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Congruence relations and filters in some
variety

BERX - RAEET JO#b@ES  ( Michiro KONDO )

1 Introduction

There is a close relation between logics and algébras. For examplé, the
Boolean algebras characterize the classical propvositional logic (CPL), that
is, any provable formula A in CPL is always evaluated 1 in any Boolean al-
“gebra B and, conversely, if A is evaluated 1 in every Boolean algebra then
- it is provable in CPL. We proved the characterization theorem for other
algebras, in [3] for Kleene and in [4] for de Morgan algebras. These charac-
terization probiems éan be treated in a uniform methbd by using SO éalled
a Lindenbaum-Tarski algebra. The algebra is a quotient algebra of all for-
" milas by provability. It'is typical in the corresponding algebras to the logic.
Hence'to answer the characterization problems it is necessary.to consider the
typical algebras. The algebras above are in the subclass By of the Berman
class which is a subclass of Ockham algebras. Thus it is interesting to think
about the propertles of the algebras in By .
Since the Berman’s [1], on the other hand, there are many papers about
" the Ockhiam algebras ‘and their congruence relations. As a special Ockham
algebra, we consider Boolean algebras and their next fundamental results.
If F is a maximal filter of the Boolean algebra B then the relation ©f
defined by |

Or = {(z,y)|z A f =y A f for some f € F}

is congruent and the quotient algebra B/©F is isomorphic to the typical
Boolean algebra {0,1}. Since B/©p has only trivial congruence relations w
and ¢, the algebra is called simple. Conversely if © is the congruence relation

on B then the set Fg defined by



Fo = {z € B|(z,1) € ©}
is a filter and moreover it is maximal.

When we consider the algebras L in By, the following questions arise
naturally:

(Q1) What are the relations between © and O, ? Is the set F identified
with Fg, if F'is a maximal filter?

(Q2) If Fis a maximal filter, then is the relation © F congruentv or maximal
congruent? Does the converse holds? Does the maximality of the congruence
relation © yield the maximality of the filter ©x7? Does the converse hold?

(Q3) Is the relation ®x (defined precisely below) induced by the partition
by F' a congruence one?

We answer the questions in the present paper.

2 Subclass B, of Berman class

In this section we define the subclass B, o of Ockham algebras, where n is a
non-negative integer, and give solutions to the question (Q1). By an Ockham
algebra we mean an algebra (L; A, V, N, 0, 1) of type (2,2,1,0,0) such that
(1) (L; A, V,0,1) is a bounded distributive lattice
(2) The unary operator N satisfies that for any z,y € L,
Nl1=0and NO=1; v
N(@Ay)=NzV Ny and Nz Vy) = Nz ANy ;

Nz = g.

In the following we denote the algebra (L; A, V, N, 0, 1) simply by L if no
confusion arises. The operator N* is defined for any non-negative integer k
recursively:

N = z and N**1z = N(N*z).
A non-empty subset F' of L is called a filter when it satisfies the conditions:
(F1) z,ye FimplyzAy€ F;
(F2) z€e Fandz<yimplyye€ F.

A filter F'is called proper when it is a proper subset of L. By a maximal

filter F', we mean the proper filter F' such that F' C G implies F' = G for any
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proper filter G. A prop‘er filter F is called prime if x V y € F implies z € F'
or y € F for every z,y € L.

The next proposition is well known, so we omit the proof.

Proposition 1 Let F' be a mazimal filter and x € F, then there is an

elementu € F such thatx Au = 0.

A relation © on L is called a congruence relation if it is an equivalence
relation and has a substitution property, that is,

(z,y), (a,b) € © imply (xAa,yAb),(xVa,yVb), and (Nz, Ny) € ©.

We shall define a relation ©r for F' a filter of L and a filter Fg for a

congruence relation © as follows:

Or = {(,4)|3f € F Vk > O(N*z A f = N*y A )}
Fo ={z € L|(z,1) € 6}

It is clear that ©F is an equivalence relation on L and Fpg is a filter of L.

First of all we consider the relation between ©f, and ©.
Lemma 1 ©Op, C O.

Proof. Suppose that (z,y) c OrF,. There is an element f in Fg such that
N*z A f = N¥y A f for every k > 0. That is,
cNf=yANf,
NxANf=NyAf,

N2n_133'/\f — N2n—1y /\f-
Since (f,1) € © and © is the congruence relation, we have that (z A f, x)
and (y A f,y) are in © and hence that (z,y) € ©.

The converse inclusion can be proved when the filter Fg is maximal.
Theorem 1 If Fg is a mazimal filter, then we have ©Op, = ©.

Proof. It is sufficient to prove that © C ©p,. By definition of Fo, we
have in general |

z€Foiffy € Fo



Nzx € Fg iff Ny € Fo

N1y € Fg iff N** 1y € Fg.

There are in amount 22" cases whether N*z are in Fg or not. By the
way, if N*x ¢ Fg then there exists uy € Fg such that N*z A u; = 0 because
Fg is maximal. To describe these facts we introduce a new operator e; for
every k such that

(N ) = { Nkg %f N::a: € Fo
u, if N*x ¢ Fo

, Where u, € Fg such that N¥z A u, = 0.

Of course the element uy is not determined uniquely in general. But this
does not prevent our proof. It follows from the definition that (N*z)® is in
Fpg for every k.

If we put o = Ag(N*z)% A A\ (N*y)°*, then we have a € Fg by the
definition. For that « it is that N*z A @ = N*y A a. Because, for k such
that N*z € Fg, we have N*y € Fg and hence that (N*z)* = N*z and
(N*y)ee = NFy. Thus it follows that N*z Aa = a = N¥y A a.

If N*z ¢ Fg, since N*y ¢ Fo, then we have (N*x)% = u; and (N*y)e =
v, where u; and vy are in Fg and satisfy N*z Au, = N¥y Avp = 0. Thus we
have N¥z Ao =0 = N¥y A a.

In either case we obtain that N*z Ao = N*y A« for every k. This means
that (z,y) € Op,. That is © C ©p, and so that © = Op,.

Next we shall think about the case of filters. That is, we proceed with
considerations concerning the relation between a filter F' and a filter Fg,.

It is obvious from the definition that Fg, C F. The next lemma can be
established.

Lemma 2 Let F be a mazimal filter of L. Then Fg, = F if and only if
the condition holds:
€ F = N¥tlg ¢ F and N¥z € F for every j <mn.

Proof. (7if” part) It is sufficient to show that F' C Fg,. We assume that
z € F. Since N*tlg ¢ F and N¥z € F, if we put & = Ap<on(N*2)* then
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a € F. For that a we have N¥*1zAa = 0 = N1Aa and N¥zAa = a = 1A
This means that (z,1) € ©p and hence that z € Fg,. Thus F' C Fg,.

("only if” part) Conversely suppose that z € F. It follows from the
assumption that (z,1) € ©p. There exists an element f in F' such that
sANf=1ANf=f, NeAf=N1Af =0, and so on. This implies that
Nz ¢ F,N?z € F, ... . Hence we have N¥*1z ¢ F and N¥z € F.

3 Maximal congruence relation

In this section we answer the question (Q2) above. In general if there is a
partition of a set then we can introduce an equivalence relation on the set.
Let F be a filter of L. The set L can be devided into 22" subsets by F' as
follows:

Lin.i={zlz € FNx € F,N*z € F,..,N** 1z € F}

L1 ={z|z € F,Nx ¢ F,N*z € F,..,N** 'z € F}

Logo.o={zlr ¢ F,Nx ¢ F,N*zx ¢ F,..,N**" 'z ¢ F}

Thus we can define an equivalence relation ®x on L as

Or > (x,‘y) g 3L808182...82n_1 (a:,y € Lsgslsz...sgn_l)
, where s € {0,1}.

This means that (z,y) € ® if and only if VK(N*z € F & N*y € F).
We say @7 an induced equivalence relation by F. For that relation we

can show the next lemma.

Lemma 3 If F is a prime filter of L, then the induced relation ®r by F' is

a congruence relation on L.

Proof. We have to prove that for any (x,y), (a,b) € ®F
(1) (xNa,yA\b) € ®F ;
(2) (xVa,yVvb) € Pp;
(3) (Nz, Ny) € ®p.
From the fact N?"z = z, it is clear that the condition (3) holds. We only
show the case of (1).
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We simply denote an element p € L as a sequence of 0 and 1 as follows:
P = PoP1Ps...Pan—1, Where p, is deined by

_[1 ifN*peF
710 if N*pg¢ F

By definition of &, we have that
(p,q) € ®r if and only if VEk(pr = qi).
Hence it is sufficient to show that Vk(z Aa)r = (y Ab); when z = y; and
ar = b for all k.
‘Since Fis a prime filter, we have that
(P A @)x = min{pk, qc} if k is even
(A @Qx = maz{pr, qc} if k is odd.
Thus if £ is even then it follows that
(z A a)r = min{xzx, ax} = min{ye, b} = (y A b)x.
In case of k odd, we also obtain that
(z A a)y = maz{zk, ar} = maz{ye,br} = (¥ A b).
Therefore in either case we can conclude that
VEk(z A a)r = (y A D),
that is, (x Aa,y Ab) € Op.
The other case (2) can be proved similarly.

This means that ® is the congruence relation on L.

Corollary 1 F is the trivial filter (i.e., F=L) <= ®r =1(= L x L)
Further we can show that
Theorem 2 If F is a mazimal filter, then we have O = ®f.

Proof. Suppose that (z,y) € ©p. It follows from definition that there
is an element of f € F such that VE(N*z A f = N¥y A f). We have that
Vk(N*z € F & N*y € F) and hence that Vk(z; = ;). This means that
(z,y) € PF.

Conversely we assume that (x,y) € ®r. We note that, since F' is the

maximal filter, if 2 = 0 and hence N*z ¢ F then there is an element u; € F



such that N*z A up = 0. Thus z; = O means that (N*z)®* = u;. Now we
put the element o = A, (N*z)%* A \p(N¥y)°*. Clearly a € F. For that a, if
z = 1 then we have y, = 1 and N*2 Aa = o = N*y A a. In case of z;, =0,
we get that y; = 0 and N*zAa = 0 = N*yAa. Therefore there exists a € F
such that N*z A o = N*y A a for all k. This yileds to (z,y) € ©OF.

Hence the theorem can be proved completely.

In order to prove one of the main theorems of this paper, we need the

next-lemma which is well known in the theory of Ockham algebras (cf. [2]).

Lemma 4 Let L € Bpo. L is simple if and only if K(L) = T3(L) and N
is injective, where

K(L) ={0,1} U{z|Nz = z} and Tz(L) = {z|N*z = z}.
By use of the lemma, the following is established.

Theorem 3 If F is a mazimal filter, then the congruence relation Of is

mazimal, that is, L/OF is a simple algebra.

Proof. We use the same notation zoz...Z2n—1 for the element x € L/©OFf
as above. Hence we have that
1 = 1010...10, 0 = 0101...01,
and that
x = y if and only if Vk(zr = yk)-
When the element x is denoted by ZoZ1...Z2n—2%2n—1, the elements Nx
and N2x are
NX = 11Z2...Z2n—2T2n—_1ZL0
N2X = 2573...Ton_1%0T1. |
Hence K(L/OF) = {0,1} U {x|Nx = x}
= {0101...01, 1010...10, 1111...11,0000...00}
and T3(L/OF) = {x|N?x = x}
L= {0101...01,1010...10,1111...11,0000...00}.
So we have K(L/OF) = To(L/Or). It is obvious that N is injective
in L/©p. Therefore the algebra L/Op is simple and hence the congruence

relation O is maximal.
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Corollary 2 Let L € Bng. If F is a mazimal filter of L, then the quotient
algebra L/Op = L/®r (€ Bpy) is a simple finite algebra.

In the above we show that if F' is maximal then so O is and O = ®p.

We can also show the converse.

Theorem 4 If ©r is a mazrimal congruence relation and Op = <I>F,v then

F' is the mazimal filter.

Proof. Suppose that F' is not a maximal filter. There is a maximal filter
G such that F' C G and F # G. That is, there exists an element z € L such
that z € G but z ¢ F. It follows from F C G that ©r C ©g and hence
that O = Og or O = ¢ by OF being maximal. Clearly ©g # ¢. Hence
we have O = Og. Since &p = Op a,ﬁd (G is maximal, it is that g = &4
so that & = ®g. Now consider the element x in L/®r = L/®g. Since
z ¢ F, we have x is 021%2...T2n—1 in L/®r. On the other hand, since z € G,
the element x have to be 1z1zs...22,—1 in L/®g. But this is a.contradiction.

Therefore the filter F' is maximal.
For the congruence relations Fg and O, we have only the following:

Corollary 3 If Fg is a mazimal filter, then the congruence relation © is

mazimal.

Proof. If Fg is maximal, then ©p, is maximal and © = ©p,. Hence we

obtain that © is a maximal congruence relation.

Unfortunately, the converse does not hold by the following example.
Example: For the algebra A = {0,a,b,1}, a congruence relation © =
{(0,0), (a,a), (b,b), (1,1), (0, a), (a,0), (b,1),(1,b)} is maximal but the filter

Fo = {b,1} is not maximal.

e 1

A : *b Nb=c
& Na&=b
e
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4 TFilters and induced congruence relations

In this section we investigate the property of ‘the induced congruence relation
®r by a filter F. In the above we show that if F' is a prime filter then &5
is a congruence relation. In this case it is a natural question whether the

converse holds or not. We answer the question ”yes”.
Theorem 5 If®y is a congruence relation on L, then the filter F' is prime.

Proof. Suppose that ®r is a congruence relation but the filter F' is not
prime. There are elements z,y 'e L such that 2 Vy € F but z,y ¢ F. Since
®r is congruent, the operations A,V,N are closed in the.algebra L/ @}.
When we think about the elements x v Y, x, and y in L/®F, since x V yle F
but z,y ¢ F, we have (x Vy)o =max{zo,yo} =1 but zo = yo = 0 This is a
cp‘ntradiction.’ ThuS F' is the prime filter.

- Clearly if F' is a maximal filter then it is also a prime one. By the theorem,
if F' is maximal then the congruence relations ©7 and ® . are identified. As
in the following, however, the converse does not hold.

‘Example: Let K = {0, a,1} be the structure as below.
i
S ¢ N&-=a

O

It is obvious that the algebra K is in Byg. If we put F = {1}, then F
is a filter but not maximal. However, as to the congruence relations ©7 and

®p, we have O = p(=w).
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