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1 Introduction

There is a close relation between logics and algebras. For example, the

Boolean algebras characterize the classical propositional logic (CPL), that

is, any provable formula $A$ in CPL is always evaluated 1 in any Boolean al-

gebra $B$ and, conversely, if $A$ is evaluated 1 in every Boolean algebra then

it is provable in CPL. We proved the characterization theorem for other

algebras, $\mathrm{i}_{\backslash }\mathrm{n}[3]$ for Kleene and in [4] for de Morgan algebras. These charac-

terization problems can be treated in a uniform method by using so called

a Lindenbaum-Tarski algebra. The algebra is a quotient algebra of all for-
$\mathrm{m}\mathrm{u}\mathrm{l}^{j}\mathrm{a}s$ by provability. It is typical in the corresponding algebras to the logic.
$\mathrm{H}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e})\mathrm{t}\mathrm{o}$ answer the characterization problems it is necessary to consider the

typical algebras. The algebras above are in the subclass $B_{n,0}$ of the Berman

class which is a subclass of Ockham algebras. Thus it is interesting to think

about the properties of the algebras in $B_{n,0}$ .

Since the Berman’s [1], on the other hand, there are many papers about

the Ockham algebras and their congruence relations. As a special Ockham

algebra, we consider Boolean algebras and their next fundamental results.

If $F$ is a maximal filter of the Boolean algebra $B$ then the relation $\mathrm{O}-_{F}$

defined by

$\Theta_{F}=$ { $(x,$ $y)|x$ A $f=y$ A $f$ for some $f\in F$}

is congruent and the quotient algebra $B/\Theta_{F}$ is isomorphic to the typical

Boolean algebra {0,1}. Since $B/\Theta_{F}$ has only trivial congruence relations $\omega$

and $\iota$ , the algebra is called simple. Conversely if $\Theta$ is the congruence relation

on $B$ then the set $F_{\Theta}$ defined by
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$F_{\Theta}=\{X\in B|(x, 1)\in\ominus\}$

is a filter and moreover it is maximal.

When we consider the algebras $L$ in $B_{n,0}$ , the following questions arise
naturally:

(Q1) What are the relations between $\Theta$ and $\Theta_{F\mathrm{e}}$ ? Is the set $F$ identified
with $F_{\Theta_{F}}$ if $F$ is a maximal filter?

(Q2) If $F$ is a maximal filter, then is the relation $\mathrm{O}-_{F}$ congruent or maximal
congruent? Does the converse holds? Does the maximality of the congruence
relation $\mathrm{O}-\mathrm{y}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}$ the maximality of the filter $\mathrm{O}-_{p}$ ? Does the converse hold?

(Q3) Is the relation $\Phi_{F}$ (defined precisely below) induced by the partition
by $F$ a congruence one?

We answer the questions in the present paper.

2 Subclass $B_{n,0}$ of Berman class

In this section we define the subclass $B_{n,0}$ of Ockham algebras, where $n$ is a
non-negative integer, and give solutions to the question (Q1). By an Ockham
algebra we mean an algebra $(L;\wedge, \vee, N, 0,1)$ of type (2,2,1,0,0) such that

(1) $(L;\wedge, \vee, 0,1)$ is a bounded distributive lattice
(2) The unary operator $N$ satisfies that for any $x,$ $y\in L$ ,

$N1=0$ and $N0=1$ ;
$N$ ($x$ A $y$ ) $=NxNy$ and $N(x\vee y)=Nx$ A $Ny$ ;
$N^{2n}x=x$ .

In the following we denote the algebra $(L;\wedge, \vee, N, 0,1)$ simply by $L$ if no
confusion arises. The operator $N^{k}$ is defined for any non-negative integer $k$

recursively:
$N^{0}x=x$ and $N^{k+1}x=N(N^{k_{X}})$ .

A non-empty subset $F$ of $L$ is called a filter when it satisfies the conditions:
(F1) $x,$ $y\in F$ imply $x$ A $y\in F$ ;
(F2) $x\in F$ and $x\leq y$ imply $y\in F$ .

A filter $F$ is called proper when it is a proper subset of $L$ . By a maximal
filter $F$ , we mean the proper filter $F$ such that $F\subseteq G$ implies $F=G$ for any
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proper filter $G$ . A proper filter $F$ is called prime if $x\vee y\in F$ implies $x\in F$

or $y\in F$ for every $x,y\in L$ .
The next proposition is well known, so we omit the proof.

Proposition 1 Let $F$ be a maximal filter and $x\not\in F$ , then there is an

element $u\in F$ such that $x$ A $u=0$ .

A relation O-on $L$ is called a congruence relation if it is an equivalence

relation and has a substitution property, that is,

$(x, y),$ $(a, b)\in$ -imply ($x$ A $a,$ $y$ A $b$), $(X\mathrm{v}_{a,y}b)$ , and $(Nx, Ny)\in \mathrm{O}-$ .

We shall define a relation $\Theta_{F}$ for $F$ a filter of $L$ and a filter $F_{\Theta}$ for a
$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{g}\iota 1\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ relation $\mathrm{O}-\mathrm{a}s$ follows:

$\Theta_{F}=$ { $(x,$ $y)|\exists f\in F\forall k\geq 0(N^{k}x$ A $f=N^{k}y$ A $f)$ }
$F_{\Theta}=\{X\in L|(X, 1)\in\Theta\}$

It is clear that $\mathrm{O}-_{F}$ is an equivalence relation on $L$ and $F_{\Theta}$ is a filter of $L$ .

First of all we consider the relation between $\Theta_{F\mathrm{e}}$ and $\Theta$ .

Lemma 1 $\Theta_{F\mathrm{e}}\subseteq \mathrm{O}-$ .

Proof. Suppose that $(x, y)\in \mathrm{O}-_{F\mathrm{e}}$ . There is an element $f$ in $F_{\Theta}$ such that
$N^{k}x$ A $f=N^{k}y$ A $f$ for every $k\geq 0$ . That is,

$x\wedge f=y\wedge f$ ,

$Nx\wedge f=Ny\wedge f$ ,

$N^{2n-1}x$ A $f=N^{2n-}1y$ A $f$ .
Since $(f, 1)\in \mathrm{O}-\mathrm{a}\mathrm{n}\mathrm{d}-\mathrm{O}\mathrm{i}_{\mathrm{S}}$ the congruence relation, we have that ($x$ A $f,$ $x$ )

and ($y$ A $f,$ $y$ ) are in -and hence that $(x, y)\in \mathrm{O}-$ .

The converse inclusion can be proved when the filter $F_{\Theta}$ is maximal.

Theorem 1 If $F_{\Theta}$ is a maximal filter, then we have $\mathrm{O}-_{F\mathrm{e}}=\mathrm{O}-$ .

Proof. It is sufficient to prove that $\mathrm{O}-\subseteq \mathrm{O}-_{F\mathrm{e}}.$ By, definition of $F_{\Theta}$ , we

have in general
$x\in F\Theta$ iff $y\in F_{\ominus}$
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$Nx\in F_{\Theta}$ iff $Ny\in F_{\Theta}$

$N^{2n-1_{X}}\in F_{\Theta}$ iff $N^{2n-1}y\in F_{\Theta}$ .
There are in amount $2^{2n}$ cases whether $N^{k}x$ are in $F_{\Theta}$ or not. By the

way, if $N^{k}x\not\in F_{\Theta}$ then there exists $u_{k}\in F_{\Theta}$ such that $N^{k}x$ A $u_{k}=0$ because
$F_{\Theta}$ is maximal. To describe these facts we introduce a new operator $e_{k}$ for

every $k$ such that

$(N^{k}x)^{e}k=\{$

$N^{k}x$ if $N^{k}x\in F_{\Theta}$

$u_{k}$ if $N^{k}x\not\in F_{\Theta}$

, where $u_{k}\in F_{\Theta}$ such that $N^{k}x$ A $u_{k}=0$ .
Of course the element $u_{k}$ is not determined uniquely in general. But this

does not prevent our proof. It follows from the definition that $(N^{k}x)e_{k}$ is in
$F_{\Theta}$ for every $\mathrm{k}$.

If we put $\alpha=\bigwedge_{k}(N^{k_{X)}}e_{k}\wedge\bigwedge_{k}(N^{k}y)^{\mathrm{e}_{k}}$ , then we have $\alpha\in F_{\Theta}$ by the

definition. For that $\alpha$ it is that $N^{k}x$ A $\alpha=N^{k}y$ A $\alpha$ . Because, for $k$ such

that $N^{k}x\in F_{\Theta}$ , we have $N^{k}y\in F_{\Theta}$ and hence that $(N^{k}x)e_{k}=N^{k}x$ and
$(N^{k}y)^{e_{k}}=N^{k}y$ . Thus it follows that $N^{k}x$ A $\alpha=\alpha=N^{k}y$ A $\alpha$ .

If $N^{k}x\not\in F_{\Theta}$ , since $N^{k}y\not\in F_{\Theta}$ , then we have $(N^{k}x)e_{k}=u_{k}$ and $(N^{k}y)^{e_{k}}=$

$v_{k}$ where $u_{k}$ and $v_{k}$ are in $F_{\Theta}$ and satisfy $N^{k}x$ A $u_{k}=N^{k}y$ A $v_{k}=0$ . Thus we

have $N^{k}x\wedge\alpha=0=N^{k}y$ A $\alpha$ .
In either case we obtain that $N^{k}x$ A $\alpha=N^{k}y$ A $\alpha$ for every $k$ . This means

that $(x, y)\in \mathrm{O}-_{F_{\Theta}}$ . That is $\mathrm{O}-\subseteq \mathrm{O}-_{F\mathrm{e}}$ and so that $\mathrm{O}-=\mathrm{O}-_{F\mathrm{e}}$ .

Next we shall think about the case of filters. That is, we proceed with

considerations concerning the relation between a filter $F$ and a filter $F_{\Theta_{F}}$ .
It is obvious from the definition that $F_{\Theta_{F}}\subseteq F$ . The next lemma can be

established.

Lemma 2 Let $F$ be a maximal filter of L. Then $F_{\Theta_{F}}=F$ if and only if
the condition holds:

$x\in F\Rightarrow N^{2j+1_{X}}\not\in F$ and $N^{2j}x\in F$ for every $j<n$ .

Proof. (”if’ part) It is sufficient to show that $F\subseteq F_{\Theta_{F}}$ . We assume that

$x\in F$ . Since $N^{2j+1}X\not\in F$ and $N^{2j}x\in F$ , if we put $\alpha=\bigwedge_{k<2n}(Nkx)e_{k}$ then
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$\alpha\in F$ . For that $\alpha$ we have $N^{2j+1}x\wedge\alpha=0=N1\wedge\alpha$ and $N^{2j}x\wedge\alpha=\alpha=1\wedge\alpha$ .

This means that $(x, 1)\in \mathrm{O}-_{F}$ and hence that $x\in F_{\Theta_{F}}$ . Thus $F\subseteq F_{\Theta_{F}}$ .

(”only if’ part) Conversely suppose that $x\in F$ . It follows from the

assumption that $(x, 1)\in \mathrm{O}-_{F}$ . There exists an element $f$ in $F$ such that

$x\wedge f=1\wedge f=f,$ $Nx\wedge f=N1\wedge f=0$ , and so on. This implies that

$Nx\not\in F,$ $N^{2}x\in F,$
$\ldots$ . Hence we have $N^{2j+1_{X}}\not\in F$ and $N^{2j}x\in F$ .

3 Maximal congruence relation

In this section we answer the question (Q2) above. In general if there is a

partition of a set then we can introduce an equivalence relation on the set.

Let $F$ be a filter of $L$ . The set $L$ can be devided into $2^{2n}$ subsets by $F$ as

follows:
$L_{111\ldots 1}=\{x|x\in F, Nx\in F, N^{2}x\in F, \ldots, N^{2n-1_{X}}\in F\}$

$L_{101\ldots 1}=\{x|x\in F, Nx\not\in F, N^{2}x\in F, \ldots, N^{2n-1_{X}}\in F\}$

$L_{000\ldots 0}=\{x|x\not\in F, Nx\not\in F, N^{2}x\not\in F, \ldots, N^{2n-1_{X}}\not\in F\}$

Thus we can define an equivalence relation $\Phi_{F}$ on $L$ as
$\Phi_{F}\ni(x,y)\Leftrightarrow\exists L_{s0s_{1}s_{2\cdots 21}}\mathit{8}n-(x, y\in Ls_{0}s_{1}s2\cdots s2n-1)$

, where $s_{k}\in\{0,1\}$ .

This means that $(x, y)\in\Phi_{F}$ if and only if $\forall k(N^{k}x\in F\Leftrightarrow N^{k}y\in F)$ .

We say $\Phi_{F}$ an induced equivalence relation by $F$ . For that relation we

can show the next lemma.

Lemma 3 If $F$ is a prime fiJter of $L$ , then the induced relation $\Phi_{F}$ by $F$ is

a congruence relation on $L$ .

Proof. We have to prove that for any $(x, y),$ $(a, b)\in\Phi_{F}$

(1) ($x$ A $a,y$ A $b$ ) $\in\Phi_{F}$ ;

(2) $(x\vee a,y\vee b)\in\Phi_{F}$ ;

(3) $(Nx, Ny)\in\Phi F$ .
Rom the fact $N^{2n}x=x$ , it is clear that the condition (3) holds. We only

show the case of (1).
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We simply denote an element $p\in L$ as a sequence of $0$ and 1 as follows:
$p=p\mathrm{o}p_{1}p2\cdots p2n-1$ , where $p_{k}$ is deined by

$p_{k}=\{$
1 if $N^{k}p\in F$

$0$ if $N^{k}p\not\in F$

By definition of $\Phi_{F}$ , we have that
$(p, q)\in\Phi_{F}$ if and only if $\forall k(p_{k}=q_{k})$ .

Hence it is sufficient to show that $\forall k(x \mathrm{A} a)_{k}=(y \mathrm{A} b)_{k}$ when $x_{k}=y_{k}$ and
$a_{k}=b_{k}$ for all $k$ .

Since $F$ is a prime filter, we have that
$(p \mathrm{A} q)_{k}=\min\{p_{k}, qk\}$ if $k$ is even
$(p \mathrm{A} q)_{k}--\max\{pk, q_{k}\}$ if $k$ is odd.

Thus if $k$ is even then it follows that
$(x \mathrm{A} a)_{k}=\min\{x_{k}, a_{k}\}=\min\{y_{k}, b_{k}\}=(y \mathrm{A} b)_{k}$.

In case of $k$ odd, we also obtain that
$(x \mathrm{A} a)_{k}=\max\{X_{ka_{k}\}},=\max\{y_{k}, b_{k}\}=(y \mathrm{A} b)_{k}$ .

Therefore in either case we can conclude that
$\forall k(x \mathrm{A} a)_{k}=(y \mathrm{A} b)_{k}$ ,

that is, ($x$ A $a,$ $y\wedge b$) $\in\Phi_{F}$ .
The other case (2) can be proved similarly.
This means that $\Phi_{F}$ is the congruence relation on $L$ .

Corollary 1 $F$ is the trivial filter $(i.e., F=L)\Leftrightarrow\Phi_{F}=\iota(=L\cross L)$

Further we can show that

Theorem 2 If $F$ is a maximal filter, then we have $\Theta_{F}=\Phi_{F}$ .

Proof. Suppose that $(x, y)\in\Theta_{F}$ . It follows from definition that there
is an element of $f\in F$ such that $\forall k$ ( $N^{k}x$ A $f=N^{k}y$ A $f$). We have that
$\forall k(N^{k}x\in F\Leftrightarrow N^{k}y\in F)$ and hence that $\forall k(x_{k}=y_{k})$ . This means that
$(x, y)\in\Phi_{F}$ .

Conversely we assume that $(x,y)\in\Phi_{F}$ . We note that, since $F$ is the

maximal filter, if $x_{k}=0$ and hence $N^{k}x\not\in F$ then there is an element $u_{k}\in F$
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such that $N^{k}x$ A $u_{k}=0$ . Thus $x_{k}=0$ means that $(N^{k}x)e_{k}=u_{k}$ . Now we

put the element $\alpha=\bigwedge_{k}(N^{k}X)e_{k}\wedge\bigwedge_{k}(N^{k}y)^{e_{k}}$ . Clearly $\alpha\in F$ . For that $\alpha$ , if

$x_{k}=1$ then we have $y_{k}=1$ and $N^{k}x$ A $\alpha=\alpha=N^{k}y$ A $\alpha$ . In case of $x_{k}=0$ ,

we get that $y_{k}=0$ and $N^{k}x\wedge\alpha=0=N^{k}y\wedge\alpha$ . Therefore there exists $\alpha\in F$

such that $N^{k}x$ A $\alpha=N^{k}y$ A $\alpha$ for all $k$ . This yileds to $(x, y)\in \mathrm{O}-_{p}$ .

Hence the theorem can be proved completely.

In order to prove one of the main theorems of this paper, we need the

next lemma which is well known in the theory of Ockham algebras (cf. [2]).

Lemma 4 Let $L\in B_{n,0}$ . $L$ is simple if and only if $K(L)=T_{2}(L)$ and $N$

is injective, where

$K(L)=\{0,1\}\cup\{x|N_{X}=x\}$ and $T_{2}(L)=\{x|N^{2}x=x\}$ .

By use of the lemma, the following is established.

Theorem 3 If $F$ is a maximal filter, then the congruence relation $\mathrm{O}-_{F}$ is

maximal, that is, $L/\Theta_{F}$ is a simple algebra.

Proof. We use the same notation $X_{0}X_{1}\ldots X_{2n-}1$ for the element $\mathrm{x}\in L/\mathrm{O}-_{F}$

as above. Hence we have that

$1=1010\ldots 10,0=0101\ldots 01$ ,

and that
$\mathrm{x}=\mathrm{y}$ if and only if $\forall k(x_{k}=y_{k})$ .

When the element $\mathrm{x}$ is denoted by $x_{0}X_{1}\ldots X2n-2x2n-1$ , the elements $N\mathrm{x}$

and $N^{2}\mathrm{x}$ are
$N\mathrm{x}=x_{1}X_{2}\ldots x2n-2x_{2-}n1x0$

$N^{2}\mathrm{x}=x_{2}x_{3}\ldots X_{2n}-1X0x1$ .
Hence $K(L/\mathrm{O}-_{F})=\{0,1\}\cup\{\mathrm{x}|N\mathrm{X}=\mathrm{x}\}$

$=$ {0101...01, 1010...10, 1111... 11, 0000...00}
and $T_{2}(L/\mathrm{O}-_{F})=\{\mathrm{x}|N^{2}\mathrm{x}=\mathrm{x}\}$

$=$ {0101...01, 1010... 10, 1111...11, 0000...00}.
So we have $K(L/\mathrm{O}-_{F})=T_{2}(L/\mathrm{O}-_{F})$ . It is obvious that $N$ is injective

in $L/\mathrm{O}-_{F}$ . Therefore the algebra $L/\mathrm{O}-_{p}$ is simple and hence the congruence

relation $\mathrm{O}-_{F}$ is maximal.
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Corollary 2 Let $L\in B_{n,0}$ . If $F$ is a maximal filter of $L$ , then the quotient

algebra $L/\mathrm{O}-_{F}=L/\Phi_{F}(\in B_{n,0})$ is a simple finite algebra.

In the above we show that if $F$ is maximal then so $\mathrm{O}-_{F}$ is and $\mathrm{O}-_{F}=\Phi_{F}$ .
We can also show the converse.

Theorem 4 If $\mathrm{O}-_{p}$ is a maximal congruence relation and $\Theta_{F}=\Phi_{F}$ , then
$F$ is the maximal filter.

Proof. Suppose that $F$ is not a maximal filter. There is a maximal filter
$G$ such that $F\subseteq G$ and $F\neq G$ . That is, there exists an element $x\in L$ such
that $x\in G$ but $x\not\in F$ . It follows $\mathrm{h}\mathrm{o}\mathrm{m}F\subseteq G$ that $\mathrm{O}-_{F}\subseteq \mathrm{O}-_{G}$ and hence
that $\mathrm{O}-_{F}=\mathrm{O}-_{G}$ or $\mathrm{O}-_{G}=\iota$ by $\mathrm{O}-_{F}$ being maximal. Clearly $\mathrm{O}-_{G}\neq\iota$ . Hence
we have $\mathrm{O}-_{F}=\mathrm{O}-_{G}$ . Since $\Phi_{F}=\mathrm{O}-_{F}$ and $G$ is maximal, it is that $\Theta_{G}=\Phi_{G}$

so that $\Phi_{F}=\Phi_{G}$ . Now consider the element $\mathrm{x}$ in $L/\Phi_{F}=L/\Phi_{G}$ . Since
$x\not\in F$ , we have $\mathrm{x}$ is $\mathrm{O}x_{1}X_{2\cdots 2}xn-1$ in $L/\Phi_{F}$ . On the other hand, since $x\in G$ ,
the element $\mathrm{x}$ have to be $1x_{1}X_{2}\ldots x_{2n}-1$ in $L/\Phi_{G}$ . But this is a contradiction.
Therefore the filter $F$ is maximal.

For the congruence relations $F_{\Theta}$ and $\Theta$ , we have only the following:

Corollary 3 If $F_{\Theta}$ is a maximal filter, then the congruence relation $\mathrm{O}-is$

maximal.

Proof. If $F_{\Theta}$ is maximal, then $\mathrm{O}-_{F\mathrm{e}}$ is maximal and $\mathrm{O}-=\Theta_{F\mathrm{e}}$ . Hence we
obtain that $\mathrm{O}-\mathrm{i}\mathrm{s}$ a maximal congruence relation.

Unfortunately, the converse does not hold by the following example.

Example: For the algebra $A=\{0, a, b, 1\}$ , a congruence relation $\mathrm{O}-=$

$\{(0,0), (a, a), (b, b), (1,1), (0, a), (a, 0), (b, 1), (1, b)\}$ is maximal but the filter
$F_{\Theta}=\{b, 1\}$ is not maximal.

$/${ :
$\mathrm{I}_{\mathrm{C}^{\neg}}^{\mathrm{b}}1\alpha$

$\mathrm{N}\mathrm{C}\downarrow=\mathrm{N}\mathrm{b}=\overline{\mathrm{t}}\iota \mathrm{b}$
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4Filters and induced congruence relations

In this section we investigate the property of the induced congruence relation
$\Phi_{F}$ by a filter $F$ . In the above we show that if $F$ is a prime filter then $\Phi_{F}$

is a congruence relation. In this case it is a natural question whether the

converse holds or not. We answer the question ”yes”.

Theorem 5 If $\Phi_{F}$ is a congruence relation on $L$ , then the fiJter $F$ is prime.

Proof. Suppose that $\Phi_{F}$ is a congruence relation but the filter $F$ is not

prime. There are $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}.\mathrm{n}.\mathrm{t}_{\mathrm{S}}$ $x,y\in L$ such that $xy\in F$ but $x,$ $y\not\in F$ . Since
$\Phi_{F}$ is congruent, the operations $\wedge,$ $\mathrm{v}_{:}N$ are closed in the $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}..L/\Phi_{F}$ .

When we think about the elements $\mathrm{x}\vee \mathrm{y},$ $\mathrm{x}$ , and $\mathrm{y}$ in $L/\Phi_{F}$ , since $x\vee y\in F$

but $x,$
$y\not\in\dot{F}$ , we $\mathrm{h}.\mathrm{a}$ve $( \mathrm{x}\vee.\mathrm{y})_{0}=\max\{x0, y\mathrm{o}\}=1$ but $x_{0}=y_{0}=0$ This is a

$\mathrm{c}.0.\mathrm{n}\mathrm{t}\Gamma \mathrm{a}\mathrm{d}\mathrm{i}\mathrm{C}\mathrm{t}\mathrm{i}.\mathrm{o}\mathrm{n}$ . Thus $F$ is the prime filter.

Clearly if $F$ is a maximal filter then it is also a prime one. By the theorem,

if $F$ is maximal then the congruence relations $\Theta_{F}$ and $\Phi_{F}$ are identified. As

in the following,. $\mathrm{h}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r},$ th$\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{V}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{d}_{\mathrm{o}\mathrm{e}}\mathrm{S}\mathrm{n}\mathrm{o}\mathrm{t}.\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}:$. $...\cdot$
Example: Let $K=\{0, a, 1\}$ be the structure as below.

$C$ :

$\mathrm{i}$

$\mathrm{t},\mathrm{t}\wedge$ $\mathrm{M}a$ –a
$\tilde{\mathrm{o}}$

It is obvious that the algebra $K$ is in $B_{1,0}$ . If we put $F=\{1\}$ , then $F$

is a filter but not maximal. However, as to the congruence relations $\mathrm{O}-_{p}$ and

$\Phi_{F}$ , we have $\Theta_{F}=\Phi_{F}(=\omega)$ .
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