
Synchronization and nondeterminism

Gabriel Ciobanu*
Faculty of Computer Science

$\mathrm{A}.\mathrm{I}$. Cuza University
6600 Iasi, Romania

GabrielQInfoIasi.Ro

Abstract

This paper describes a certain investigation of the nondeterministic phe-
nomena discussing about internal and external, angelic and demonic forms of
nondeterminism. We define and study algebraic structures of the set of actions
together with the nondeterministic operations &, \oplus , and a synchronization
operation $||$. We use a dynamic logic construction to define a nondetermin-
istic degree of each action, degree related also to a computational property.
Some results connect this nondeterministic degree to the algebraic str.ucturesdescribed in the first part of this paper.

1 Introduction.
Computer science considered “nondeterminism” as an interesting topic from very be-
ginning (it would be enough to mention the wide interest in nondeterministic Turing
machines). Various formalisms dealing with nondeterminism have been developed,
to mention only a few examples: the powerdomains (Plotkin, Smyth), the predicate
transformers for a choice construct (Dijkstra), and nondeterministic lambda-calculi.
Models of concurrency reflect nondeterminism as nondeterminism arises in a natural
way when dealing with concurrency. We would like to remark also the interesting
viewpoint of Berry and Gonthier concerning this relationship between nondetermin-
ism and concurrency, namely that ”determinism does not mean sequentiality” and
”most reactive systems can be decomposed into concurrent deterministic subsys-
tems that cooperate in a deterministic way”. Considering deterministic automata,
Petri nets, CSP they say: “Quite amazingly, all the available techniques force the
user to choose between determinism and concurrency, for they base concurrency on
asynchronous implementation models where process non-deterministically compete

*Current address: Tohoku University, RIEC, 2-1-1 Katahira, Aoba-ku, Sendai 980, Japan.

数理解析研究所講究録
960巻 1996年 15-22 15

for computing resources”. This opinion reflects the complexity of the nondeter-
ministic and concurrent computation. We believe that a better understanding of
the (non)deterministic computation will give be a help in explaining the concurrent
computation too.
Nondeterminism can appear also in programming languages, for example by nonde-
terministic assignment statement and nondeterministic do loop. The implementa-
tions of programming languages are usually deterministic, but the languages with
an implicit nondeterminism (Prolog, for instance) allow more concise programs for
many algorithms. Nondeterminism is used also as an abstraction concept in spec-
ification, whenever there is a hidden state or other components of a system which
are conceptually, methodologically or technically inaccessible at a particular level of
abstraction.
All these reasons are enough to justify our approach. Let define now our point
of view. We would like to distinguish between the observation of the effects of a
nondeterministic choice and the capability to perform an action in a nondeterministic
way. Intuitively, the meaning of a nondeterministic choice between the actions A
and B is given by: choose one of A and B , and perform the chosen action. This
intuitive description gives rise to different interpretations (implementations). It
is clear that we discuss about an observer, a computational environment and a
machine. A machine performing the actions is strictly separated by an external
observer at the run time, and both are working into a computational environment.
The nondeterministic choice could be made by machine, by the external observer
or by the computational environment. We can define a space of interaction by the
following picture

environment
(computation context)

and we work in, and refer to the space determined by the computational environment
and the execution of a machine (program). For instance, we could imagine a printing
program written in a nondeterministic programming Ianguage. We want to print
a paper running this program. Nondeterminism may appear as a result of the
programmer’s (machine) choice. However the programmer has a deterministic mind

16

even when the execution is (apparently) nondeterministic. Some nondeterministic
actions of a machine are determined by the other programs interfering with our
printing program. Nondeterminism may also appear as a result of the computational
environment. Even you action of printing a paper is clearly settled, you are not sure
that this will happen: may be the printer is turned off, or it is turned on but it has
no paper, or a linking cable is missing...
Finally, depending on who makes the choice, we consider two different forms of
nondeterminism. The nondeterminism in which the nondeterministic choice is made
by machine(program) is called internal; if the choice is made by the computational
environment, then the nondeterminism is called external.
We refer in this paper to the executions of a machine (program). We may start
from the T. Ito’s Logic of Execution which was designed as a logical framework for
executing sequences involving nondeterministic computation. In that logic processes
are considered as sentences and $A\vdash B$ means that the success of execution of A

implies(proceeds) the success of execution of B . An execution may become success
$<s>$, failure $<f>$, or pending $<p>$. The set of “executional” operators contains
the following operators:

- $A\oplus B$ for a ”disjunctive execution”
(i.e. ”execute A and execute B , then $\mathrm{l}\mathrm{u}\mathrm{b}(\mathrm{A},$ $\mathrm{B})$ ”);

-A&B for a”conjunctive execution”
(i.e. ”execute A and B , then $\mathrm{g}\mathrm{l}\mathrm{b}(\mathrm{A},$ $\mathrm{B})$ ”);

- $A||B$ for a”concurrent execution”
(i.e. ”interleaved execution of A and B”).

Starting from the order $<f>\subseteq<p>\subseteq<s>$, Ito’s executional operators satisfy
the following properties:

$A\subseteq A\oplus B$ $B\subseteq A\oplus B$

A&BA A&BB
If $A\subseteq B$ then

$A\oplus c\subseteq B\oplus C$ $C\oplus A\subseteq c\oplus B$

A&CB&C C&AC&B
$A\oplus A=A$ $A\ A=A$
$A\oplus B=B\oplus A$ A&B=B&A

$\frac{A\oplus(B\oplus c)=(A\oplus B)\oplus cA\ (B\ c)=(A\ B)\ C}{A\ (B\oplus C)=(A\ B)\oplus(A\ C)}$

A\oplus (B&C) $=$ (A\oplus B)&(A\oplus C)

Moreover

17

$A||B$ $=B||A$

$A||(B||C)$ $=(A||B)||c$

$\frac{<s>||A=A}{A||(B\oplus c)=A||B\oplus A||c}$

$A||(B\ c)$ $=A||B\ A||c$

If we consider the set P of the processes (considered as sentences), and according
to the definition of a lattice-ordered monoid (shortly, 10-monoid), then $(\mathcal{P};||, \oplus, \)$

is such a lo-monoid.
An executional deductive framework is described in Ito’s paper, and it is explained
how to ”execute” a logical sentence. Unfortunately, it is not easy to find the com-
putational (operational) aspect of this logic.
In this paper we use dynamic logic to reason over the executions of nondeterministic
choices. This logic is a modal logic whose modality corresponds to the execution
of actions. We use the formula $<d_{\mathit{0}_{p}}(\alpha)>\varphi$ which could be used to express the
capability or feasibility of a process, as well as the effective action and correctness.
$<d_{\mathit{0}_{p}}(\alpha)>\varphi$ has the meaning that all prerequired conditions of action α are
satisfied, and as a result of executing α by process $p,$ φ holds.
In fact we try to express how a machine (a nondeterministic language compiler, for
instance) is “reasoning” whether or not ϕ holds as a result of performing one of the
nondeterministic choices. Regarding a choice (a&b) made by the machine, it has an
angelic behaviour. Regarding a choice $(a\oplus b)$ made by the computational environ-
ment, the machine has no influence on which action is chosen; it must be prepared
to deal with all of the possible actions or events- in this way the com.putational
environment shows a demonic behaviour.

2 Angelic and demonic nondeterminism
We simulate sometimes how the machine is reasoning (try to imagine that you wish
to implement a nondeterministic language, for instance) whether φ holds as a result
of performing on internal or external nondeterministic choice. When we use the word
”machine” we refer to an execution of a program (a compiler, for instance). A pro-
grammer using a (nondeterministic) programming language thinks in a different way
than a programmer who have written the compiler for that programming language.
In the first case, a programmer thinks about an internal nondeterminism in a deter-
ministic way, even when the nondeterministic constructions of the language are used;
usually a programmer simulates in a deterministic way the computation associated
to a nondeterministic program. Moreover, the programmer expects that the used
compiler has an angelic behaviour, namely if there is at least one successful compu-
tational path defined by his program, then the execution of the compiled program
will succeed. This expectation is transmitted to the compiler which is looking to its

18

internal nondeterminism as performing in an angelic way. Therefore, regarding to
an internal choice \alpha &\beta , the machine thinks of itself as showing an angelic behaviour:
i.e. whenever it is possible to perform an action in the correct (desired) way, it will
choose to perform that action (in the correct way). Regarding to an external choice
$\alpha\oplus\beta$, the machine(compiler) has no influence on which action is chosen, and it must
be prepared to deal with either of the actions; in particular machine may not assume
that the external environment will make the best choice-i.e. environment shows a
demonic behaviour. The author is thinking that the ambiguity of the computational
context associated to the notion of nondeterminism is the main reason why the lat-
ter notion is unclear. As you remarked, we already discussed about determinism,
angelic and demonic nondeterminisms considering various points of view related to
a nondeterministic programming language, and considering a certain computational
space. An exhaustive study of nondeterminism is still waiting to be done; this article
may be a step to such a comprehensive approach.
Our computational space was defined, and we reason as a compiler (or an imple-
menter simulating the actions of the desired compiler). According to the previous
remarks, our formal approach is given by the following two formulas:

$<do_{p}(\alpha\ \beta)>\varphi$ \equiv $<d_{\mathit{0}_{p}}(\alpha)>\varphi \mathrm{v}<dp_{p}(\beta)>\varphi$

$<do_{p}(\alpha\oplus\beta)>\varphi$ \equiv $<do_{p}(\alpha)>\varphi$ A $<do_{p}(\beta)>\varphi$

There is an interaction between a machine and its computational environment,
and we reflect this by defining a synchronization between the internal and external
forms of nondeterminism. As usual, synchronization is a operation of composing two
systems by identifying, relating some of their actions. In our case the result of such
a synchronization is an execution; our aim is to have some judgements about this
execution. We consider an operator which is similar to the ”concurrent execution”
of the Ito’s logic of execution; the set Act of the possible actions of the machine
and the environment together with this operator $||$ becomes a monoid (Act, $||,$ u).
Moreover this operator isdefined also by $\alpha||\beta=(\alpha\oplus\beta)||(\alpha\ \beta)$ (by definition), and

$<do_{p}(\alpha\cdot\beta)>\varphi=<do(p\text{ノ}>\alpha 1\varphi<d_{\mathit{0}_{p}}(\beta)>\varphi$.
We show that (Act, $\ ,$ $\oplus,$ u) is a lattice with the least element u ,
and (Act, $||,$ $\ ,$ $\oplus,$ u) is a lattice-ordered monoid where $\alpha||\beta=(\alpha\oplus\beta)||(\alpha\ \beta)$ holds
also. In order to study this algebraic structure we use the notation (Act, $||,$ $\wedge,$ $,$ u)
instead of (Act, $||,$ $\ ,$ $\oplus,$ u).

3 The lattice-ordered monoid of actions
We consider the algebraic system (Act, $||,$ $\wedge,$ $,$ u) where (Act, $||,u$) is a monoid,
(Act, $\wedge,$ $,$ u) is a lattice with the least element u , and for all $a,$ $b,$ $c\in Act$ we have

$a||(b_{C})=(a||b)(a||c)$,

19

$a||(b\wedge C)=(a||b)\wedge(a||C)$,
$a||b=(ab)||$ (a A b).
We assume also that if the monoid (Act, $||,$ u) has a zero z , then z is the greatest

element in the lattice (Act, $\wedge,$ $,$ u).
It is easy to see that the monoid (Act, $||,$ u) is commutative. We have also the
following elementary properties:

Proposition 1 If a, $b,$ $c\in Act$ then

$i)a||b\geq a\mathrm{v}bJ^{\cdot}$

$ii)$ if $a\leq b$, then $a||c\leq b||c$;

$iii)$ if a, $b\leq c$ and $a\wedge b=u$, then $a||b\leq c$;

$iv)$ if $a||b=ab$ and $c\leq b_{f}$ then $a||b=b(a||C)$.

In what follows the notation $a_{1}\ldots\overline{a_{i}}\ldots a_{m}$ will mean $a_{1}||a_{2}\ldots||a_{i}-1||a_{i+1}||\ldots a_{n}$.

Proposition 2 Let be $a_{i}\in Act,$ $1\leq i\leq n$. Then

$i)||_{i=1}^{n}a_{i}=(\mathrm{V}^{n}i=1)a_{1}\ldots\overline{a_{i}}\ldots a_{n}||(\wedge i=1ani)=(\bigwedge_{i1}na=1\cdots\overline{ai}\cdots a)n||(\mathrm{v}i=1ai)n$.
$ii)$ If $a_{i}||a_{j}=a_{i}a_{j}$ for every $1\leq\dot{i},j\leq n$, then $||_{i=1}^{n}a_{i}= \bigvee_{i=1}^{n}a_{i}$.

Proof:

i) We will prove the first equality by induction. For $\mathrm{n}=2$ the result holds by
previous results. Suppose it is true for an arbitrary fixed $n\in N$. We have
$\bigvee_{i=11}^{n+}1\overline{a_{i}}a\ldots\ldots an+1)=a_{n+1}||(\bigvee_{i=}^{n}1\overline{a_{i}}a_{1}\ldots\ldots a_{n})||_{i=1}^{n}a_{i}=a_{n+1}||(\mathrm{v}i=1\overline{a_{i}}a_{1}\ldots\ldots a_{n})n$

$\mathrm{V}(\mathrm{v}_{i11}^{n}=\overline{a_{i}}a\ldots\ldots a_{n})||(\bigwedge_{i=1}na_{i})=(_{i11}n)=i\cdots|a\ldots\overline{a}a_{n}|(an+1\mathrm{V}\bigwedge_{i=1}^{n}a_{i})$ and then
$(\mathrm{V}^{n+1}i=1a1\cdots\overline{a_{i}}\ldots a_{n}+1)||(\bigwedge_{i}^{n+}=1)1=a_{i}(_{i}na1\cdots\overline{ai}\cdots a_{n})=1||(a_{n+}1\wedge^{n}i=1ai)||(a_{n+1}$ A
$\bigwedge_{i=1}^{n}a_{i})=(_{i=11}^{n}a\ldots\overline{ai}\cdots an)||(a_{n+1}||\bigwedge_{i=1}^{n}a_{i})=(\mathrm{v}^{n}i=1i\cdots)a_{1}\ldots\overline{a}a_{n}||(\bigwedge_{i}^{n}=1a_{i})||a_{n}+1$

$=(||_{i=}^{n}1)a_{i}||an+1=||_{i=1}^{n+1}ai$. The second equality can also be proved by induc-
tion.

ii) By induction.

Proposition 3 For every a, $b_{i}\in Act,$ $1\leq i\leq n$, we have $a\wedge||_{i=1}^{n}b_{i}=a\wedge||_{i=1}^{n}(a\wedge b_{i})$.

Proof: a A $||_{i=1}^{n}(a\wedge b_{i})=a\wedge$ [$a||\ldots||a$ A $a||(\bigwedge_{i=}^{n}1b_{i})\wedge\ldots\wedge a||(\bigwedge_{i=1}^{n}b1\cdots\overline{bi}\cdots b)n\wedge||_{i=1}^{n}b$]
$=a\wedge||_{i}^{n}=1b_{i}$.

Corollary 1 If a, $b_{i}\in Act$ and if $a\wedge b_{i}=u$ for every $\dot{i},$ $1\leq i\leq n$, then $a\wedge||_{i=1}^{n}b_{i}=$

u .

20

We have also some structural properties which connect the subjacent structures of
our lattice-ordered monoid.

Proposition 4 Let be $a\in Act$. The set $s(a)=\{b\in Act|.a||b=a\}$ is a lattice ideal
and a submonoid of Act; if $a||a=a$ then $s(a)=(a]$.

Proof: A lattice ideal can be characterized by: if $b,$ $c\in s(a)$, than $bc\in s(a)$, and
if $b\in s(a)$ and $c\leq b$ then $c\in s(a)$. It is easy to show that $s(a)$ is a semilattice.
Now let be $b\in s(a),$ $c\in$ Act and $c\leq b$. If $a||b=a$ then $b\leq a$, and thus
$a=ab=a||b$. By previous results $a=a||b=b(a||c)$ which shows that $a||c\leq a$.
But $a||c\geq a$, which forces $a||c=a$, hence $c\in s(a)$. Straightforward calculations
show that $s(a)$ is a submonoid of Act. Clearly, $s(a)\subseteq(a$]. Let be $x\in(a$]; then
$a||x=(ax)||$ (a A x) $=a||$ (a A x) $=(a||a)\wedge(a||x)=a\wedge(a||x)=a$ and thus $x\in$

$s(a)$.

Proposition 5 Let be $a\in Act.$ The set $p(a)=\{b\in Act |a\wedge b=u\}$ is a lattice
ideal and a submonoid of Act.

Proof: By the previous corollary, $p(a)$ is a submonoid of Act. Let be $b,$ $c\in p(a)$;
then $a\wedge(bc)\leq(a\wedge(b||c)=u$ by the same corollary again, showing that $p(a)$ is
a semilattice. On the other hand, if $b\in p(a),$ $c\in Act$ and $c\leq b$ then $u\leq a\wedge c\leq$

$a\wedge b=u$, hence $c\in p(a)$.

Proposition 6 i) Every filter of the lattice (Act, $\wedge,$ $,$ u) is an ideal of the monoid
(Act, $||,$ u).

$ii)$ If (Act, $||$) is a principal ideal semigroup, then $[a)=a||Act,\forall a\in Act$.
$iii)$ If $I\subset Act$ is a prime semigroup ideal, then Act-I is a sublattice of (Act, $\wedge,$ $\vee,$ u).

Proposition 7 If (Act, $||,$ u) is with cancellation, then (Act, $\wedge,$ $,$ u) is a distributive
lattice.

The lack of cancellation leads to the study of the idempotents of the monoid. The
study of this 10-monoid leads to an interesting decomposition theorem; this result
is interesting on its own, and it is the subject of another paper. We selected only
those results which are appropriate for our approach concerning nondeterminism.

4 The nondeterministic degree
We dare to remember that if $(L, \wedge,)$ is a lattice, then $v:(L, \wedge, \mathrm{V})arrow(R, +)$ is a
valuation if $v(ab)+v$ (a A b) $=v(a)+v(b)$. Moreover, if v is strictly isotone (i.e.
if $x<y$ then $v(x)<v(y)))$, then $(L, \wedge,)$ is called a metric lattice. A well-known
theorem tells that every metric lattice is modular.

21

Proposition 8 Let (Act, $||,$ $\ ,$ \oplus,u) be our lo-monoid. If we consider a ng : (Act, $||$)
$arrow([0,1], +, 0)$ - where $([0,1], +, 0)$ is a monoid - such that ng is a strict isotone
monoid homomorphism, then (Act, $\ ,$ $\oplus,$ u) is a modular lattice.

Proof: We define the nondeterministic degree ng by $ng\equiv<do_{p}->\varphi$: $Actarrow$

$([0,1], +)$. In this way we relate the nondeterministic degree to the process (or
processor) p , and to the property φ .
We have

$ng(a||\beta)=ng(a)+ng(\beta)$, and

$a||\beta=(\alpha\oplus\beta)||(\alpha\ \beta)$,
then we have also $ng(a||\beta)=ng((\alpha\oplus\beta)||(\alpha\ \beta))=ng(\alpha\oplus\beta)+ng(\alpha\ \beta)$. This
means that $ng(a)+ng(\beta)=ng(a\oplus\beta)+ng(\alpha\ \beta)$, i.e. ng is a valuation. ng is also
strict isotone, and it follows that (Act, $\ ,$ $\oplus,$ u) is a metric lattice. Since any metric
lattice is modular, (Act, $\ ,$ $\oplus,$ u) is a modular lattice.

Other results:
1. From $ng(a||\beta)=ng(\alpha)+ng(\beta)$, considering $\beta=u$, then $ng(a)=ng(\alpha)+ng(u)$,
i.e. $ng(u)=^{\mathrm{o}}$

2. We don’t have a zero in (Act, $||,$ u). If we suppose that there is a zero z , then
$ng(\alpha||z)=ng(a)+ng(z)$, i.e. $ng(z)=ng(\alpha)+ng(z)$, i.e. $ng(z)=\infty\not\in[0,1]$

3. If $\alpha||\beta=a\oplus\beta$ i.e. we have only one form of nondeterminism which is active
in a synchronization, then $ng(a||\beta)=ng(a)+ng(\beta)=ng(\alpha\oplus\beta)+ng(a\ \beta)=$

$ng(\alpha\oplus\beta)$, i.e. ng(a&\beta) $=0$. We have also that $u\leq\alpha\ \beta,$ and this means that
O=ng(u)\leq ng(a&\beta) $=0$.
Since ng is strictly isotone, ng(a&\beta) $=0$ iff $\alpha\ \beta=u$.
Therefore if there is such a nondeterministic degree ng : (Act, $||,$ u) $arrow([0,1], +, 0)$

which is a strict isotone monoid homomorphism, then $\alpha||\beta=\alpha\oplus\beta$ if and only if
$\alpha\ \beta=u$.
Proposition 9 If ng : (Act, $||,$ u) $arrow([0,1], +)$ is also injective, then (Act, $\ ,$ \oplus) is
a distributive lattice.

Proof: We consider $\alpha,$
$\beta,$ $\delta\in Act$ such that $(^{*})$: $\alpha\ \beta=a\ \delta$, and $(^{**}):\alpha\oplus\beta=$

$\alpha\oplus\delta$.
(Act, $\ ,$ \oplus) is a distributive lattice if and only if ($(^{*})$ and $(^{**})$ imply $\beta=\delta$).
From $(^{**})$ we have $ng(\alpha\oplus\beta)=ng(\alpha\oplus\delta)$, i.e. $ng(\alpha)+ng(\beta)$ –ng(\alpha &\beta) $=$

$ng(\alpha)+n.(/(\delta)$ -ng(\alpha &\mbox{\boldmath δ}). According to $(^{*})$ we have ng(\alpha &\beta)=ng(\alpha &\mbox{\boldmath δ}). Therefore
$r’,/_{J^{((}}i)=n.\mathrm{r}J(\delta)$, ancl $\beta=\delta$ - because ng is injective.

References
[1] $r_{\mathrm{I}^{1}}$.] $(_{}():/,r’. \gamma/\dot{i}c(j\int/l_{\text{ノ}}’ xr,\prime cuti_{\mathit{0}}n$, TACS ’91, LNCS 526, Springer-Verlag, 1991.

22

