suppose that T,, — T in norm resolvent sense as n — oo
and T, has purely discrete spectrum in [E(Ty,), E(T,) + ¢) with some constnat ¢ > 0.
Then, lim,,_,o E(T,) = E(T) and T has purely discrete spectrum in [E(T), E(T) + ¢).

We are now ready to prove Theorem 1.1 : By Lemmas 5.1 and 5.2, Hy has purely
discrete spectrum in [E(Hv ), E(Hv) + m). By this fact and Theorem 4.1, we can apply
Lemma 5.3 to conclude that H has purely discrete spectrum in [E(H), E(H)+ m), which,
combined with (2.5), implies Theorem 1.1.

5.2. Proof of Theorem 1.2

The basic idea of proof is to use the min-max principle for H [12, Theorem XIIIL1].
Let ’

p2(H) = sup Uy (®)
PeH

with UH(@) = inf\I’ED(H),H‘I'H:l,‘I’E[‘P]-‘-(‘I;7H‘I’)’ where [@]J‘ = {‘I’ € H!(‘I‘,@) = O} We

estimate p2(H) from below. For this purpose, we write

H:I®Hb+%az®I+W,
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where

Wz%{A@(Ui—I)+A*®(UE—I)}.

For € > 0, we set

2 2

A

wy/w

LEMMA 5.4. For alle >0 and ¥ € D(I ® Hy),
(9, W¥)| < &(¥,I® HyW) + D, (cx, )] 2|2 (5.1)

4o’y

Dfay) = ==

A
. + 2|a|p H;

L L2

PROOF: By the fact ||A|| = [|[4*|| = 1 and Lemma 4.3, we have for all ¥ € D(I ® H;)

Wl < £ (178 @ - ¥l +Ie @2 - 1)¥|)
< 2lalulll ® P(A/w)¥|
< 2lalu(|| ® a(A/w)¥|| + | ® a(A/w)"¥]).

On the other hand, the following estimates are well known:

la(F)bll < ||f/vellp || Hy 1),
la(F) Il < 11£/vVelleIE 2%l + 11 fllz|Wll, £, F/v@ € L2(R¥),4 € D(HL?).

Hence

W] < 4fope

A
(1 © 879 + 2ol ] |

| :
L2 L2

A
w\/w
Using this estimate and the elementary inequality zy < ez? + % holding for all z,y,e > 0,
we obtain (5.1). R

We now proceed to proof of Theorem 1.2. Let (¢ be the Fock vacuum in F : Qy =
{1,0,0,---} and
Qo
@0 = .
—Q%
Then it is easy to see that

(o] * = {w: (?) cH

where we write ¥; = {‘I’g-n)}ff:o € F, \I’gn) € @”L*(R”). Let ¥ € [®,]*. Then, by the fact
HyQy =0 and Hy | ®"L*(R*) > nm, we have

2 oo 2 oo
(T,I10H,¥) > Y Y (80, B, 9) > m 3 Y w2,
j=1n=1

j=1ln=1

0 0 ‘
"o},
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Noting the fact \Ir§°) = ‘I’go), we have
p _ K
5(‘1’,0’2 ®Iv) = 5{(\111, U,) + (¥,, %)}

H 4 = n n n n
= AT P+ 1P+ 5 {0, ) + (957, v}

n=1

H 0 - n n
> SO+ 18P -y e

n=1

14 p©
> SV 1971 - Sl

These estimates and Lemma 5.4 give

2 oo
n I
(W HY) 2m(1—e) Y 3 (U717 + {8 + 195717} - £ 92 - Do(a, )€1

j=1n=1

> {M. - £ - D(a,m)} 97,

where ¢ is an abitrary constant satisfying 0 < ¢ < 1 and M, = min {m(l —€), i;—} Since
this inequality holds for all ¥ € [®,]1, we obtain uy(H) > C, with ‘

' p
Cy, = su M, - > — Do, .
° 7 peet { 2 ( #)}

This estimate and the min-max principle imply that E(H) is a simple eigenvalue of H if
E(H) < Cy. By (2.10), if Cy > —pe~2’IIM«II* /2 (this condition is equivalent to condition
(1.11)), then E(H) < Cy and hence H has a unique ground state. Thus the desired result

follows.

5.3. Proof of Theorem 1.3
Let

,us(H) = sup UH(‘I);[,Qz)
P,,P,€H

with Ug(®1,®2) = infgep;||o|=1,9¢[8:,8,]+ (¥, HY), where [®;,®,]" denotes the or-
thogonal complement of {a®; + 3®;|a, B € C}. Let

Qo Qo
¢, = s Q2 = .
2 —Q

[@1,@2]']' :C2®g :g®g

Then we have
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with G = @, @7 L*(R”). For all ¥ = (¥, ¥_) € [®1,$,]* (¥ € G), we have
(0, HY) > (T4, HyWy) + (-, Hy¥_) — L)@

It is easy to see that (¥, H,¥4) 2‘m||‘1’i|]2. Hence we obtain (¥, H¥) > (m — £)||¥||2,

which implies that

ps(H) > m — g (5.2)

Assume (1.12). Then, by (5.2) and (2.10), we have
ps(H) > _%e—zllf\/wlliz > E(H).

Hence, by the min-max principle, there are at most two eigenvalues (counting mutiplicity)

of H in the interval [E(H), —%e_“)‘/“’”iz]. In particular, H has at most two ground states.
These facts and (2.5) imply Theorem 1.3. B

5.4. Proof of Theorem 1.4
We apply the following fact (which may be more or less known):

LEMMA 5.5. Let A,,n = 1,2,---, and A be self-adjoint operators on a Hilbert space
K having a common core D such that, for all € D, A,p — AY as n — oo. Let
%, be a normalized eigenvector of A, with eigenvalue E,: A,, = E,, such that
E :=1lim, o FE, and w —lim,_, ¥, = ¥ # 0 exist, where w —lim denotes weak limit.
Then 1 is an eigenvector of A with eigenvalue E. In particular, if 1, is a ground state of
A,, then ¢ is a ground state of A.

PRrOOF: By the present assumption and a general theorem [10, Theorem VIII.25(a)], 4,
converges to A in the strong resolvent sense as n — co. Hence, for all ¢ € K and z € C\R,
we have

(6, (An — 2) 7 9n) — (8,(4 — 2)7'9)|
=[((An —2") 76— (A= 2") 7, ¥u)| + [((A — 2") 74,9 — )|
<[I(An—2") ¢ — (A= 2") ¢l + (A = 2") 7 b, %n — 9|

=0 (n— ),

ie., limy, yoo(®, (An — 2)"1y,) = (4,(A — 2)71¢). By the spectral theorem, we have
(61 (An—2) ) = (Bn—2)" (80, Hence we obtain (¢, (A—z)~19) = (4, (B—z)~19)
for all ¢ € K, which implies that (A—z)"'¢ = (E—2z)"1¢. Thus ¢ € D(A) and Ay = Eq.
If ¥, is a ground state of A,, then (¢, A4,¢) > E,||¢||? for all ¢ € D. Taking the limit
n — oo in this inequality, we obtain (¢, A¢) > E||¢||%. Since D is a core for A4, the last
inequality extends to all ¢ € D(A), which, combined with the preceding result, implies
that E = inf 0(A). Thus ¢ is a ground state of A. B
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We now turn to the spin-boson Hamiltonian in the case infrerr w(k) = 0. To employ
the results in the case of massive bosons, we define for m > 0

wm(k) = w(k) +m.

Then (1.2) with w replaced by wy, holds for all m > 0. We introduce
1
Hgp(m) = HO= QI+ 1IQ Hy(m)+ ao, @ (a(A)* + a(A))
with Hy(m) = dI'(wm)-

LEMMA 5.6. Let D = C?®[Fy N D(Hy)], where ® denotes algebraic tensor product. Then
D is a common core for all Hsg(m) and Hsg. Moreover, for all ¥ € D, Hsg(m)¥ — Hsg¥
asm — 0.

PROOF: The first half of the lemma is well known (note that C2®[FyND(H})] = C2Q[Fy N
D(Hjy(m))]). The second half follows from a direct computation. B

We are now ready to prove Theorem 1.4. By Theorem 1.1, there exists a ground state
Q(m) of Hsp(m): Hsp(m)Q(m) = E(Hsp(m))Q(m). Without loss of generality, we can
assume that ||Q(m)|| = 1. By (1.8), we have ’

2 2

A

A
VOm V@
By using the Lebesgue dominated convergence theorem, one casn easily show that

-

L2

_BE 2

2

< E(Hsp(m)) < “%6_2"2”’\/“’"‘”;2 —a?

L2 L2

2 2 2 - .

A (5.3)

A A
Vol Ve

Hence {E(Hsg(m))}m is uniformly bounded in m. Thus there exists a sequence {m;}32,
with my > my > --- > m; = 0 (j = oo) such that

A

Win

A

w

L2

lim , lim
m—0 L2 m—0

L2

E := lim E(Hsp(m;))
J—roo

and
Q:=w— lim Q(m;)
J-}w
exist. We need only to show that  # 0 (then, by Lemmas 5.6 and 5.5, Q2 is a ground state
of Hsp).
Let P, be the orthogonal projection from F onto the Fock vacuum state {c€|c € C}.

It is easy to see that
IQFP >I—-1I®N.
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If w) and X are in L%(R¥), then w, A € L#(R”). By these facts and Lemma 2.3, we have

(Q(m), I ® PyQ(m)) > 1~ (Qm),] @ NQ(m)) >1—a?

Wm

(5.4)

L2

Since the range of I ® P, is finite dimensional (in fact, two dimensional), we have

jl_iglo(ﬂ(mj),féb PoQ)(m;)) = (2,1 ® PoQ2).

From this fact, (5.4) and the second formula in (5.3), we obtain

2

w

(IR PQ)>1-a?

L2

Under condition (1.13), the RHS is strictly positive. Hence Q # 0. B

6. A generalization of the model

In this section we propose a generalization of the spin-boson model discussed in the
preceding sections. We expect that the generalization clarify the general properties of the
spin-boson model. We also have in mind applications to quantum spin systems on an
infinite lattice in which spins interact with bosons too.

Let H be a Hilbert space and A (resp. B) be a self-adjoint (resp. symmetric) operator
on H. The Hamiltonian of the genelaized spin-boson model we propose is given by

H=AQ®I+I®dl(w)+B® (a(\)*+ a(}))

acting in the Hilbert space H ® F.
: Supposse that A, B are bounded and A, \/\/w,\/w are in L*(R%). Then

2

1 A

Lapie 2 [T emilinollaBe g gilinwllgaBeg—+/2 44 _ . A e
’ 2r J—oo wl|ge
is a bounded self-adjoint operator. We can show [4] that
2
—|l4]| - ||B]* v | < E(H) < E(La,)- (6.1)

In the case of the original spin-boson model (i.e., the case H = Hsg), (6.1) is just (1.8).
Thus estimate (6.1) clarifies a general structure of (1.8). The results on ground states
of Hsg also can be generalized to the case of H. We can also develop scattering theory
concerning the pair < A ® I + I ® dT'(w), H >. For the details, see [4].
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