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ABSTRACT

In this paper we prove a refinement for a lower bound of linear forms in. elliptic

logarithms concerning with an exponential map assiciated to an algebralc group
which contains a non-trivial extention of elliptic curves by the additive groups.
This result improves the previous results of the author [H1] [H2] for such a special

group and generalizes transcendence measures due to E. Reyssat [R].

1. Introduction

Let $\wp$ be Weierstrass’ elliptic function with algebraic invariants $g_{2},$ $g_{3}$ . For $1\leq$

$i\leq d$ , let $u_{1}$
. be non-zero complex numbers such that either $u_{2}$ is a period of $\wp$ or

$\wp(u\cdot)|$ is algebraic. Let $\beta_{0},$ $\beta_{1},$ $\cdots$ , $\beta_{d}$ be algebraic numbers not all $0$ , and put

A $=\beta_{0}+\beta_{1}u1+\cdots+\beta du_{d}$ .

In 1932, when $d=1$ , C. L. Siegel showed that there exists a non-zero period
$u_{1}$ of $\wp$ such that A $\neq 0$ . This means that there exists a transcendental period
of $\wp$ . Th. Schneider generalized this result in 1937 showing that we have always
$\Lambda\neq 0$ when $d=1$ . $D$ . W. Masser obtained in 1975 that for any $d$ , if $\wp$ has complex
multiplications, A does not vanish when $u_{1},$ $\cdots$ , $u_{d}$ are linearly independent over
the corresponding quadratic field of complex multiplications. In non-complex mul-
tiplications case, we have a theorem due to D. Bertrand and Masser which says that

for any $d$ , if $\wp$ has no complex multiplications, A does not vanish when $u_{1},$ $\cdots$ , $u_{d}$

are linearly independent over Q. Thses results correspond to an elliptic anlog of
Baker’s theorem on linear forms in usual logarithms.
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Now a natural question is to make quantitative these transcendence results
namely to give a lower bound for A when we have non-vanishing A. In 1951,
N. I. Fel’dman gave a lower bound when $d=1$ and $u_{1}$ is a period of $\wp$ . Fel’dman in
1974 and Masser in 1975 obtained lower bounds for A if $d=2,$ $\beta_{0}=0$ and $u_{1},$ $u_{2}$ are
period of $\wp$ . When $\wp$ has complex multiplications, Masser showed a lower $\mathrm{t}_{\mathrm{X})\mathrm{u}\mathrm{n}}\mathrm{d}$

for A for any $d$ if $\beta 0=0$ . Coates-Lang theorem in 1976 refined Masser’s bound, and
Masser improved in 1978 their bound. In no complex multiplications case for any
$d$, the first bound is due to P. Philippon and M. Waldschmidt (1988); in fact, their
lower bound is not only both with complex multiplications and without complex
multiplications cases of elliptic function, but also for exponential maps associated
with any commutative algebraic groups defined over an algebraic number field. In
1991, the author refined Philippon-Waldschmidt lower bound when $d\geq 2$ (when
$d=1$ , Baker’s bound is already best possible for the height of coefficients $\beta’s$ ). We
remark that the author’s lower bound of 1991 is exactly the same as Masser’s lower
bound of 1978 for dependence of the height of coefficients $\beta’s$ if we retrict the situ-
ation to elliptic case with complex multiplications, and also that the author’s is the
first lower bound which gives an ”up to $\epsilon$

” best possible bound for any $d\geq 2$ and
for any commutative algebraic groups, especially in elliptic case with no complex
multiplications (see a histrical survey for example in [B] and [H1]).

Now we return to our primitive question if we can give any lower bound for
A which is really best possible for dependence of the height of coefficients $\beta’s$ in
elliptic case. We are looking for any example that has better bound than the
author’s bound, and there exist some bounds due to E. Reyssat [R] when $d=1$ ,
which give slightly refined bounds than the author’s when the algebraic group is
an extension of elliptic curves by the additive groups. Thus our motivation is to
see if we can adapt this special better phenomenon to our situations. We restrict
us to the case where the points $u_{1}$

. are not only the periods of $\wp$ (the period case
is to be treated by completely different method of Choodnovsky) and we obtain
a slight refinement for any $d$ when our algebraic group co.ntains an extension of
elliptic curves by the additive groups.

Notations and results

Let $K$ be a number field of degree $D$ over Q. For $d\geq 2,d\in \mathrm{Z}$ , let $E_{2},$ $\cdots,$
$E_{d}$

be elliptic curves defined over $I\acute{\iota}$ , supposed to be defined by Weierstrass’ equation

$E_{\mathrm{t}}$ : $y^{2}=4x-\mathrm{s}g_{2,\mathrm{c}^{X}}-g_{3},\mathrm{i}$

with $g_{2,\mathrm{c}}\cdot,g_{3},|\in K$ $(2\leq i\leq d)$ .
For each $i,$ $2\leq i\leq d$, let $\wp_{\mathrm{I}}$

. be Weierstrass’ elliptic function attached to $E_{\mathrm{i}}$ and
be

$\Omega_{1}\cdot=\omega_{1,\mathrm{s}}\cdot \mathrm{Z}+\omega 2,\mathrm{t}\mathrm{z}$
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the period lattice of $\wp|.$ . Let $\zeta_{1}$. be Weierstrass’ zeta function associated to $\wp_{\mathrm{i}}$ . We
assume that $E_{1}$. and $E_{j}$ are non-isogenous over $K$ for $2\leq i<j\leq d$ . Let $G_{1}$ be a

non trivial extension of $E_{2}$ by $\mathrm{G}_{a}$ , namely obtained by

$0arrow \mathrm{G}_{a}-arrow G_{1}arrow E_{2}arrow 0$

with $\exp_{G_{1}}(Z1, \mathcal{Z}_{2})=(P_{2}(z_{2}), Z_{1}+a\zeta_{2}(z_{2}))$ where $a\in K,a\neq 0$ and $P_{2}(z_{2})=$

$(1, \wp_{2}(z2),$ $\wp_{2}’(_{\mathcal{Z}_{2}}))\in \mathrm{P}^{2}$ .

We identify $\mathrm{C}^{d}$ with $T_{G_{1}}(\mathrm{C})\oplus T_{B_{3}}(\mathrm{C})\oplus\cdots\oplus T_{E_{d}}(\mathrm{C})$ , which is a direct sum of
tangent spaces of $G_{1},$ $E_{3},$ $\cdots$ , $E_{d}$ at the origins. Put $G=G_{1}\mathrm{x}E_{3}\mathrm{x}\cdots \mathrm{x}E_{d}$ . We
consider also $\exp_{G}$ an exponential map of $G$ , normalized as above, namely composed
with an embedding of $G$ into a projective space and with an identification of tangent
spaces and $\mathrm{C}^{d}$ , written by

$\exp_{G}$ : $(z_{1}, \cdots, z_{d})arrow(P_{2}(z_{2}), Z1+a\zeta 2(z_{2}),$ $P_{3}(z3),$ $\cdots,$ $P_{d}(_{Z_{d}}))$

with $P_{i}(Z_{1})=(1, \wp_{i}(z_{1}\cdot),$ $\wp|’\cdot(Z_{1}))$ $(2\leq i\leq d)$ .
We remark that this $\exp_{G}$ is polynomial in $z_{1}$ .

For $\mathrm{z}\in \mathrm{C}^{h},$ $\mathrm{z}=(z_{1}, \cdots, z_{h})$ $(1 \leq h\leq d)$ , we write

$||\mathrm{z}||--(|z1|^{2}+\cdots+|z_{h}|^{2})^{1/2}$

the Euclidean norm on $\mathrm{C}^{h}$ .

Let $M_{K}$ the set of non-equivalent absolute values of $I\mathrm{t}^{\nearrow}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{e}\mathrm{d}$ such that for
$x\in \mathrm{Q}$ and a prime $p\in \mathrm{Z}$ , we have, $|x|_{v}= \max(x, -x)\backslash$ for infinite $v\in M_{K}$ and
$|p|_{v}=1/p$ for finite $v\in M_{K}$ .

For $P=(p_{0},p1, \cdots,p_{N})\in \mathrm{P}^{N}(K)$ , define $Hx(P)$ by

$H_{K}(P)=. \iota \mathrm{t}’\in M_{K}\neg\max\{|p_{0}|_{v}, \cdots, |p_{N}|_{\mathrm{s};}\}^{N_{v}}$

where $N_{\tau},$ $=[K_{u} : \mathrm{Q}_{\tau},]$ .
Let $h(P)$ be logarithmic absolute height defined by

$h(P)=^{\frac{1}{[I\zeta.\mathrm{Q}]}\mathrm{l}\mathrm{g}(P)}.\mathrm{o}HK$ .

(cf. [Si] Chap. 8)

Now we state a result on transcendence measures of elliptic logarithms which are
not periods. This refines some previous transcendence measures concerning with
height of the coefficients of linear forms.
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Theorem.
There exists a constant $C_{1}>0$ which is effectively calculable which depends on

the fixed data with the following properties.
Let $L(\mathrm{z})=\beta_{1}z_{1}+\cdots+\beta_{d}z_{d}$ be a linear form on $\mathrm{C}^{d}$ with coefficients
$\beta_{1}\cdot\in K-\{0\}$ $(1\leq i\leq d)$ .
For each $2\leq i\leq d$ . let $u_{1}\cdot\in \mathrm{C}$ satisfying $\gamma_{1}\cdot:=(1, \wp_{\mathrm{i}}(u_{\mathrm{c}}),$ $\wp’|(u_{\mathrm{i}}))\in E_{1}\cdot(K)$ .
Let $\mathrm{u}_{1}=(u_{1}, u_{2})\in \mathrm{C}^{2}$ such that $\gamma_{1}:=\exp_{G_{1}}(\mathrm{u}_{1})\in G_{1}(K)$ .
Let $B,$ $E,$ $V_{1},$ $V_{3},$ $\cdots,$ $V_{d},$ $V$ be positive real numbers which satisfy

$\log B\geq\max(h(\beta.\cdot), e)$ $(1 \leq i\leq d)$

$\log V_{1}\cdot\geq\max(h(\gamma_{1}\cdot), ||u|||^{2}/D, 1/D)$ $(3\leq i\leq d)$

$\log V_{1}\geq\max(h(\gamma_{1}), ||u_{1}||^{2}/D, 1/D)$

$V= \max V_{1}$. $(i=1,3, \cdots, d)$

$e \leq E\leq\min\{e\cdot(D\log Vi)1/2/||u_{2}||, e\cdot(D\log V_{1})^{1/2}/||u_{1}|| (3\leq i\leq d)\}$.

If A $:=\beta_{1}u_{1}+\cdots+\beta_{d}u_{d}\neq 0$ , then we have

$\log|$ A $|>-C_{1}D2d+2(\log(BE)+(\log D)^{2}+\log V(\log\log V)^{2})$

$\cross\{\frac{\log\log B+\log(DE)+\log\log V}{\log E}\}^{d}$

$\cross.\prod_{31=}’-?(\log V_{1}\cdot)\cross(\log V1)\cross(\log E)^{-d+1}$ .

When $d=2$ , our theorem gives a transcendence measure, same as (4) of [R]
concerning with the height of $\beta’s$ .

Corollary.
Let $\beta\in K-\{0\}$ and $u\in \mathrm{C}$ such that $\gamma:=(1, \wp_{2}(u),$ $\wp 2(/u))\in E_{2}(K)$ .
Let $B$ be a positive real number with

$\log B\geq\max(h(\beta), e)$ .

There exists a constant $C_{2}>0$ which is effectively calculable, independent of $B$

$\mathit{8}atisfying$ that, if
$u-\beta\zeta_{2}(u)\neq 0$ , then

$\log|u-\beta\zeta_{2}(u)|>-C_{2}\log B(\log\log B)^{2}$ .
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2. Outline of the proof

We now turn to give an outline of the proof. The idea is as $\mathrm{f}\mathrm{o}\mathrm{l}1_{0}\mathrm{w}\mathrm{S}:\mathrm{t}\mathrm{h}\mathrm{e}$ exponential
map of our group $G$ is polynomial in terms of $z_{1}$ , then we can use the idea of
Fel’dman which is based on the fact that the $t$-times derivative of $\exp_{G}$ by $z_{1}$

vanishes if $t$ is greater than the degree of $z_{1}$ . In general, to use this trick, we have
to add one factor $\mathrm{G}_{a}$ to the algebraic group as in [H1] and [H2]. However, in our
case, the group $G$ already inculdes one $\mathrm{G}_{a}$ , therefore we can improve one factor
of $\log\log B$ in the lower bound. For this, we need a new zero estimate on $G_{1}$ due
to P. Philippon [P] which allows us to treat separately the part over $z_{1}+a\zeta_{2}(z_{2})$

and the other part over $\wp_{2}(z_{2})$ , although $G_{1}$ is not a direct product of $\mathrm{G}_{a}$ and $E_{2}$ .
Our statement spoils the factor $V,E$ and $D$ . This is because the new zero estimate
requires us that the degree for the part over $z_{1}+a\zeta_{2}(z_{2})$ should be greater than
the degree for the part over $\wp_{2}(z_{2})$ in our auxiliary function.

Choice of parameters

We choose a constant $c_{0}>0$ which depends on $d,$ $g_{2},|.,$
$g_{3,\mathrm{i}}(2\leq i\leq d),$ $a$ , the fixed

idendification of a tangent space and a complex plane, the fixed embedding of $G$ into
a projective space, but independent of the parameters $B,$ $V_{1},$ $V_{3},$ $\cdots,$ $V_{d},$ $E,$ $D$ . We
suppose that this constant $c_{0}$ is sufficiently large, much larger than other constants.
$D$enoting by $[x]$ the largest integer part of a real number $x$ , we define parameters
$S,$ $S_{0},$ $T,$ $\tau_{0},$ $U,$ $U0,$ $L1,$ $’..,$ $L_{d}$ as follows.

$S=[ \frac{c_{0}^{5}D(\log\log B+\log(DE)+\log\log V)}{\log E}]$

$S_{0}=[S/(c_{0})^{2}]$

$U_{0}=c_{0}^{9d}D2d$ ($\log(BE)+(\log D)20+\mathrm{l}\mathrm{g}V$ (log log $V)^{2}$ )

$\{\frac{\log\log B+\log(DE)+\log\log V}{\log E}\}^{d}$

. $\log V_{1}.\prod_{2=3}^{\mathrm{d}}(\log V1)\cdot(\log E)-d+1$

Let $U>0$ be a real number. We put also
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$L_{1}’= \frac{U}{C_{0}^{s}D^{3}(\log B+(\log(DE))2+\log V(\log\log V)2)}$

$L_{1}=[L_{1}’]$

$L_{2}’= \frac{U}{DS^{2}(\log V_{1})}$

$L_{2}=[L_{2}’]$

$L_{\mathrm{i}}’= \frac{U}{DS^{2}\log V_{1}}$ $(3\leq i\leq d)$

$L_{\mathrm{t}}\cdot=[L’]|$ $(3\leq i\leq d)$ .

For $U’= \max(U, U\mathrm{o})$ , put

$T’= \frac{U’}{c_{0}D(\log\log B+\log(DE)+\log\log V)}$

$T=[T’]$

$T_{0}=[T/(c_{0})^{2}]$ .

These parameters are different from those in [H1] [H2], in fact, $U_{0}$ has one less
factor $\log\log B$ because of Fel’dman’s idea. However, this has one more $\log(DE)$

and one more $\log V\log\log V$ , which come from the condition for new zero estimete.

Base of hyperplane

For $L(\mathrm{z})=\beta_{1}z_{1}+\cdots+\beta_{d}z_{d}$ the linear form on $\mathrm{C}^{d}$ , put $W=\mathrm{k}\mathrm{e}\mathrm{r}L$ . Thanks
to Liouville’s inequality, we may suppose that $W$ is defined by $W=\mathrm{k}\mathrm{e}\mathrm{r}L_{1}$ for
$L_{1}(\mathrm{z})=-z_{1}+\beta_{2^{Z}2}’+\cdots+\beta_{d}^{t}z_{d}$ with $\beta_{\mathrm{i}}’=\beta_{1}\cdot/\beta_{1}$ $(2 \leq i\leq d)$ . Then we can
associate two systems of basis $\mathrm{E}$ and $\mathrm{W}$ to $W$ :

$\mathrm{E}=(\mathrm{e}_{1}, \cdots, \mathrm{e}_{d-1})$

$\mathrm{W}=(\mathrm{e}_{1}, \cdots, \mathrm{e}d-2,\mathrm{w}, )$

with $\mathrm{e}_{2}=$
$(\beta_{\mathrm{i}}’, 0, \cdots, 1,0, \cdots , 0)$ where 1 is the $(i+1)$-th coordinate in $\mathrm{C}^{d}$ , and

$\mathrm{w}=(\beta_{2}’u_{2}+\cdots+\beta’dud, u2, \cdots, ud)$ . For $\mathrm{u}=(u_{1}, \cdots, u_{d})$ , we have $||$ w-u $||=|$ A $|$ .
We prove the theorem as the main theorem in [H1], but with lower dimensional

space $\mathrm{C}^{d}$ than [H1]. The step in Liouville’s inequality goes well as in [H1] because
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our auxiliary function is also polynomial in $z_{1}$ . The last essential step of the proof
is the zero estimate of Philippon, which can be stated in a simple manner as follows
in our case, for, any proper algebraic subgroup of $G$ is $0$ under our assumptions.

Zero estimate

We state the following lemme under our notations and assumptions, derived from
a special case of Philippon’s zero estimates (Theorem 8 and Theorem 9 in [P]).

Lemma.
If there exists a non-zero polynomial $P$ of multi-degrees $\leq L_{1},$ $L_{2},$ $\cdots,$

$L_{d}$ on the
group $G=G_{1}\cross B\cross\cdots\cross E_{d}$ , which vanishes at the points

$\Gamma(S):=\{\exp_{G}(s\mathrm{u});s\in \mathrm{Z}, 0\leq s<S\}$

with multiplicity $\geq T$ along the hyperplane $W_{f}$ then there exists a constant $C_{3}>0$

which is effectively calculable, $indepen\dot{d}ent$ of the parameters, satisfying

$T^{d-1}\cdot\#(\mathrm{r}(S/d))<C_{3}L_{1}\cdot L_{2}\cdots L_{d}$ .

We remark that this lemme can be used when the condition on the degree :
$L_{1}\leq L_{2}$ , is verified. Our choice of parameters satisfies this condition, therefore
the lemma allows us to give a contradiction in the last step of usual transcendence
proof.

In our previous situations, the zero estimate could only derive

$T^{d-1}\cdot\#(\Gamma(s/d))<C_{3}(M_{1})^{2}\cdot L_{3}\cdots L_{d}$

where $M_{1}= \max(L_{1},L_{2})$ , because we could not separate the degree parts on
one algebraic group $G_{1}$ .

With this previous estimate, we do not benefit the fact that the degree $L_{1}$ is much
less than de degree $L_{2}$ , then get no refinements. The new estimate is obtained by
combining Theorem 8 and Theorem 9 in [P], indeed, the degree of the subgroup
in Theorem 8 is written separately in two parts, say, in linear part and in elliptic
part, by Theorem 9. By using the same idea, we are able to treat abelian case, not
only elliptic case, and also with extra factors of multiplicative groups.
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