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Let $X$ be a finite set of alphabets, $X^{*}$ the free monoid generated by $X$ and $R$ a
finite set of $X^{*}\cross X^{*}$ . Then let (X; $R$) denote the factor semigroup of $X^{*}$ modulo
the congruence generated by the relation $R$ . Then we say that a semigroup $S$ has a
representation (X; $R$) if $S$ is isomorphic to (X; $R$). In this paper, we study relation
$R$ for which $S=(X;R)$ can be embedded in an inverse semigroup.

Stephen [2] gave a method of studying word problems for inverse semigroups
with a presentation in terms of inverse word graphs.

We shall apply this method to invesetigate embeddability of semigroups with a
presentation into an inverse semigroup.

1 Embedding theorem
We recall from Stephen [2] theory of inverse words graphs to give an embedding
theorem.

A labeled digraph, $\Gamma$ , over a non-empty set $T$ consists of a set vertices, $V(\Gamma)$ , and
a set of edges, $E(\Gamma)$ , where $E(\Gamma)\subseteq V(\Gamma)\cross T\cross V(\Gamma)$ . An edge $(v_{1}, x, v_{2})$ is said to
be labeled by $x$ and directed from $v_{1}$ to $v_{2}$ . Then vertex $v_{1}$ is said to be yhe initial
vertex of the edge and the vertex $v_{2}$ is said to be the terminal vertex of the edge.
A (directed) path is a sequence of edges such that the terminal vertex of one edge
is the initial vertex of the edge. A path which starts and ends at the same vertex
is said to be a loop at that vertex. Teh graph $\Gamma$ is said to be strongly connected if
given any two vertices, $\alpha,$

$\beta$ , there is a directed path $p$ from $\alpha,$
$\beta$ . We will also call

$p$ a path from $\alpha,$
$\beta$ walk. For a path $p,$ $W(p)\in\tau*$ is denotes the word that labels

the path. If $w=W(p)$ labels the $\alpha,$
$\beta$ walk $p$ , then we will sometimes denote the

endpoint $\beta$ of $p$ by $\alpha w$ . The labeled digraph $\Gamma$ is said to be finite if both $E(\Gamma)$ and
$V(\Gamma)$ are finite sets. A labeled digraph is called deterministic if all edges directed
from a vertex are labeled by different letters, and injective if all edges towards a
vertex are labeled by different letters.
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For any $w\in\tau*,$ $|w|$ is the number of elements of $T$ , including repetitions,
occurring in $w$ . Let $X$ be a non-empty set. Then we put $X^{-1}=\{x^{-1}|X\in X\}$ ,
where $X$ and $X^{-1}$ are disjoint.

Definition 1. An inverse word graph over $X\cup X^{-1}$ is a strongly connected
digraph, $\Gamma$ , with edges labeled from $X\cup X^{-1}$ in such a way that the labeling is
consistent with an involutions; that is, $(\gamma, y, \delta)$ is an edge in $\Gamma$ if and only if $(\delta, y^{-1}, \gamma)$

is an edge in $\Gamma$ , where $y\in X\cup X^{-1}$ .

We note that in inverse word graph, “deterministic” is equivalent to “injective”.
We will also assume that at each vertex there is an empty path, which is a loop,
labeled by 1.

Definition 2. A birooted inverse word graph (over $X\cup X^{-1}$ ) is a triple
$A=(\alpha, \Gamma,\beta)$ , where $\Gamma$ is an inverse word graph over $X\cup X^{-1}$ , and $\alpha$ and $\beta$ are
distinguished vertices of $\Gamma$ called, respectively, start and end of $A$

Definition 3. Let $\Gamma$ be a inverse word graph and $\eta$ be an equivalence relation,
called $V$-equivalence, on the set of vertices of $\Gamma$ . Then $V$-equivalence induces a new
inverse word graph as following;

$V$-quotient of $\Gamma$ by $\eta$ is the labeled digraph $\Gamma/\eta$ consisting of $V$ (F)/yy and $E(\Gamma/\eta)=$

$\{((v_{1}\eta), x, (v_{2}\eta))|(v_{1,2}x, v)\in E(\Gamma)\}$

A $V$-equivalence, $\eta$ , on $\Gamma$ , also induces a $V$-quotient on a birooted inverse word
graph $A=(\alpha, \Gamma,\beta)$ , that is, $A/\eta=((\alpha\eta), \Gamma/\eta, (\beta\eta))$ .

The remain argument in this section, $P=(X;s)$ will be a fixed presentation
of an inverse monoid $M=Inv<X|S>=(X\cup X^{-1})^{*}/\tau,$ $\tau$ the corresponding
congruence on $(X\cup X^{-1})^{*}$ .

Definition 4. For a word $w\in$ $(X \cup X^{-1})^{*}$ , where $w–w_{1}w_{2}\cdots w_{n}$ , the
linear graph of $w$ is the birooted inverse word graph $(\alpha_{w}, \Gamma_{w},\beta_{w})$ , where $V(\Gamma_{w})=$

$\{\alpha_{1}\alpha_{2}\cdots, \alpha_{n+1}\}$ and $E(\Gamma_{w})=\{(\alpha_{1},w_{1}, \alpha_{2}), (\alpha_{2}, w_{2}, \alpha_{\mathrm{s}}), \cdots, (\alpha_{n}, w_{n}, \alpha_{n+}1)\}$ .

Next, we shall introduce two constructions on birooted inverse word graph which
produces a new graph.

Definition 5. Let $(\alpha, \Gamma, \beta)$ be an inverse word graph over $(X\cup X^{-1})^{*}$ . If $\Gamma$ has
two directed edges with a common initial vertex $\delta$ and the same label $(\delta,y, \gamma_{1})$ and
$(\delta, y,\gamma_{1})$ for some $y\in X\cup X^{-1}$ , then we form a new birooted inverse word graph
by taking the quotient of $(\alpha, \Gamma, \beta)$ by the equivalence relation on $V(\Gamma)$ generated
by $\{(\gamma_{1}, \gamma_{2})\}$ . The resulting birooted inverse word graph has one fewer vertex than
$(\alpha, \Gamma,\beta)$ , and two (or more) fewer edges than $(\alpha, \Gamma, \beta)$ , and is said to be obtained
from $(\alpha, \Gamma, \beta)$ by a determination.

For the presentation, $P=(X;s)$ , we give a method of enlarging a birooted
inverse word graph.
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Definition 6. Let $(\alpha, \Gamma,\beta)$ be an inverse word graph over $(X\cup X^{-1})^{*}$ . If
$r=s$ is a relation in $S$ ($\mathrm{i}.\mathrm{e}.,(r,$ $s)$ or $(s,r)\in S$), and $\Gamma$ has a $\gamma_{1}-\gamma_{2}$ walk labeled
by $r$ but no $\gamma_{1}-\gamma_{2}$ walk labeled by $s$ , then we obtain a new birooted inverse word
graph $(\alpha^{l}, \Gamma’,\beta’)$ by sewing on the linear graph of $s$ onto $(\alpha, \Gamma, \beta)$ , by identifying
the start and end of $(\alpha_{s}, \Gamma_{s},\beta S)$ with $\gamma_{1}$ and $\gamma_{2}$ , respectively. The start and end of
$(\alpha’, \mathrm{r}’,\beta’)$ correspond to the start and end of $(\alpha, \Gamma, \beta)$ . If $|s|=m$ , then $(\alpha’, \mathrm{r}’,\beta)$

’

has $m-1$ new vertices and $2m$ new edges, and is said to be obtained from $(\alpha, \Gamma,\beta)$

by an elementary $P- e\varphi amion$.
A deterministic birooted inverse word graph $(\alpha, \Gamma.’\beta)$ will be $clo\mathit{8}ed$ if no elemen-

tary $P$-expansion is defined on $(\alpha, \Gamma, \beta)$ .
Definition 7. Let (X; $R$) be a presentation and $w$ be a word in $(X\cup X^{-1})^{*}$

and $(\alpha, \Gamma, \beta)$ be a linear graph of $w$ . If $(\alpha’, \Gamma’,\beta’)$ is obtained from $(\alpha, \Gamma, \beta)$ by a
sequence of elementary $P$-expansions and determinations, and it is closed. Then we
say that $(\alpha’, \Gamma’, \beta’)$ is Schuitzenberger graph $\Gamma$ of $w$ .

Definition 8. Let $(\alpha, \Gamma,\beta)$ be a deterministic birooted inverse word graph and
$a$ be an element of $(X\cup X^{-1})$ . Then we defind a partial one-to.one mapping $\phi_{a}$ as
follows:

$\gamma\phi_{a}=\{$

$\delta$ if $(\gamma, a, \delta)\in E(\Gamma)$

undefinded otherwise

Moreover, we defind an inverse semigroup generated by partial one.to-one mappings
$\{\phi_{a}\}$ , and we call it the inverse transition semigroup of $(\alpha, \Gamma, \beta)$ .

Theorem 1. Let $S=<X;R>be$ a presentation ofS. Then $S$ can be embedded
in an inverse semigroup if and only if for each pair of words $s,t$ over $X$ with $(s, t)$

$\not\in R^{*}$ , the $Sch\ddot{u}t\mathcal{Z}enberger$ graphs of $s,$ $t$ are distinct from each other.
In this case $S$ is embedded in the direct product of inverse transition semigroups

on Sch\"utzenberger graphs of words, which are reprentatives of the $R^{*}$ -classes.

2 Applications
Actually, in application of Theorem 1 to a presentation $P=(X;R)$ , we demand
that

(1) the word problem for (X; $R$) is decidable, (2) it is possible to calculate
Sch\"utzenberger graphs.

This is a description of proccedure of deciding whether or not a semigroup with
a presentation is embedded in an inverse semigroup:
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Proccedure. Given a presentation $P=(X;R)$ satisfying the above (1) and
(2), where $X$ and $R$ are finite. .

Give length and lexicographic ordering on $X^{*}$ .

(i) choose the minimal word $w$ form a congruence class $[w]=\{w’|(w, W/)\in R^{*}\}$ .
(We say that the minimal word $w$ is the canonical form of $w’(w’\in[W])$ ).
(ii) Depict the linear graph of $w$ .
(iii) Perform to elementary $P$-expansions and then determinations to the the

linear graph. It is the Sch\"utzenberger graph if it closed.
(iv) Check whether or not this Sch\"utzenberger graph coincides the all Sch\"utzen-

berger graphs obtained before.
(v) If one find two Sch\"utzenberger graphs which coincide then this semigroup

is not embeddable into a inverse semigroup.
Then end.
(vi) If one does not find two Sch\"utzenberger graphs which coincide then we

repeat above (i), (\"u), (iii), $(\mathrm{i}\mathrm{V})$ .
And if we can not find two Sch\"utzenberger graphs which coincide for all canonical

forms then this semigroup is embeddable into the semigroup $\Pi_{w\in Can(s)}s(w)$ where
Can$(S)$ is the set of canonical forms of $S$ .

Here, we $\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{U}$ introduce typical examples which are complete and embeddable,
and, complete and unembeddable.

Example 1. $S=<a,$ $b;aba=a>$ is not embeddable into in any inverse
semigroup of inverse semigroup.

proof Note that both abba and baab are the canonical forms. So [abba] , [baab]
are different from each other in $S$ . However, we shall see that the Sch\"utzenberger
graphs of abba, baab are coincide.

The linear graph of abba : The linear graph of baab :

Elementary P-expansions:
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Determinations :

These are the Sch\"utzenberger graphs.

Example 2. $S=<a,$ $b;ab^{n}a=a^{2}>\mathrm{i}\mathrm{s}$ embeddable into the quotient inverse
semigroup of inverse semigroup generated by $\{a, b\}$ by the congruence $\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\Gamma \mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ by
the relation $\{(ab^{n}a, a)2\}$ .

proof We shall show the case $n=2$ by the typical example and general case is
similar.

The linear graph of $aa$ :

Elementary P-expansions:

Determinations:

This is the Sch\"utzeIlberger graph.

all Sch\"utzenberger graphs of words are obtained by exchanging all linear graphs
$\infty aa$ for the graph above. Therefore, this semigroup is embeddable in an inverse
semigroup.

Problems. Find types of relations which present semigroups embeddable in an
inverse semigroup.

163



Remark. By using Adjian’s result in [1], We can show that if a presentation
(X; $R$) has neither left cycle nor right cycle then the semigroup presented by (X; $R$)
can be embedded in an inverse semigroup.
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