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ABSTRACT

We introduce the concept of functional process and consider the stochastic boundary value problem
and discuss the convergence of its asymptotic solution process. The formulation of the problem is totally
based upon the white noise analysis. In particular the so-called Hermite transform does play an essential
role in derivation of the corresponding partial differential equation. One of the peculiar features under
adoption of HLOUZ formalism (1993) consists in interpretation of the stochastic integral term as an
integral of the Wick product of white noise functionals. We regard the solution of the problem as a
Kondratiev space valued functional process, and the corresponding asymptotic solution satisfies some

stochastic partial differential equation with a martingale term.
1. Preliminaries

1.1 White Noise Prbbabilz'ty Space

Let d € N fixed, and it indicates the parameter dimension. S = S(R?) denotes a

Schwartz space on R?. S is a Fréchet space under a family of seminorms || - ||¢,, where
£k, = sup (L4 [2[*)|0*f(z)], k=0,
z€R?

a=(a,as, - ,04), el =a1+ -+ ag,and 0°f = lelf oz 9%2xy - - 0%y S =
S'(R?) is a dual of S , equipped with weak-* topology. It is called the space of tempered
distributions. We denote by B = B(S’) the family of Borel subsets of S’. By the Bochner-
Minlos theorem, there exists a unique Gaussian probability measure (called a white noise

measure) on B such that
/ ei(w,w)dlu(w) = e—%lwl%7 Vo e S,

where |-|; is a L2(R¢)-norm. We call the triplet (S’, B, ) a white noise probability space.
The canonical biliear form (z, ¢), for z € S, ¢ € L2(R?) is defined as follows: for Vi €
L2(R%); 3 {pr} C S such that g — ¢ in L%(R¢) as k approaches to infinity, and define

(z, ) = L2-limg_,o (z,¢r). In particular, when we define
Bt(w) = <1'7X[0,t1]><---><[0,td]>1 for t, >0, t=(t1, - ,tqa),
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then it is well-known that there exists a #-continuous version B,;of Bt, and we call it
a d-parameter Brownian motion, where x 4 denotes an indicator of the set A. Next we
introduce a d-parameter white noise process (WN process for short) W = W,,, which can
be expressed in terms of It6 integral with respect to d-parameter Brownian motion B =

(Bi(z)), t € RY; i.e., the white noise process is a mapping W: S x 8’ — R, given by

) Wea=We@) =(0e)= [ vWiB@), =eS, ees.

1.2 The Space (L?) and its Representations

Let L? be the totality of square integrable measurable functions on S’ with respect
to the white noise measure u. We denote by the symbol (L?) = L%(S’, i) the quotient
space of L? by the equivalence class, namely, the equivalent relation f ~ g is given by
| — gll2 = 0. The Wiener-It6 expansion theorem gives the following decomposition of
the space (L?): indeed, (L?) = L*(S',p) = Y oo € K, where each K, is the totality
of multiple Wiener integrals I,(f,) of order n, and f, is an element of the symmetric
L2-space L2((R%)"). For V F € (L?) we have the expression:

Fe) =Y [ B@dBS@) o e (R

= Z/ J fn(ul,"' ,’U,n)dB@n(’U.]_,“‘ 7u’n)(w)a U € Rd' ,
n=0 Rem

For the norm || - || (or = || - ||2 ) of the Hilbert space (L?), we have
IF? = nllfal3,
n=0

for f, € L2((RH™).
We consider an alternative representation of the element of (L?). Let h,(y), n =

0,1,2,---, be Hermite polynomials defined by

2 " 42
ho(y) := (=17 " (e77), yeR.

Then it is well-known that the Hermite functions ¢,(y) are defined, by employing the

Hermite polynomials, as

tny) =1 H{(n— 1)} ¥ Fhas(V3y), n>1.
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Note that {£,(y)}2, forms an orthonormal basis of L?(R) for the case d = 1. Let 8 =
(B1,B2,+ ,Ba) € Zi be a multi-index. Then there is always a proper ordering so that we

may rearrange the elements numerically and make it countable in the following manner:

(8=, B} ={BM,?,83 ...}, and B = ( {"),ﬂén),... ’ﬂ((l”))_

Therefore we can define e, = eg(n) := fﬂ(n) ®§ﬁ(n) - ®£ﬁ(n). Note that e, € S(R9) for
1 2 d

each k. Thus we obtain an orthonormal basis {e,}, = {e1, ez, €3, -} (C S) for L2(RY).

Set

0;(z) 1= We, (z) = / ej(t)dBy(z) = (z,e5), for j=1,2,---
Rd
For every multi-index a = (o, ,am) € Z7, we define hy (U1, ,Um) = hq, (u1) -
hoy(u2) -+ ha,, (Um), and set
Ha(m) = ha(al(x)a e ,0m($)) = H h’aj (0.7(:1:)) = H haj(<w? ej))'
Jj=1 j=1
It hence follows that with |a| =n=a; + - + amn,

(2) /(Rd) e®*dB®lel = /(Rd)n 21§ @eBomdBS"  (t € RY)

= ] ey (05) = Ha(2).

Theorem 1. (i) {Hy();a € N® : m =0,1,2,---} forms an orthonormal basis of the
Hilbert space (L?).
(i) E[H2] = ||Ha||? = o!, where a! = H;nzl ajl, a=(ag, - ,am).

On this account, an arbitrary element F' of (L?) can be expressed as -

(3) F(z)=) ca-Halz), ca€R, a€Z™ Vm.
Moreover, the equality || F||> = " a!c? holds.

Ezample 1. (White Noise Process) Recall the white noise process Wy (cf. Eq.(1)),
which was introduced in the end of the section 1.1. For¢¥ € S, z € &',

W¢(w)=(m,w)=/Rd z,[)(t)dBt(m)—:—/~~-/Rd¢(t1,-~ t4)dBe, .1, ().

Since we have ¥(t) = Y ro (¥, ex)er € S by making use of the orthonormal basis {ex}
for L2(R?), it is easy to see that

(4) Wy (z) = Z(T/J,ek)/ e®(k) gl = Z(l/),ek)He(k)(m),
k=1 (Re)x1 k=1
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k
where we used Eq.(2) and & = ¢ = ¢(k) = (0,---,0,1,0,---,0) € Z7.

1.3 Stochastic Distributions

Recall that we have a Gelfand triple: § C L*(R?) C &’. It is possible to construct
a similar structure in functional level (i.e. infinite dimensional case), which is modelled
on the above-mentioned Gelfand triple in function level (i.e. finite dimensional case).
Actually the second quantized operator I'(A) plays an essential role in its construction
(see e.g. [HKPS]), where A is a positive selfadjoint operator in L?(R?) with Hilbert-
Schmidt inverse. The standard construction (cf. pp.33-35,[OB| or [D5]) gives a Gelfand
triple (S) C (L?) C (S)*, where (S) is the space of test white noise functionals and
(8)* is the space of generalized white noise functionals. And besides the latter may
be called the space of Hida distributions. The Potthoff-Streit characterization theorem
(cf. pp.123-134, [HKPS]) for those spaces are based on the S-transform in white noise
.calculus. In line with this characterization, a generalization of Hida distributions has
been established ([OB],[D7]). However, in fact there is another characterization based
on the so-called chaos expansion of functionals, whose basic concept is nothing but the
alternative representation given by Eq.(3) in the previous section. For near-future appli-
cation’s sake, we will go to the other way, different from the standard setting in white
noise analysis. For (L?) > F, we have the chaos expansion F(z) = Y coHqa(z). We
are now in a position to state the characterization of the white noise test functionals and
Hida distributions in terms of the coefficients of their Hermite transforms (see the next

section) due to Zhang [Z].
Theorem 2. (i) F € (S) if and only if the condition
supc? - a!(2N)** < oo
holds for any k < oo, k € N, where (2N)* := H;nzl (2¢ . ﬂfj)ﬁéj)~--ﬁc(ij))°‘(j) if o =

(e, -+, am) with a; = a(f) for simplicity.
(ii) G € (8)*, G=)_boHy (formal series) if and only if the condition

sup bi -‘a!(QN)_aq < o0
holds for some q > 0.

It is interesting to note that the action of G on F is given by

(5) (G,F) =" olbs - ca

if G € (8)* such that G =3 _boHs and F € (S) such that F =3 alcaHa.
Next we shall introduce the Kondratiev spaces [KSW].
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Definition 1. (a) Let 0 < p<1. Wesay f € (S)? if f = >, ¢a* Ha € (L?) such that

(6) 1125 =D - (@) FP(2N)** < o0, (VE < o).

We call this (S)? the Kondratiev space of stochastic test functions.
(b) Let 0 < p<1. Wesay F € (S)™? if F =3 by Hy such that

(7) bex () P(2N) "™ < oo, (3¢ < ),

where q need to be large enough (i.e. q¢ >1). (8)™" is called the Kondratiev space of
stochastic distributions.

The family of seminorms || f||2 , (k = 1,2,---) gives rise to a topology on the space
(8)P. In fact, the space (§)7” can be regarded as a dual of (S)” by the action (F, f) =
Yoo batoa i F=3%_ byHy €(S)Pand f =3, calHs € (S)?. It follows therefore
that

(8) (S) c8)yc(s)=E)c@)c(§)=E)"cE)*cd)™

2. Elementaryr Wick Calculus

2.1 Wick Product {

The purpose of this section consists in definition of the Wick product and its extension
for application to stochastic equations. We shall introduce first the primitive definition
of the Wick product, and later on try to extend it to the largest space, namely the
Kondratiev space.

N.B. We already know that there exist much larger spaces of generalized functionals in
white noise calculus, such as the Meyer-Yan space M* (cf. LNM 1485 (1991)), and the
Carmona-Yan space M* (cf. Prog. Probab. 36 (1995)). We have the following inclusion:

(LH c (8)* c(8)™P c M* c M*.

Moreover there are continuous embeddings: M — M — (I?) = M* — M* In
addition, M is a nuclear Fréchet space which is stable under Wick and Wiener products.
While, M* is the topological dual of the locally convex topological vector space M.
However, we need not use those spaces in this paper. The Kondratiev space is large

enough to discuss the stochastic problem here in question.
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In accordance with [HLOUZ1}, [HLOUZ2}, we define the Wick product of X and Y as
(9) XY = // © ® $dB®?
(R#)?

if X = (x,0) = [gawdB, (forz €8, pe8)andY = (z,9) = [ ¥dB, (for z € &,
1Y € §). We can extend it with ease to (L?) by making use of the expression:

(LZ) 5 F(.’L‘) — Z//(R fn(ul,f" . ,’U,n)dBf?n, (fn € ij(Rdn)).

d)'n.

Definition 2. (Representation‘by Ezpansion) If X and Y are elements of (L?) such that
X=%>, f(Rd)n [ndB® andY = 3>, f(Rd)m gmdB®™, then the Wick product of
X andY is defined by

XoY = ' ® g dB®MT™)
% ZO/ /(Rd)wmfv@g :

n,m=

where the right hand side is considered as convengence in L1(S', u).

Next let us consider the alternative definition corresponding to the representation
Eq.(3).
Definition 3. If X and Y are elements of (L?) such that X = Y, aq Hy, and Y =
Z,B bg Hﬂ, then

XOY = aabs - Hayp,
o,

where we consider the right hand side as convergence in L'(S', 1) as far as it exists.

Needless to say, the above two definitions are equivalent. A direct computation leads

to the equivalence. As a matter of fact, by taking Eq.(2) into account we can easily get

Il

H,OHg

(ﬁ ha; (%’))()(ﬁ hﬂi(oi)> = (/(Rd)n e®°‘dB®|"“) (/(Rd)l e®ﬁdB®|ﬁ|)

elatB) gp®letsl — g
(Re)la+8l

a-HG(‘B)’

f

withn = |a|=a; +- -+ am and I = |B8] = B1 + - + Br. Note that the Wick product
XY = > B a,bp -Hyy g which we have defined is independent of the choice of the
base {er} of L?(R?).
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Ezample 2. (Wick Product and Stochastic Integral: cf. p.398, [HLOUZ1]) If Y; is an
adapted bounded stochastic process defined on the white noise probability space (22, F,P)
= (8', B, 1), then we have the following equality:

(10) /0 ! Yi(@)dBu(z) = /0 " YoWi(@)d.

2.2 Wick Product of Distributions and Wick Exponential

Likewise, we can define the Wick product even for Hida distributions. In general, the
spaces of stochastic distributions are stable under the Wick product. However, some
smaller spaces are not always stable. Actually the followings are verified:

(@) If F =Y, a0Ho € (5)*, and if G = 375 bgHp € (S)*, then FOG = 32, 5 aabp
-Hoy 3 holds.

(b) If f,g € (S), then fOg € (S).

(c) However, for F,G € (L?), FOG ¢ (L*) (not always!).

(d) For X,Y € L'(S', u), suppose that there are X,,,Y, € (L?) such that X, — X in
LN(S8',p),and ¥, = YV in LY(S', p) (as n — 00). If 3 Z := limp—0o Xn QY € LN(S', 1),
then we define XY = Z.

It is interesting to note that the discussion in L!(S’,u) is very delicate, because
the space L'(S’,p) is not necessarily contained in the space (S)* of Hida distribu-
tions [HLOUZ1]. Next we shall introduce the Wick exponential, which is one of the
most important tools in Wick calculus applied to stochastic differential equations in the
standpoint of how to solve the problem. If X belongs to L'(S’, 1), then we define the
Wick exponential

— 1
(11) ExpX = E —TXO”.
n!
n=0

Of course, this definition is well-defined if there exists the Wick powers of X, namely,
3X " for any n, and if the series is convergent in L*(S8’, p). Furthermore, we obtain the

exponential rule:
(12) Exp(X +Y) = ExpX OExpY.

Ezample 3. (ExpW,: the Wick exponential of WN process) Since we have » 7
hno(z)t™/n! = exp{tz —t?/2}, it is easy to see that the WN process satisfies the relation

ExpWy = exp(Wy — £ [vl3).
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Let A be the algebra generated by exp(Wy). Since A is dense in (§), immediately
ExpWy € (S). Thus it follows that ExpW,, € LP(S’, u), for any p € [1, 00).

For the elements of the Kondratiev space, we define

(13) FOG:= ) aabg - Harp,
a,,@ '
if F'=3,a0Ha € (S)™ and G = 3} 505 Hp € (S)~'. The well-definedness above is

guaranteed by the following lemma.

Lemma 1. (i) f,g € (S)', then fOg € (S)E.
(ii) F,G € (8)71, then FOG € (S)7L.

2.3 Hermite Transform

We shall introduce the Hermite transform, which is a powerful tool in white noise

calculus, especially when it is used for the study of stochastic differential equations.

' Definition 4. (Hermite Transform H) For VF € (L?) (resp. (S)*, (S)™! ) such that 3
its chaos expansion F =Y cq He, the Hermite transform H of F is defined respectively

as

(14) HF =F := anz"‘,

where z = (21, 23, -+ ) € CN.

Am

Note that, in the above, if & = (a1, -+ , o) then 2% = 27 - 2%m.

Proposition 3 [LOU]. (i) If X = Y _caHa € (L?), then for each M (< ), each

n € N, its Hermite transform X(z) = 3. «
“yZn, 0,0,---,0), |2k]| <M (VEk ).

(ii) (Therefore) for each n,

caz® converges absolutely for z = (21, 2,

X(n)(zl,... ,zn)EX(zl,... y2ny 0, ,0)

s analytic on C™.

Theorem 4 [LOU]. Suppose that X,Y € (L?) satisfying XOY € (L?). Then

H(XOY) = H(X) - H(Y)



44

holds, where “” indicates the usual complex product.

Ezample 4. (a)(WN process W) Recall that W,(z) = >, (p,ex)Hery(z) = >p
(¢, ex)h1(0k) for z € S', p € S (see Example 1). Then we have

H(ch) = ng(z) = Z(‘Pa ek) * 2.

(b) (The Square of WN process: W3 = W,OW,,) We have

[ ¢]

HWS?) = ) (per)(oes) - 2.

kyj=1

For Hida distributions, the same assertion as Theroem 4 holds; indeed, for F,G €
(8)*, H(FOG) = HF “HG. What about the Kondratiev space? Is the same assertion
valid for the elements of (S)™7?

Remark 1. If F lies in (§)7” for p < 1, then it is easy to see that HF (21,2, )
converges for any finite sequence Z = (21, 22, -+ - , 2m) of complex numbers for each m €
N.

Remark 2. If F is an element of (§)™!, then we can only obtain the convergence of
HF(z21, 2, ) in a neighborhood of the origin. Actually we have H = F= Y Car 2
for FF =) coHa. So that, we get '

19 Nl {2 ORI (St eny}

The first term of the right hand side in Eq.(15) clearly converges for ¢ >> 1 (large enough),

1/2

because F € (§)~!. For such a value of ¢ (>> 1), the second factor is convergent if z is

taken from the set

(16) Bq(é) = {C = (Cl,CZ,‘ . ) € CN; Z ICQP ; (QN)aq < 62}
a#0

for some § < oo (cf. [HLOUZ2)).
Proposition 5. If F,G € (S)™!, then

H(FOG)(z) = HF () - HG(z2)
holds for any z € CN so that both HF and HG may exist.

The next assertion is of importance in applicational basis, especially when we apply
the Hermite transform to rewrite the stochastic equation into an ordinary one and discuss
the convergence of its approximate solutions. The topology on (S)! can conveniently be

expressed in terms of Hermite transforms as follows.
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Proposition 6. The following two convergences are equivalent:
() X, — X in (S)7 .
(ii) 36 > 0, ¢ < 00, M < oo such that

HXn(2) = HX(2) (as n— o0) for z € By(6)

and |HX,(2)| < M for alin =1,2,---, Vz € By(f).

Theorem 7. (Characterization for the Kondratiev Space) Suppose that g(z1, 23, - - - ) be
a bounded analytic function on By(8) (36 > 0, ¢ < oo ). Then there exists an element
X in (8)™! such that HX = g holds.

Corollary 8. Suppose that g = HX (3X € (S)™' ). Let f be an analytic function
in the neighborhood of g(0) in C. Then there exists an element Y in (S)™' such that
HY = fog.

Ezample 5. Let X € (S)™!. Then X{0X = X¥? € (S)7! is always true by (ii) of
Lemma 1. More generally, X¥™ € (S)~! holds for Vn € N. Hence we attain that

= 1
ExpX = Z EXO” e (S)!

n=0

by applying Corollary 8 with f(z) = exp(z).
Remark 3. The Hermite transform  and the S-transform in white noise analysis are

closely connected. As a matter of fact, the following relation holds.
HF(Z17227 e )zm) - SF(Zlel + Z9€9 +--+ zmem)

for any z = (21,22, ,2m) € C™, (Im € N).

- Theorem 9. (Interchangeability of Integration and Wick Product) Assume that F(-,-)
€ L?(8' xS, u® ). For any G € (S)*, '

[ 2106 @0autn) = [ P o)iu(mocie)
S S

Theorem 10. Assume that Y € (L?), and ¢ € C§°(R) such that supp ¥ C [a,b]. If
¥(s)Y (w) ts Skorohod integrable, then

b
Y (@)OWip(w) = / (s) - Y (w)6B,(w)

holds, where the right hand side means the Hitsuda-Skorohod integral (cf. [HKPS]).
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3. Functional Process

8.1 (LP)-Functional Process
We write LP(S’, u) as (LP). When X is an (LP)-functional process, we write X € LP.

Definition 5. ((L?)-Functional Process) We say X € L* if X = X(¢,t, ) is a mapping
: S xR?x 8" — R such that

X(p,t,z) = Z ca(p,t) - Ho(z),
where c4-,-) is @ mapping : S x R — R for |a| > 1, and for each ¢ € S, the mapping :
R? 5 t — co(p,t) is Borel measurable, and if o = 0, co(-) is just a measurable function

on R?, independent of ¢. Moreover,

E[X(pt,)] = ) chlpit)-al < oo

[e3
for any ¢ € S, and any t € R?,

Definition 6. ((L?)-Functional Process) We say X € LP if X = X(¢p,t,z) : SxRIxS’
— R such that

(a) a mapping : R? 5t +— X(p,t,z) is Borel measurable for any p € S, p-a.e. z € S';
and

(b) a mapping : S' 3 z — X(p,t,z) € (LP) for any p € S, any t € R<,

The functional process X (¢,t, ) is called positive or a positive noise if X(p,t,z) >0
holds p-a.e. z € 8’ for any ¢ € S, any t € R%.
Ezample 6. (cf. [LOU]) Let X = X(p,t,2), Y = Y(p,t,z) be positive (L?)-functional

processes such that

«

Xo(®) =Y aa(9®") - Ha(z),  Yo(@) =) bs(¢®") Hp(2).
8

Then the Wick product XY is also positive.

Theorem 11 [LOU]. (Characterization of Positive Functional Process) Let X € (L?).
Then X is positive (u-a.e. = € S') if and only if M™(y) = XM (4y) - exp(j%—ly]z)
positive definite as a matriz of M(n x n) for any n € N, y € R", where XM(z2) =
X(zlaz%“' ,Zn70>07"' )0)

oo,

s

Let us consider the WN process. We shall introduce an interesting and important fact

that the WN process provides a typical example of (LP)-functional process, which very
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often can be found useful in applications to stochastic partial differential equations|B],
[D8], [HLOUZ1]. Set W(p,t,z) = Wy)(z), and define p;(u) = o(t)(u) = o(u — ).
Actually the WN process

Wato(@) = (@00 = [ pr(w)dBula)

is naturally regarded as an (LP?)-functional process, i.e. Wy € LP.

3.2 The Kondratiev Space Valued Process
Definition 7. (Stochastic Distribution Valued Process)

®=d(,p,-):RxR"> (t,p)— &,p)(-) € (S)™"

is regarded as a stochastic distribution valued process. We call such a function a (S)7!-

process.
Let us consider the derivative of (§)~!-process. Let F(t) be a (§)!-process: namely,
F(t,-):R>tw— F(t,-) € (S)™ .
Definition 8. Z = E(to) € (S)™! is said to be a derivative of (S)~'-process F(t) with
respect to t at t = tq if there ezists an element Z in (S)™! such that
F(to+ h) — F(to)
h

When the above limit exists, we write E(to) = 4 (1) (€ (S)71 ).

-2 din (S)™' (as h—0).

We set HF(t) = F(to; z) and HE(to) = E(to; 2z). By virtue of the characterization of
topology of (§)~! (see Proposition 6 in §2.3), the aforementioned definition is equivalent
to the following:

F(ty + h; 2) — F(to; 2)
h
holds pointwise, boundedly for any z € By(6) ( 3¢ < 0o, § > 0 ). If the mapping : ¢t —

(17)

— E(to; 2) as h—0

%F(t; z) = %’HF(t) is continuous in ¢, and uniformly bounded for any z € By(§), and
any t in the neighborhood of ¢, then instead of the condition (17), the condition

d - 3
(18) “EF(t; z) = E(t;2). for t =to, pointwise for each z € B,(6)”

is just sufficient. Because, if Eq. (18) holds, we can write it as

F(to+h;2z) — F(to;2) 1 /t°+h s -
== 2 (s L
Y n ), dsF(s, z)ds for small h,

and therefore, this expression turns out to be uniformly bounded for z € B,(§) as h tends

toward zero. If %F exists and is t-continuous, then it follows that (§)~!-process F(t) €

c*.
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4. The Stochastic Boundary Value Problem

4.1 Formulation
We consider the following stochastic boundary value problem:
du(t,r) = {Au(t,r) + R(u(t,r))}dt + h(t,r)u(t,7)dBy,
(19) 0<t<T, rel01],
u(t,0) = u(t,1), u(0,7)=ue(r),

where A is the Laplacian and R(y) is a polynomial of y € R. By denotes a one dimensional
Brownian motion. h, ug are non random functions being continuous. In addition, assume
Ug € C3.

Definition 9. (Functional Process Solution) u = u(p,t,7, %) is said to be a (S)™* func-

tional process solution of Eq. (19) if
u: CP(R) x [0,T] x R — ()71

is a Kondratiev space valued functional process and satisfies

t ¢ t

(20)  w(t) = uo(r) + / Ayu(s)ds +/ R®(u(s))ds +/ h(s, m)u(s)OWe(s)(z)ds,
0 0 0

for ¢ € C§°(R) such that (t) = ¢(t — s) with boundry condition.

We resort to the asymptotic solution theory. We shall say that u; is an asymptotic
solution for the problem (20) if there exists ur = ug(t,r) solving the reduced, modified

or simplified equation, satisfying
(21) ug(t,r) — u(t,r) in (S)71.

Let ur = ur(p,t,7,x,w) satisfies the following stochastic partial differential equation

(SPDE for short):
(22) up(t) = uOk(r)—}—/O Akuk(s)ds+/0 R (ug(s))ds

t
+ / (s, 7)) OW o) (2)ds + Mi(t, 7, ),
0

with boundary condition, where w is an element of some proper probability space on
which a martingale M}, is realized. We propose that the asymptotic problem for our case
is to show that

sup [[Xu(t) ~ (t)ow = 0 (k = o0),
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for T > 0, if we take Eq.(21) into consideration with characterization of topology in (S)~!
in accordance with Holden-Lindstrgm-@ksendal-Ubge-Zhang formalism (cf. Proposition
6 in §2; see also [HLOUZ1], [HLOUZ2]).

@ is a solution solving
(23) 2 a(t) = (A, + elt,r))a(e) + RG(0))

with the initial and boundary conditions, where we put ¢ = h - W<p. The corresponding

model for asymptotic solution is described as

(24) dXp(t) = (Ar + &) Xi(t)dt + R(X(t))dt + dMy(t),

with  Xp(¢,0) = Xk(t,1), Xk(0,7) = uor(r).
If we assume boundedness for R and the initial value, then the problem (23) has a
continuous bounded solution by virtue of the implicit approximation scheme. Under
further assumptions on R there exists a unique solution X}, for the problem (24). In fact

we can construct it by employing the classical probability theory related to some jump

type Markov processes with suitable conditions.

Theorem 12. Under the assumption of convergence || X (0)—%(0)||ooc — 0 in probability,
then we get

(25) lim P(sgp |Xk(t) = &(®)low > £) =0,

as far as z € B,(8), for some positive &, q.

4.2 The Probabilistic Model

Let us consider the totality of real valued step functions on [0, 1], and we extend those

functions periodically with period 1. We denote the extension by Hy. For f € Hy, we

e Akf(r)zkz{f <r+%)—2f('r)+f(r—%)}.

We shall now introduce the discretized problem of Eq.(23), i.e.,

(26) 2 el ) = (Ae + en)inlt,7) + R(ia(t, ),

with the corresponding initial and boundary conditions. Then we have the bounded
solution (¢) for all ¢, and

sup ||ix(t) — i(t)]leo < C(T, Ryuo) - C'(k) for T >0,
0,T]

te]
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with C'(k) = O(k™'), (k — o0 ).
While we consider the following SPDE driven by a martingale term M:

(27) dX(t,7) = {Ar +c(t,r)}X (¢, 7)dt + R(X(t,7))dt + dM;.

We follow the standard notation in stochastic analysis (e.g. [IW]). Let M be a continuous
square integrable local martingale on (Q, F,[P; 7). If the quadratic variation process of
M is given by an integral of G(s,w)? relative to s over [0,t] where G(# 0) is a (Fy)-
predictable process and belongs to L?([0,T)) with probability one, then the representation
theorem for martingales(p.90, [[W]) guarantees that there exists an extension (&', 7/, P
with F! and there exists an (F})-Brownian motion such that M(t) = fot G(s) dB(s).
So we assume that Eq.(27) has a solution (X, B) on (€, F',”'). Define an Ab! process
v(t,X) = —c(t,r) X(t,7) G(t)~'. Further suppose that

(28) Eexp(% fot w(s,X)Pds) coo, W0,

(29) I‘exp{ /0 (s, X)dB(s) - : /0 t|7(s,X)|2ds} is a (F!) — martingale.

Put P = I and B(t) = B(t) —fot (s, X)ds. An application of the Girsanov theorem|G]
allows that B(t) becomes a (F;)-Brownian motion on (', ', P). Therefore (X, B) on
(Q', F', P) solves the stochastic equation:

(30) dX(t,7) = AX(t,r)dt + R(X(¢,7))dt + d M,

with M(t) = fot G(s)dB(s). On the other hand, we consider the stochastic process U(t)
describing a density dependent birth and death process. In fact, let U(t) = (U1(t), -,
Uk(t)) be a N*-valued jump type Markov process whose Markovian particle may diffuse
on the circle in accordance with simple random walk with jump rate 2k2, and besides
with birth rate pR;(U;/p) and with death rate pR;(U;/p) where p is a given parameter
and R = R; — R,. We can construct such a process U(t) by classical probability theory
and realize it as a cadlag process on some suitable probability space. FP denotes the

completed o-field of o(U(s);s < t). Let T(w) be an Ff stopping time satisfying
{weMT(w) <tye FP forVt, and sup{U(t AT(w))  Ir(w)>o(w)} < oo.
¢

Then by martingale theory [LS] it follows that

tAT (w)
Us(t A T(w)) — / B(U, R, p, i; s)ds
0
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is an F}-martingale [BL], where we set ®(U, R, p,1;s) = pR(Ui(s)/p) + k2{Ui11(s) +
Ui—1(s) — 2U;(s)}. Define

Xi(t,r) :=Us(t)/p for reli/k,(i+1)/k), i=1,2,--- k—1.

Thus we attain that the Hj valued Markov process X satisfies the discretized version
of Eq.(30):

(31) dX1(t,7) = A Xy (t,7)dt + R(Xk(t,7))dt + dMy(t).

4.8 Law of Large Numbers for the Stochastic Problem

In order to prove Eq.(25) it is sufficient to show that

P{sup 1Xu(t) — 40l > ¢}

converges to zero as k tends toward infinity. Set T} = exp(tAg) and

Yi(t) = /0 t Ty—sdMy(s A T(w)).

Moreover, a simple calculation leads to ||§Xx(t A T(w))|leoc = O(p™') with precise esti-
mates. On this account, the problem can be attributed finally to computation of the

term sup; || Yz(t)||co- In fact we need to estimate

sup [[Yi(t)lloo < C1l|Ye(a)lloo +C2 sup [[Mi(t AT(w)) — Mi(a AT (w))]|oo-

t€la,b| t€(a,b]

By making use of Gronwall’s inequality, Markov’ inquality and Doob’s inequality, we
deduce that

P{@(T) sup [%()] > } < Ci(k,p,©),
t€jc,

because we applied martingale theory. For the final estimate, we need Lemma 4.4, p.135

BL].
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