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On the Sato Conjecture for QM-curves of genus two

TSUNOGAI Hiroshi  ( A% %
7359 Ks8 =)

This is a joint work with Ki-ichiro Hashimoto (Waseda University), and will
appear as [HT). |

0. INTRODUCTION

In this article we shall report a computational result about the distribution
of the arguments of zeroes of L-functions of two-dimensional abelian varieties
with quaternionic multiplication (QM). The result we obtained supports an
analogue of the Sato Conjecture for such abelian surfaces.

An abelian surface A is called a QM-abelian surface if it has quaternionic
multiplication, that is, there exists an order O of an indefinite’ quaternion
a,lgebra B over Q and an embedding ¢ : O < EndA. A curve C of g genus two
is called a QM-curve if its jacobian variety is a QM- abelian surface.

In [HM] K. Hashimoto and N. Murabayashi obtained algebraic families of
QM-curves explicitly when the discriminants of B are 6 and 10. In the case
of discriminant 6, the following equations give a family of QM-curves:

(0.1) | | S
Se(t,s) : Y2 =X(X*+(A-B)X>+QX*+(A+ B)X +1),
s 1+ 32
A=— = -9
2t’ B 1—3t%’ |
Q= (1 —2t2 + 9t*)(1 — 28t* + 166t* — 2525 + 811%)
- 412(1 — 3t2)2(1 — ¢2)(1 — 9#2) ’

(0.2)
SBe 1 9(t,s) = s* +3 — 148> + 27t* = 0.

(This is slightly modified from the form in loc.cit. We have obtained another
family which has different arithmetic properties. See Remark 3.3) By special-
izing (t,s) to points (to,50) € Sp,(Q), we can obtain a lot of examples of
QM-curves defined over number fields.

For many examples of QM-curves, we calculated the congruence (-functions
of their reductions modulo p and studied the distribution of the argument of the
roots o, 3 of the characteristic polynomial of the Frobenius endomorphisms.



For a curve C of genus two defined over a number field k, the congruence
¢-function of C mod p for a good prime p of k can be written in the form

(1 - ou)(1 — au)(1 — fu)(1 — Bu)
(1 —u)(l —qu) ’

where ~ denotes the complex conjugate, the absolute values of a, 3 are /g, and
q = Np, the absolute norm of p. In our case of QM-curves, if all endomorphisms
of JacC are defined over k, we have a = . Put o = \/ﬁeio" with 8, € [0, 7].
On the distribution of {6,} there is a conjecture as an analogue of the Sato
Conjecture for elliptic curves. Let us explain them.

The original Sato Conjecture is as follows. Let E be an elliptic curve defined
over a number field k. For a good prime p of k, the congruence (-function of
E mod p is in the form

(04) guy = L= VIPW0 = Vi),

| (1 —u)(l—qu)
where 0, € [0,7]. M. Sato conjectured that if E has no complex multiplication
the arguments {+0,} would be distributed in proportion to sinf. Also J.
Tate arrived to this conjecture and noticed in [T].
 H. Yoshida[Yol] generalized the above conjecture for higher-dimensional
abelian varieties A. He conjectured that the distribution of the arguments
is characterized by the image of the Galois group under the l-adic represen-
tation (more precisely, the Mumford-Tate group) of A. By Faltings’ theorem
[F], for a QM-abelian surface A defined over a number field k, the image of
the [-adic representation associated to A is a subgroup of GSp(2) isomorphic
to GL(2) (up to finite index). This suggests the following conjecture for the
case of QM-abelian surfaces:

Conjecture. Let A be a QM-abelian surface defined over a number field k.
Assume that also all endomorphisms of A are defined over k. For a good
prime p of k, let £0, be the arguments of the eigenvalues of the Frobenius
endomorphisms of A mod p. Then {£08,} would be distributed in proportion to
sin® .

Preceedingly Y. Yamamoto reported in [Ya] a result of computation which
fits with the generarized conjecture for abelian surfaces A with EndA ~ Z.
H. Yoshida[Yo2] proved an analogue of these conjectures for the cases of
elliptic curves and QM-abelian surfaces over a function field over a finite field.
If C is a QM-curve, then A = JacC is a QM-abelian surface, and the eigen-
values of Frobenius endomorphisms of A mod p coincide with the zeroes of
the congruence (-function of C mod p. Hence we can examine the conjecture
by calculating the congruence {-function of C' mod p. We calculated them for
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more than twenty curves C and for primes p with Np < 22°, and obtained the
results which support the conjecture.

- We carried out these calculation on PC with UBASIC and on UNIX Work

Station with GNU C. We thanks voluntary helpers of the computer room

of our department and stuffs of Centre for Informatics, Waseda University.

Especially we would like to express our sincere gratitude to Kazumaro Aoki

for useful suggestions for improving algorithm.

1. CONGRUENCE (-FUNCTIONS

First recall basic facts about congruence (-functions. For a curve C over
F,, let N,, denote the number of Fym-rational points on C’ The congruence

(-function of C is defined to be

(1.1) Z(C/F,;u) = exp (Z —mum) .

Let C be a complete, non- smgular curve of genus two. Then, by Weil conjec-
ture, we have
P(u)

where P(u) € Z[u] is of degree 4, and P(u) = (1 —ou)(1 —au)(1 - fu)(1 - fu)
with |o| = |8| = \/g. By putting o + @ = a and 8+ 8 = b, we can write

(1.3) P(u) = (1 — au + qu?)(1 — bu + qu?) |
with a,b € R and |a|, |b] < 2,/g. From (1.1) and (1.3), a and b are evaluated

as

a+b=1+q—N1,
(1.4)

1
ab=—q—(1+¢)N + = (N2+N2)

Let J = JacC be the Jacobian variety of C over F,, [ a prime different from
the characteristic of Fy, and p; the l-adic representation:

(1.5) pi : Gal(F,/F,) — GSp(4, Z)).

Then, for Frobenius element o, the characteristic polynomial of p;(¢) does not
depend on [ and coincides with P(u).

Let C be a QM-curve over a number field k, J = JacC its Jacobian, O an
order of an indefinite quaternion algebra B over @ identified with EndJ. Take
a good prime p of k and let p be its residue characteristic and Np = ¢q. For
a prime number [ different from p, we denote the associated completion of @

(resp. B) by O, (resp. Bj). Then we have EndTiJ Qz, @, ~ M4(Q,). Let



k' be an extension of k over which all endomorphisms of J are defined. First,
consider the l-adic representation p; attached to J of Gal(Q/K'):

(1.6) pr: Gal(Q/K) — GSp(4, Z;) C Ma(Qy).

Denote by Endga/enT1J the centralizer of Imp; in EndT}J. Then, by Faltings
[F], Endgag/nTiJ ®z Q ~ EndpJ ® Q@ = B,. Hence Imp; is contained in
the centralizer of B; in M4(Q),), which is isomorphic to the opposite algebra
B? of B,. Tor a prime P of k" above p, let o be the Frobenius element. Since
pi(op) belongs to BY, it satisfies a quadratic relation in the form

(L7 1—cpX + (NP)X?=0.

Now consider p; on Gal(Q/k). Let f = f(B/p) be the inertia degree of P
in k'/k. Then pi(o}) satisfies

(1.8) 1—cpX/ +(¢X?)7 =0

since og = of. On the other hand, since p;(o}) belongs to My(Q,), it satisfies
a quartic relation. From this we find a relation which must be satisfied by
N; and N,, for each possible value of f. Hence we can determine the degree
f from the values Ny and N,. For example, if f =1 then the characteristic
polynomial of pi(ay) is (1 — epX + ¢X?)? = (1 — apX 4 ¢X?)? with ap = cp.
By (1.4), we have

| 1
(19)  (I+¢-M)=201+4g+¢" = MN), ay=5(l+q-MN).

If f = 2 then the characteristic polynomial of py(oy) is 1 — cpX? 4+ ¢*X* =
(1 —apX + ¢X?)(1 + apX + ¢X?) with ¢} = cp + 2¢. By (1.4), we have

(1.10) Ny=1+q, a§=-;-( +dg+ gt — Ny).
Also for f > 2 we have the relation between N; and N;.

Now one of the remarkable properties for our family Se given in (0.1) is that
(numerically) we always have f = 1. This shows that all endomorphisms of
JacC are defined over the field of definition of C in quite a large probability,
because, if almost all primes of a number fields ¥ decomposed completely in
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- an extention k'/k then k' = k. Based on this assumption, for following many |

primes, we calculated only N; to obtain results in reasonable time.
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2. DENSITY FUNCTIONS

Let © = {6,;}52, be a sequence in T' = R/2r Z, the unit circle. A real valued
distribution ® = ®(#) on T is called the density function of © if it has the
following property:

For any open interval U of T and any na_tuml number m, let
(2.1) n(U,m) =#{j € N|0; € U,j < m}.
Then it holds that

(2.2) lim n(U,m)

m—00 m

- /U (6)do),

where df denotes the measure on T induced from the Lebesgue measure on R.
Next lemma is basic (see, e.g. [Yo2]).

Lemma 2.1. For a sequence © = {0,332, on T, assume that
exists for all k € Z. Then

converges in the sense of distribution and is the density function of ©.

Let E be an elliptic curve defined over a number field k. For a good prime
p of k, let £6, be the arguments of zeroes of the congruence (-function for
E mod p (see (0.4)). Since we should consider the distribution of a sequence

of pairs © = {£0,},, we define the density function of © as a distribution
satisfying

. #{L0, € U|Np < =} /
2.3 1 = | ®(0)de.
(2:3) oo F#{E0,|Np < x} o 20
The original Sato Conjecture asserts that, if £ has no complex multiplication,
then it would hold that ®(8) = =~ sin?#.

Let C be a QM-curve defined over a number field k. We assume that also
all endomorphisms of EndJacC are defined over k. Then, for a good prime p
of k, the congruence (-function of C mod p is in the form

(2.4) 2(u) = L= ﬁ(el p_ul)g - ;/f)e—z )




where ¢ = Np is the absolute norm of p. Similarly to the case of an elliptic
curve, we consider the density function of the pairs © = {+6,},. A general-
ization of the Sato Conjecture by H. Yoshida asserts that the density function
® of © would be .

(2.5) A ®(0) = 7 'sin? 4.

We checked this conjecture for many QM-curves of discriminant 6 by calcu-
lating Fourier coefficients of ®(#) approximately. Similarly to Lemma 2.1, we
have the following lemma.

Lemma 2.2. For © = {£0,},, assume that the limit

1

cos k0,
—00 #{p]good prime, Np < :l)} N%x

Ck —h

exists for all positive integer k. Then

1

®(0) = o

+ - Z ci cos k@
k—.

converges in the sense of distribution and is the density function of ©.
If the conjectﬁre is true, then the Fourier coefficients cx of ® must be
, 1
(2.6)‘ Q=5 &= 0 (k #£2).

We calculated approximate values of ¢’s as

(2.7) o = !

: : cos k6
F{plgood prime, Np < 2} oz, ™ "

for sufficiently large z.

Remark 2.3. In the definition of Fourier coefficients cx, we can restrict primes
to those of degree one. But we calculated the arguments 0, also for primes p
of degree more than one (in fact, of degree two because we examined QM-curves
defined over (imaginary) quadratic fields) to check the absence of qualitative
difference. |
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3. RESULTS
(3.1)
Ss(t,s) : Y2 X(X" +(A-B)X*+QX*+ (A + B)X - 1)
1+ 3¢?
A= Z" b= | -
Q= - (1 — 2t + 9¢)(1 — 28¢2 + 1661* — 252¢° + 81#8)
- 4t2(1 — 3t2)2(1 — 12)(1 — 9¢2) !
(3.2) |

SBe 1 g(t,s) = s +3— 142 4+ 27t* = 0.,

We denote by C(y, 5, the curve obtained by spécializi'ngk(t,s) to a point
(to,80) on g(t,s) = 0. We can find that C(s) = C(-,-5) and that C,,) and
Cit,-s) are generically isomorphic over Q(v/—1) by

(3:3) Cleo) 2 Cle-s)
(X,)Y) ew (=X V/=1X7%Y).
We checked the following curves and primes:

(3.4) teZ,2<t<30(#=29)
Np < 2% (primes of degree one).

Since teq, C(t's) is defined over an imaginary quadratic field k¥ = Q(s) =
Q(\/ 3). Moreover C(y,) and C(t,-s) are conjugate over Q If a rational

prime p decomposes as p = pp’ in k, then
(3.5) C(t,s) mod p' > Cy,_5) mod p (over Fy)
~ 4,5y mod p (over F,(v—1)),

where F,(v/—1) means F, if p = 1 mod 4 or F, if p = 3 mod 4. Hence we
have 0y = 0, if p = 1 mod 4 or 8y = 7 — 0, if p = 3 mod 4. This allows us
that we may consider only one prime above p for a splitting prime p.

For each curve C = Cyy,), we first computed the numbers of Fj- and F-
rational points of C' mod p for first thirty splitting primes p of k to check the
assumption that all endomorphisms of JacC are defined over k, and obtained
the data which shows the assumption is true. Under this assumption, the
congruence (-function of C mod p is determined only by the number N; of F,-
rational points. We computed N; of C mod p for splitting primes p of k with
Np < 2?° (more than 40000 primes), and calculated the approximate values of
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the Fourier coefficients cx of the density function by (2.7). For all curves we
checked, all the approximate values of ¢ satisfy

1
(3.6) ez + 5 < 0.007, ] < 0.011 (k> 0,k # 2).

In fact, out of 551 values of |ci| (k > 0,k # 2), only 49 values are bigger than
0.005. For c;, out of 29 values of |c; + ll only 2 values are bigger than 0.005.
We also computed for remain primes p = (p) of k¥ with Np < 2% (p < 2'7),
which showed no qualititive difference from splitting primes.

We shall give precise data for ¢ = 2,3 in the following. In the examples,
Table A gives the approximate values of Fourier coefficients of the density
function.and Table B gives the frequency distribution of the arguments and
the comparison with sin® 0.

FEzample 1.

e . \/—379 3 979961 /=379
.C(Q’V‘”")'Y = X(X*+( 4 ) 203280X ( 4

- We calculated for 40823 splitting primes (Table 1.A, 1.B, Figure 1.C).

13
~TX+1)

Example 2.

2¢/—129 14 1003831 2/=125 14
Ciaay=m) : ¥ = X(X* —)X3— X?
(3,4/-129) XX H =5 3% 5080 (=3

We calculated for 40994 sphttmg primes (Table 2.A, 2.B).

)X 1)

The following example is the case that JacC' is isogenous to a product E x E
of an elliptic curve E with complex multiplication.

Ezample 3 ([HM] Ezample 2.5).

11
Couzm sz Y = X(X* 4 2V/2X3 + 5 X7+ 2v2 + 1)

Via. the following morphism ¢ of degree two, JacC' splits into £ x E:

5
(3.7) ¢ : C(@,gg) — E:yt = (z+2)(z? +2V2z + g)
| 1 Y(X +1)

(X,Y) = (9) = (X + 5 =)

where E is an elliptic curve with complex multiplication by Z[/—6], whose
invariant is 7(v/—6) = 123(1399 + 988v/2).
We calculated for 41003 splitting primes (Table 3.A, 3.B).
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Remark 3.1. In this case the Hasse-Weil L-function of C coincides with a

square of that of E. For the primes inert in Q(v/2,v/6)/Q(v/2) (density 3B

the arguments of zeroes of the characteristic polynomials of the Frobenius el-
ements are all Z, and for the primes splitting in Q(v/2,v6)/Q(+/2) they are
distributed uniformly on T by the property of grofiencharacter. Hence the k-th

Fourier coefficients of the density function ®(6) must be tlil-g— for even k and
zero for odd k. The data above fits with this fact very well.

Remark 3.2. By similar argument to [HM] Example 1.6, we can prove that, in
Examples 1 and 2, JacC are simple QM-abelian surfaces, i.e. they never split
into a product of CM-elliptic curves. The qualitative difference between these
examples and Example 3 is so clear that we can distinguish experimantally
whether JacC is simple or not. |

Remark 3.3. The family of QM-curves S¢(¢, s) has an automorphism w of order
two which preserves fibration and is defined over @, described as

v . = 1 S 1 -3
(3.8) w:(t,s5X,Y)r— 37 3t’X .,X Y) |
~ Hence we obtain another family Sg§(t,s) = Ss(¢,s)/(w) of QM-curves over a,
curve Sp, = Sp,/(w) by dividing it by (w). Its defining equation is .
(3.9) -
Se(t,s) : Y? = (X? - R){(2—- Q +24)X* — 4RX?
o +2R(6 + Q)X? + 4R*X + R*(2 — Q — 24)},
T R=1+3t%

t
(1 +3)(1 — 42 + t1)
B 2(1 — #2) ’

(3.10)
Sy, 1 9°(t,s) =8+t +3=0.

It is noticeable that the equation ¢°(,s) = 0 of the base space S%_ coincides
with the defining equation of the canonical model of the Shimura curve for
discriminant 6 described in A. Kurihara[K]. Our computation for this fam-
ily suggests that the field of definition of all endomorphisms of JacC(t, s) is
not Q(t,s) but Q(¢,s,v/R). Since this makes it impossible to determine the

_congruence (-function of C(t,s) mod p only from the number of F,-rational
points (¢ = Np), Sg(t,s) is not suitable for our computation. For this reason
we did not choose Sg(t,s) but Sg(t,s) for our computation.
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k Ck i range of 4 rel. frequency | = sin®(257)
01  0.500000 0 0<6<0.0257 0.000073 -0.000000
1{ 0.002503 . 1]0.0257 < 6 < 0.0757 | 0.002682 0.002447
2| —0.500186 . 210.0757 < 0 < 0.1257 | 0.009615 0.009549
3| —0.002054 310.1257 < 0 < 0.1757 | 0.020858 0.020611
4| —0.002779 410.1757 < 0 < 0.2257 | 0.034980 0.034549
51 0.001513 510.2257 < 0 < 0.2757 { 0.050584 0.050000
6] 0.000647 6]0.2757 < 0 < 0.3257 | 0.065564 0.065451
71 —0.002529 710.3257 < 0 < 0.3757 | 0.079453 0.079389
8| 0.000754 810.3757 < 0 < 0.4257 | 0.091652 0.090451
9| —0.000483 910.4257 < 0 < 0.4757 { 0.097286 0.097553
10} 0.002203 10 | 0.4757 < 6 < 0.5257 | 0.099135 0.100000
11| 0.000223 . 11 1 0.5257 < 6 < 0.5757 | 0.096575 1 0.097553
12 | —0.000862 121 0.5757 < 6 < 0.6257 | 0.090207 0.090451
13| 0.000373 13 10.6257 < 6 < 0.6757 | 0.078742 0.079389
- 14| —0.001862 14 [ 0.6757 < 6§ < 0.7257 | 0.065294 0.065451
15f 0.000216 151 0.7257 < 6 < 0.7757 | 0.050927 0.050000
16 | —0.002844 16 [ 0.7757 < 0 < 0.8257 | 0.034662 0.034549
17 { —0.000214 1710.8257 < 0 < 0.8757 | 0.019781 0.020611
18| 0.006595 18 1 0.8757 < 6 < 0.9257 | 0.009272 0.009549
19 |1 —0.003201 19 10.9257 < 6 < 0.9757 | 0.002633 10.002447
20 | —0.002521 - 20 097r << 0.000024 0.000000
Table 1.A - : Table 1.B :
Figure 1.C
T D i B T
~ 7. Example 1 —
i 2N sinA2(x)/10 -----
; 3 il
= , . , -
pi/4 pi/2 3pi/4 pi



k Ck
0] 0.500000
1| —0.000028
2 | —0.503450
31 0.000690
41 —0.000847
5| 0.001115
6| 0.007005
7| 0.000266
8| —0.002776
9| —0.008435
10 [ —0.003711
11| 0.007499
12| 0.002184
13| 0.000879
14| 0.001389
151 —0.002216
16| 0.001583
17| -0.000991
18 [ —0.001262
19 [ 0.000046
20| 0.002469
Table 2.A
k Cr
0| 0.500000
1| —0.000280
2| —0.501998
3| —0.000975
4| 0.499924
5| —0.001571
6 | —0.502599
7| —0.001873
81 0.499744
91 —0.002418
10 [ —0.501226
111 -0.001901
12| 0.500802
13 | —0.000221
14 | —0.502897
15 [ —0.000873
16 [ 0.500289
17| 0.000625
18 | —0.500966
19| —0.001550
20| 0.497862
Table 3.A

i range of 4 rel. frequency | 7= sin®(Z)
0] 0<6<0.025r {0.000098 0.000000
110.0257 < 6 < 0.0757 | 0.002269 0.002447
210.0757 < 6 < 0.1257 | 0.009648 | 0.009549
310.1257 < 0 < 0.1757 |-0.020979 0.020611
410.1757 < 6 < 0.2257 | 0.033127 0.034549
510.2257 < 6 < 0.2757 | 0.048361 0.050000
6 10.2757 < 0 < 0.3257 | 0.066656 0.065451
710.3257 < 0 < 0.3757 | 0.082378 0.079389
810.375m < 6 < 0.4257 | 0.090477 0.090451
9 10.4257 < 6 < 0.4757 | 0.094697 0.097553
10 | 0.4757 < 6 < 0.5257 | 0.100576 0.100000
11]0.5257 < 0 < 0.575x | 0.098136 - | 0.097553
12 [ 0.5757 < 8 < 0.6257 | 0.091062 0.090451
13 0.6257 < 8 < 0.6757 | 0.078304 0.079389
14 10.6757 < 0 < 0.7257 | 0.067266 0.065451
15[ 0.7257 < 6 < 0.7757 | 0.050068 0.050000
16 { 0.775m < § < 0.8257 | 0.033981 | 0.034549
171 0.825m < 0 < 0.8757 | 0.020174 - | 0.020611
18| 0.8757 < 6 < 0.9257 | 0.009379 0.009549
19 10.9257 < 8 < 0.9757 | 0.002342 0.002447 .
20| 09757 <6 <7 |0.000024 0.000000
Table 2.B
3 range of § rel. frequency | 75 sin®(557)
0 0<6<0.0250r [0.011463 0.000000
1[0.0257 < 6 < 0.0757 | 0.024742 0.002447
210.0757 < 6 < 0.1257 | 0.025352 0.009549
310.1257 < 0 < 0.1757 | 0.025010 0.020611
410.1757 < 6 < 0.2257 | 0.025279 0.034549
510.2257 < 6 < 0.2757 | 0.025047 0.050000
61 0.2757 < 6 < 0.3257 | 0.024620 0.065451
710.3257 < 6 < 0.3757 | 0.025364 0.079389
810.3757 < 0 < 0.4257 | 0.024913 0.090451
910.4257 < 6 < 0.4757 | 0.025145 0.097553
10 | 0.4757 < 0 < 0.5257 | 0.526083 0.100000
11 [ 0.5257 < 0 < 0.5757 | 0.025023 0.097553
12]0.5757 < 0 < 0.6257 | 0.024693 0.090451
13]0.625m < 0 < 0.6757 | 0.025340 0.079389
14 [ 0.6757 < 0 < 0.7257 | 0.024888 0.065451
15]0.725m < 6 < 0.7757 | 0.024779 0.050000
16 | 0.7757 < 0 < 0.8257 | 0.025132 0.034549
171 0.8257 < 0 < 0.8757 | 0.024986 0.020611
18 | 0.8757 < 0 < 0.9257 | 0.024498 0.009549
1910.9257 < 6 < 0.9757 | 0.025108 0.002447
20] 0.9757r <O <7 |0.012536 0.000000

Table 3.B
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