0oooo0O0oooo
960 0 1996 0 165-177 165

On Computational Power of Jumping Petri Nets!

Ferucio Laurentiu TIPLEA

Faculty of Informatics
“Al. I. Cuza” University, 6600 Iasi, Romania
E-mail: fltiplea@infoiasi.ro '

Abstract

A Jumping Petri Net ([18], [12]), J PTN for short, is defined as a classical net which
can spontaneously jumps from a marking to another one. In [18] it has been shown
that the reachability problem for J PT'N’s is undecidable, but it is decidable for finite
JPTN’s (FJPTN). In this paper we investigate the computational power of such
nets, via the interleaving semantics. Thus, we show that the non-labelled JPTN’s
have the same computational power as the labelled or A-labelled J PTN’s. When final
markings are considered, the power of JPT N’s equals the power of Turing machines.
Languages generated by F'J PTN’s can be represented in terms of regular languages
and substitutions with classical Petri net languages. This characterization result
leads to many important consequences, e.g. the recursiveness (context- -sensitiveness,
resp.) of languages generated by arbitrarily labelled (labelled, resp.) FJPTN’s. A
pumping lemma for nonterminal j jumping net languages is also established. Finally,
some comparisons between families of languages are given, and a connectlon between
FJPTN’s and a subclass of inhibitor nets is presented.

1 Introduction and Preliminaries

It is well-known that the behaviour of some distributed systems cannot be adequately
modelled by classical Petri nets. Many extensions which increase the computational and
expressive power of Petri nets have been thus introduced. One direction has led to the
modification of the firing rule of the nets ([2], [3], [5], [6], [7], 8], [12], [16], [17], [18], [19],
20, [21], [22)). |

In this paper we investigate the computational power of jumping Petri nets as introduced
in [18]. The paper is organized as follows. In the rest of this section we will establish the
basic terminology, notations, and results concerning Petri nets in order to give the reader
the necessary prerequisites for the understanding of this paper (for details the reader
is referred to [1], [9], [11], [13], [14]). In Section 2 we show that non-labelled JPTN’s
have the same computational power as labelled or A-labelled JPTN’s and, in the case
of final markings, their power equals that of Turing machines. Section 3 gives some
characterization results for FJN’s in terms of regular languages and substitutions with
A-free languages. Then some important consequences are derived and a pumping lemma
for nonterminal jumping net languages is established. In Section 4 some comparisons
between families of languages are given. The last section presents a connection between
FJPTN’s and a subclass of inhibitor nets.

1

a complete final version of this paper will be published elsewhere

166

The empty set is denoted by 0; for a finite set A, |A| denotes the cardinality of A and
P(A) denotes the set of all subsets of A. Given the sets Aand B, AC B (A C B,
resp.) denotes the inclusion (strict inclusion, resp.) of Ain B. If R C A x B then
dom(R) and cod(R) denote the sets dom(R) = {a € A|3b € B : (a,b) € R} and
cod(R) = {b € B|3a € A: (a,b) € R}. The set of integers (nonnegative integers, positive
integers, resp.) is denoted by Z (N, N*, resp.).

For a (finite) alphabet V, V* denotes the free monoid generated by V (under the
concatenation operation) with the empty word A\. Given a word w € V*, |w| denotes
the length of w, and alph(w) denotes the set of all letters occurring in w. L3 (£, resp.)
denotes the family of regular (context-free, resp.) languages and L3 pref denotes the family
of regular prefix languages (i.e., those languages containing all prefixes of its words).

A (finite) Petri net, abbreviated PN, is a 4-tuple ¥ = (§,7; F,W) where S and T
are two finite sets, of places and transitions, such that SNT = @ and SUT # 0,
F C(SxT)U(T x S) is the flow relation and W : (S x T)U (T x S§) — N is the weight
function of ¥ verifying W(z,y) = 0 iff (z,y) € F. A function M : § — N is called a
marking of ¥ and it will be sometimes identified with a vector M € N ISI. The set of all
markings of ¥ is denoted by N°. 5. The relation "<” and the operations ”+” and ”—” on
nonnegative integers are componentwise extended to vectors in N5,

A marked PN, abbreviated mPN, is a 2-tuple ¥ = (X, Mp), where Zisa PN and My is a
marking of ¥ called the initial marking of £. An mPN with final markings, abbreviated
mPNf, is a 3-tuple v = (X, My, M), where (X, M,) is an mPN and M, called the
set of final markings of v, is a finite set of markings of X. A labelled mPN (mPNf,
resp.), abbreviated ImPN (ImPNf, resp.), is a 3-tuple (4-tuple, resp.) v = (X, Mo, 1)
(v = (Z, My, M, 1), resp.), where (, M) ((E, Mo, M), resp.) is an mPN (mPN f, resp.)
and [, called the labelling function of 7, is a function from the set of transitions of ¥
into an arbitrary alphabet V. A A-labelled mPN (mPN f, resp.), abbreviated *mPN
(PmPNf, resp.), is a 3-tuple (4-tuple, resp.) v = (I, Mo, 1) (v = (X, Mo, M, 1), resp.),
where (Z, M) ((, My, M), resp.) is an mPN (mPN f, resp.) and [, called the A-labelling
function of v, is a function from the set of transitions of ¥ into V U {A}, where V is an
arbitrary alphabet and) is the unity of V*.

In the sequel we shall often use the term "net” whenever we refer to a structure v as
those above. The notations *z = {(y,z) |y € SUT, (y,z) € F} and 2* = {(z,y) |y €
SUT, (z,y) € F}, for all z € SUT, will be intensively used. Pictorially, a net vy will
be represented by a graph. Then places are denoted by circles, transitions are denoted
by boxes; the flow relation is represented by direct edges: there is a direct edge from x
to y iff (z,y) € F. The initial marking is given by putting My(s) tokens in the circle
representing the place s. The labelling function is denoted by placing letters into the
boxes representing transitions and final markings are explicitly listed.

Let v be a net and M € N5. A transition ¢ € T is enabled at M, denoted M[t), if
M(s)>W(s,t) forall s € S. If t is enabled at M then ¢ may occur yielding a new marking
M, abbreviated M[t)M’, given by M'(s) = M(s) — W(s,t) + W(t,s) for all s € S. The
above definition can be naturally extended to sequences of transitions by: M[A)M and
M [ut)M' iff there is a marking M"” such that M[u) M"[t)M' (M and M' are markings,
u € T* and t € T). Moreover, if Molw)M then we say that w is a firing or transition

167

sequence of « (leading from M, to M), and M ia reachable (from My) in 4. The set of all
reachable markings of v is denoted by [M).

Petri nets can be viewed as language generators. First, we extend the labelling function
to morphisms in the usual way. Then, let 4, be an mPTN, 5, either an ImPTN or an
PmPTN, 73 an mPTNf, and ~, either an ImPTNf or an PmPTNf. The languages
generated by these nets are P(y,) = {wlw € T* A (IM € N¥: My[w).,, M)}, P(7,) =
{{(w)lw € T* A (3M € N° : Molw),M)}, L(vs) = {wjw € T* A (AM e M :
Mo[w)\, M)}, L(vs) = {l(w)lw € T* A (3M € M : My[w),,M)}. The languages
generated by mPTN (ImPTN, *mPTN, resp.) are called free P-type languages (P-type
languages, arbitrary P-type languages, resp.) and the family of these languages is denoted
by Pf (P, P?, resp.). For Petri nets with final markings, the terminology is as above, by
changing "P” into "L”. These languages are usually referred to as Petri net languages or
Petri languages. »

A jumping P/T-net ([18]), abbreviated JPTN, is a pair v = (¥, R), where ¥ is a PTN
and R, the set of spontaneous jumps of v, is a binary relation on the set of markings of .
In what follows the set R of spontaneous jumps of JPT N’s will be assumed recursive, that
is for any couple (M, M’) we can effectively decide whether or not (M, M’) is a member
of R. If v has finitely many jumps then we say that v is a finite JPTN, abbreviated
FJPTN.

Let Y € {JPTN,FJPTN}. As usual one can define an mY (mY f, imY, ImY f,
PmY, PmY f, resp.) by adding an initial marking (a set of final markings, a labelling,
a A-labelling, resp.) to Y. In fact, all remarks about Petri nets equally hold for jumping
Petri nets. Pictorially, a jumping net will be represented as a classical net. Moreover, the
relation R will be separately listed.

Let v be a jumping net. The transition ¢ is j-enabled at a marking M (in v), abbreviated
Mt)., ;, iff there exists a marking M; such that M R*M;[t)s (¥ being the underlying net
of v and R* the reflexive and transitive closure of R); if ¢ may occur at M then it can
yield a new marking M’, abbreviated M[t).,;M’, given by MR*M[t)s My R*M', where
M,, M, are markings of 4. The notions of transition j-sequence and j-reachable marking
are similarly defined as for Petri nets (we set M[A).,;M’ whenever M R*M'). The set of
all j-reachable markings of a marked JN v is denoted by [M,), ; (M, being the initial
marking of 7). The notation ”[-),,;” will be simplified to ”[-);” whenever v is understood
from the context.

Jumping nets can be considered as generators of languages in the same way as classical
nets, by changing ”[-)” into ”[-);”. For example, if v = (£, R, My, M, 1) is an *mJPTN,
then the language generated by v is L(y) = {{(w)jw € T* A (IM € M : My[w);M)}.
Thus, RXf (RX, RX?* resp.) will denote the family of free X-type Jumping Petri net
languages (X-type jumping Petri net languages, arbitrary X-type jumping Petri net lan-
guages, resp.), for any X € {P, L} For finite jumping nets, the corresponding family of
languages will be denoted by RXE | (RXgy,, RX},, resp.). For any X € {P, L} we have
Xf C RX{, € RXf, X C RXsn € RX, X* € RX}, C RX™.

Some jumps of a F'JN can be never used. Thus we say that a ‘marked finite j jumping
net «y is R-reduced if for any jump (M, M") of v we have M # M', M € [M,)., ;, and there
are some final markings of 4 which are j-enabled from M’ (if 4 has final markings). As

168

the reachability problem for FJN’s is decidable ([18]), for any marked F'JN v we can
effectively construct (modifying only the set of jumpings of v) a marked FJN %' such
that 4/ is R-reduced and it has the same computational power as 4. All finite jumping
nets in this paper will be considered R-reduced.

2 Jumps and Labellings

In this section we show that the jumps can ”simulate” the labelling of nets. Then we use
this result to prove that the power of JPT N’s equals the class of recursively enumerable
languages. In the case of jumping nets with finite state space the connection with regular
languages is made.

Theorem 2.1 For any X € {P,L} we have RXf = RX = RX*.

Sketch of Proof We prove only the case X = L, the other one being similar to this.
The inclusion RLf C RL follows from definitions. Conversely, let L € RL. There is an
ImJPTNf v = (X,R, Mo, M, 1) such that L = L(y). Let £ = (S,T; F,W). Without
loss of the generality we may assume TN{l(t)[t €T} =0. Let Ty = {t e TV € T, t #
= It)#It)}CT.

If Ty = T we consider v/ = (X', R, Mo, M), where ¥’ is obtained from ¥ renaming
each transition ¢ by I(t). +' is an mJPTNf and L(y') = L. If Ty C T, we construct
v = (3, R, M(’,,M') as described bellow. We partltlon theset 7o =T —Tyin k >1
subsets, T, = T} U --- U T¥, such that for any i, 1 < i < k, the set T} contains those
transitions of ¥ which have the same label; let a; be this label. We have a; # a; for any
i # j. The set of transitions of ¥’ will be 7" = I(T}) U T, U {ay, .. ak} The basic idea
is: when a transition t € T} occurs in 7, its effect is simulated in v’ by the transition
I(t) € I(Ty); when a transition t € T}, 1 < i < k, occurs in 1, its effect is simulated in 7'
by the relation R' and the transition a;. The transitions of T5 will be blocked forever in
the net 4.

We consider now the second equality. The inclusion RL C RL” follows from definitions.
Conversely, let L € RL*. There is an 'mJPTNf v = (%, R, Mo, M, l) such that L =
L(~). Without loss of the generality we may assume that 7' N {I(t)|t € T} = 0, T being
the set of transitions of 4. Let Ty = {t € T|I(t) # A\}. We have T; C T.

T, = T then ~ is an ImJPTNf and hence L € RL. If T, C T we construct an
ImJPTNf~ = (¥, R, My, M',l') as follows. ¥’ will have the same transitions and places
as X excepting a new place s’ which will be used to block all transitions in T = T — T;
their effect will be simulated by the relation R'. O

Theorem 2.2 RLf = RL = RL" - Lo.

Proof The equalities RLf = RL = RL” have been already established. The equality
with the set of all recursively enumarable languages can be obtained as follows. In [18]
it has been proved that jumping Petri nets can simulate inhibitor nets (which have the
power of Turing machines). As a consequence, L, C RL*. Now we prove that RLf C .
Let v = (X, R, My, M) be an mJPT N f. We show that there is an algorithm A such that
for all w € T™ we have:

w € L(y) iff A beginning with the input w it will eventually halt accepting w.

169

First we have to remark that w € L(«y) iff there is a computation in 7 of the form:
MOR*M(’)[wl)MlR+M{ cos Mk_1R+M]’C_1[’wk)MkR*M EM,
where wy,...,wx (k > 1) is a decomposition of w in non-empty words, that is w =
wy - - - wy and none of w; is empty. All computations as the above one will be called
terminal computations in . A terminal computation can be written as a (formal) string
(Mo, Mawy(My, M) - (Mg, My Y (M, M),

where (Mo, M{), (Mg, M) € R*, (M1, M]),...,(Mk-1,M}_;) € R* and wy,...,w; € T*
(the empty transition sequence is identified by a string of the form (MoR*M{)). It is clear
that not any string as above describes a terminal computation in 4. But if we have such
a string we can effectively decide whether or not it describes a terminal computation in
v. Now we remark that R* is recursively enumerable (R is recursive) and consequently,
we can enumerate R*, ro,71,...,7p,..., (for any n > 0, r, is a couple (M, M’) satisfying
MR*M').

Any w € T™ has finitely many decompositions w = w; -+ -wy (k > 1) with w; € Tt for
all ¢, and let dy,...,d, (m > 1) be all these decompositions. For any decomposition d;
(1<i<m),d;: w=w---wy, we consider the N-indexed sequence S; defined by:

e consider first all strings obtained from d; and ry as above (in this case we have only
one string row;rg - - - ToWk,To);

e consider then in an arbltrary but fixed order all strings as above obtained from d;
and ro,r; (for example, row;rg -« - row, 7 is such a string);

e and so on.

We obtain, using all decompositions of w, m sequences S; : ¢[*, ¢y, ...cpr,. 1 <i<m.
Now, the activity of the algorithm A on the input w € T™ can be descrlbed as follows:

1. A computes all decompositions of w; let dy,...,d, (m > 1) be these decompositions;
2. A searchs the sequences 5, ..., Sy, (as above) in the order
ci,cf,...,c{",cé,cg,...,c;“,...

3. for a string ¢ (i > 1, 1 < j < m) the algorithm A can effectively decide whether or
not cf describes a terminal computation of w in . If this is the case, then A halts
with the answer ”"w is a member of L(7)”; otherwise, A will continue the searching.

It is easy to see that A halts on the input w iff w € L(y). We conclude that L(y) € Lo
and so, RLf C £,. Combining this inclusion with the other one we obtain the theorem.
]

3 Characterization Results and Consequences

In this section we focus on finite jumping nets. We shall prove that any language L €
RLf, (RLfn, RL},, resp.) can be represented as L = o(L'), where L' is a regular
language and ¢ is a substitution with A-free languages. Similar results hold true for
P-type jumping Petri net languages.

Theorem 3.1 For any [€ RLY (RLgy,, RL},, resp.) there exist a language L' € L3
and a substitution with \-free languages @ from alph(L') into LY (L, L, resp.) such that
L =p(L).

Proof Let L € RLE . Thereis an mFJPTNf v = (Z, R, My, M) such that L = L(v).
We construct an finite automaton with A-moves, A = (Q, 1, 6, g0, Q¢), as follows:

170

(i) Q@ = {Mo} Udom(R)U cod(R)UM, g0 = My, Qs = M;
(ii) I = {ap,m|M', M € Q and M is reachable from M’ in ¥ by a non-empty
sequence of transitions};
(i) 6 : @ x (IU{A}) — Q is given by: 6(M',aprm) = {M} if apprr € I, 6(M, A) =
{M'|(M,M') € R}; it is undefined otherwise.
Let L' = L(A) and ¢ : alph(L') — Lf given by ¢(apm) = L(M', M) — {)}, where
L(M', M) is the language generated by the mPTN f (£, M',{M}).

“We have L’ € L3. Let us prove that L = p(L'). First, A € Liff A € L’ and hence A € L iff
A € o(L'). Let now w € L, w # A. There is a decomposition of w, w = w; -+ - W41, M 2
0, such that MoR*Mj[w)sMiR*M] ... R* M} [wmi1)sMm1 R*M], ., € M, where M;
and M are markings of v and w; # A for any 0 <7 <m + 1.

The sequence u = an, M, aM] M, - - - AMY, My determines a unique path, excepting A-
moves, from My to M;, ., in the automaton A; hence u € L. For any 4,1 <:<m+1,
we have w; € L(M]_,, M;) — {)\} which shows that w € ¢(u), i.e. w € ¢(L’). Thus the
inclusion L C ¢(L') is proved. The other inclusion can be analogously proved.

The case L € RLgy, can be simply settled starting from the remark that if L = L(v),
v = (%, R, My, M, 1), then L = I(L(v')), where 7' = (X, R, Mo, M). Now, there exist a
regular language L' and a substitution with \-free languages ¢ from alph(L’) into Lf such
that L(y') = ¢¥(L'). Define ¢ = [09 which is a substitution with A-free languages, and
obtain L = ¢(L').

The previous idea does not work for the family RL , because ! is an arbitrary labelling
function and, for some a, ({0 %)(a) could contain A. But we will modify the construction
in the case of RLE by setting L‘a(aMﬁl”)_l:, (L(M',M)) — {A}, for any apvm, and
adding to the automaton A the arcs (M, M) labelled by A whenever there exist in A
the arcs (M, M') and (M,) labelled by A and (M’, M) labelled by aprar and A €
I(L(Z, M’,{M})) (we mention that Petri net languages are recursive languages ([11]) and
so we can effectively decide whether or not A is a member of such language). It is easy to
see that the theorem holds also true in this case. O

The proof of Theorem 3.1 is effective. This fact permits us to show that terminal jumping
Petri net languages are recursive.

Corollary 3.1 RLj, C L.

Proof We show that the membership problem for the family RLg, is decidable. Let
v = (X, R, My, M, 1) be an "mFJPTN f, T the set of its transitions and V' the range of [.
From Theorem 3.1 it follows that we can effectively compute a regular language L' (given
by a finite automaton) and a substitution with \-free languages ¢ : alph(L’) — L such
that L(y) = ¢(L'). Let w € V*. Since ¢ is a substitution with A-free languages we have:

- if w = A then w € L(v) iff w € L'

-ifw# X w=a-a, (n > 1), then w € L(y) iff there exist w = by---b, € L'

(1 <m < n)and u; € p(b;), 1 <i<n,such that |u;| <nand w=uy -+ Un.

Consequently, the membership problem for L(«y) can be reduced to the membership prob-
lem for a regular language and for some arbitrary Petri net languages. As the arbitrary
Petri net languages are recursive ([11]) we conclude that the membership problem for
RL}, is decidable. O '

171

Corollary 3.2 RLg, C £;.

Proof For any language L € RLg, there exist a regular language L and a substitution
with A-free languages ¢ from alph(L') into L such that L = ¢(L'). But L C £, ([11]) and
L, is closed under substitutions with A-free languages, from which the theorem follows.
O

The converse of Theorem 3.1 holds true for labelled or A-labelled jumping nets.

Theorem 3.2 If L € L3 and ¢ is a substitution from alph(L) into L (L, resp.) then
@(L) € RLgy (RLg,, resp.).

Sketch of Proof Let L € L3 and ¢ : alph(L) — L. There is an InPTNf ~ =
(X, Mo, M, 1) such that L(y) = L. Moreover, [My) is finite. Let alph(L) = {ay,...,a,},
n 21, and L; = ¢(a;), 1 < i < n. There exist the InPTNf v = (Z;, Mi, M;, 1)),
1 <1 < n, such that L; = L(v;).

Construct an ImJPTNf ~' = (X', R', M§, M', ') such that p(L) = L(v'), starting from
the following idea. The nets ¥, %, ..., X, will be subnets of ¥’ and initially they will be
"blocked”. When a transition ¢ labelled by () = a;, 1 < i < n, occurs in v then in '
the subnet X; will be relieved (by means R') and a transition sequence w in +; can now
occur in 7'. When a final marking will be reached in ¥; this subnet will be blocked again
by means of R'. O

Corollary 3.3 L € RLap (RL},, resp.) iff there exist L' € L3 and a substitution with
A-free languages ¢ : alph(L) — L (L, resp.) such that L = o(L').

A similar result as that in Theorem 3.1 holds for P-type jumping languages.

Theorem 3.3 For any L € RPff'in (RPgn, RP},, resp.) there ezist a language L' €
L3pres, a substitution with A-free languages ¢ from alph(L') into Lf (L, L, resp.), and
the languages Py and P,, a € alph(L'), such that

L = Py UUacatph(ry p(05(L'){a}) P,
(0" denotes the right derivative). Moreover, the languages Py and P,, a € alph(L’),
are finite unions of free P-type languages (P-type languages, arbitrary P-type languages,
resp.).
Proof Let v = (X, R, M) be an mFJPTN such that L = L(y). We construct an
finite automaton with A-moves, A = (Q, 1,6, qo,Qy), similar to that described in the
proof of Theorem 4.1, excepting only the sets of states anf final states which will be Q =
{Mo}Udom(R)Ucod(R) and Q; = Q. Next we consider L' = L(A) which is a prefix regular
language, the substitution ¢ as in the proof of Theorem 3.1, P, = Uo,myer P(E, M),
and By, = Unrmmert P(2, M") for any apprpy € alph(L'). Now, let us prove the
equality in theorem. Let w € L.

If w = X or the computation induced by w contains a group of jumps only at the
beginning (MoR*M{}[w)M) then w € P,. Otherwise there is a decomposition of w, w =
Wy W1, M 2 1, such that MoR* Mjw,)MiRYM] ... [wy) M, R* M! [w,11)M € N5,
where w; # A forany 1 <i<m+1. »

The sequence u = aM) M MM, - - - GM!._ M, determines a unique path (from M, to
M.,,) in the automaton A and hence v € L'. For any ¢, 1 < ¢ < m, we have w; €
L(M!_,,M;) = w(any_, m;) which shows that wy ---w,, € @(u), i.e. wy---w, € p(u) C

172

e(oarr _, Mm)(L N anry,_ M })- But, it is clear that wmiy € Fuy, and thus we

m—1Mm ’
obtain
w € (7,

m—1

The other inclusion can be analogously proved.

The case L € RLgy, (L € RL3,, resp.) can be settled as in the proof of Theorem 4.1.
We only mention that the languages P, and P, are images by the labelling homomorphism
[of finite unions of free P-type Petri net languages; that is, F; and P, are finite unions
of P-type Petri net languages (arbitrary P-type Petri net languages, resp.). O

L'){an;

m-—1?

MaDPoys s € Uscatpir) #(06(E){a}) P

it

Corollary 3.4 For any L € RPg, (RP},, resp.) there exist a language L' € Lsprey,
a substitution with \-free languages ¢ from alph(L') into L (L*, resp.), and the P-type
languages (arbitrary P-type languages, resp.) Py and P,, a € alph(L’), such that

L= PO U UaEaIph(L’) (P(a;(L,){a})Pa

Proof The family of (arbitrary) P-type languages is closed under union ([11]). O

The idea of proof of Theorem 4.2 cannot be used for the family RL%n because it is not
generally true that T; N T; = ¢ for any ¢ # 7, and it cannot be used for P-type languages
because the relation R? is, in general, infinite.

Using similar constructions as for classical Petri net languages it is easy to prove that
the families RLg, and RLj,, are closed under finite union and catenation (one can use
also the power of jumping relation in corelation with final markings). Then we have:

Corollary 3.5 RPg, C RLg,, and RP}, C RL} .
Proof We will prove only the inclusion RPg, C RLgy,, the other one being similar to
this one. If L € RPg, then L can be written as in Theorem 3.3:
o L = Po U Usealph(r) ‘P(a;(L’){a})Pa-
0r(L'){a} is a regular language and so ¢(0;(L'){a}) € RLgy for any a € alph(L’) (The-
orem 3.2).
It is well-known that P-type Petri net languages are also L-type Petri net languages

([11]), that is P C L, and so Py, P, € L C RLgy,. Using the above remark, that is RLgy
is closed under finite union and catenation, we obtain L € RLg,. O

For P-type languages the next kind of pumping lemma holds true.

Theorem 3.4 For any L € RPf\in there is a number k € N such that for each word
w € L, if |lw| > k then there is a prefizx w' of w which has a decomposition w' = zyz such
that |y| > 1 and zy™*'z € L for allm > 0.

Proof Lety = (,R,My,l) be an PmFJPTN such that L = P(y). Consider the
automaton A, the substitution ¢ and the languages L', P, and P, (a € I) as in the proof of
Theorem 4.3 (the languages Py and P,, a € I, are arbitrary P-type Petri net languages).
We have:
L = PyUUscapnizr) #(85(L){a})P.

Let ky, ko, k, (a € I) be the constants from the pumping lemmata for the regular language
L’ ([10]) and for the arbitrary P-type Petri net languages Py and P,, a € I ([4]). Consider
ky = maz{ko, k.la € I} and k = kik,. We shall prove that the number k satisfies the
theorem.

173

Let w € L such that |w| > k. If w € P, then we apply the pumping lemma for w
with respect to P, and we obtain the theorem, with w’ = w. Otherwise, there is a word
u=ay--+as € L' such that w € p(u)P,,. We have to consider two cases.

Case 1 s > k;. From the pumping lemma for regular languages, u has a decomposition
u = ujusus such that |uy| > 1 and wubuz € L' for any i > 0. Since w € ¢(u)P,, =
©(u1)p(u2)p(us)P,,, there exist = € p(u1), y € ¢(u2), 2 € p(us) and v € P,, such that
w = Tyzv. ¢ being a substitution with A-free languages it follows that |y| > 1.

From u ubuz € L' it follows that ¢(u;)[@(us)le(us)P,, C L for any i > 0. Hence,

a; =

zy‘zv € L for any i > 0, and the theorem is satisfied with w’ = w.

Case 2 s < k;. From w € ¢(a;---a,)P,, it follows that there exist w; € ¢(a;),
1 <j <s,and wsy € P,, such that w = w; - - - w,w,y;. Since |w| > k = kyky and |w| =
lwi| +... 4 |ws| + |ws41] and s < ki, there is j € {1,...,5+ 1} such that |w;| > k2 > k..

If j = s+ 1 then we apply the pumping lemma for the language P,, and we obtain the
theorem with w' = w. ‘

If j = 1 then it is easy to remark that L(M{,M;) C P,, where a; = amym, and
MoR*Mj[wy > M;. Thus wy € Py, and now we have to apply the pumping lemma for
the word w; with respect to Py. Then w; = z3y,2; with |y;| > 1 and z,yi2; € P, for any
¢ > 1. Consider w' = wy, £ = z,, y = y; and z = z; and the theorem is satisfied.

If1 < j < s+ 1 then let us suppose that a;_; = aMJ'._Q,M,-_l and a; = am!_, .M;-
Then, ‘P(aj) = L(M;—I’Mj)'z L(Z’M;—lr{Mj}) and Paj—1 = U(M_,'_1,M)€R+ P(Z1M)
Since M;_R*M;_, it follws that o(a;) C P,;_, and @(a1)---p(aj_1)P,,_, € L. Thus
wy - wi—aw; € p(ay) -+ p(a;_1)P,;_,, and now we have to apply the pumping lemma for
the word w; with respect to P,;_,. Then, w; = z;y;z; with |y;| > 1 and z;y}2; € F,;_, for
any ¢ > 1. Consider w’' = wy---w;, ¢ = wy -+ w;_12;, y = y; and z = z; and the theorem
is satisfied in this case too. O ‘

4 Comparisons Between Families of Languages

The first remark of this section is that any family of L-type jumping Petri net languages
is closed under ”*” (the net jumps from any final marking to the initial marking). This
fact also holds for the family RPf, RP, RP*, but not for RP%n, RPs, RPf‘in. The
closure under ”*” of the family RP§, can be proved using the following idea. At any
reachable marking of the net some A-transitions are enabled. These transitions will reset
the current marking to the zero-marking 0 (all the components are 0) and then, a jump
from O to the initial marking will restart the net. The non-closure under Kleene star of
the families of Petri net languages leads us to the following results:

Theorem 4.1 (1) P* C RPg,;
(2) Lf c RL{ , L c RLg,, L’ C RL}, .
Theorem 4.2 L3 C RLﬁn.

Proof The inclusion follows from the fact that £3 = RL(fss)§, C RLE ; it is strict
because L3 UL’ C RLY; and the families £3 and L’ are incomparable (11). o

Theorem 4.3 L = {a™" | n >0} ¢ RLE .

174

Proof Suppose by contradiction that L € RLgn. Then there exist a regular language
L’ and a substitution with A-free languages ¢ : alph(L') — Lf such that L = o(L').

Casel L'is 1nﬁn1te There exist u € L' and a decomposition of u, u = u;usu3 such that
lup| > 1 and wyubuz € L' for any ¢ > 0 (the pumping lemma for regular languages).

Since p(uiubus) = @(u1)[p(uz)]'w(us) C L and up # A, it follows that there exist
wy € @(uy),ws € p(ug) and ws € p(uz) such that wywiws € L for any ¢ > 0. It is easy to
see that no matter how wy,w,, ws (wy #) are chosen we cannot have wywiw; € L for
any ¢ > 0. ‘

Case 2 L’ is finite. If so, let L' = {uj,...,ux}, k£ > 1. Since L is infinite, there
exists j € {1,...,k} such that ¢(u;) is infinite. Let u; = a;...am;, m; > 1, and
o(u;) = {ab",a’2b,...}, where 0 < iy <4y < Then thereis ¢ € {1,...,m;} such
that ¢(a;) is inﬁnite. ‘We have to consider now the next cases.

If p(a;) = {a**,a*?,...}, where 0 < oy < 03 < ..., then it is easy to see that no matter
how the words in cp(a,) are catenated to the left or to the rlght we cannot obtain only words
in ¢(u;). Similar reason tells that ¢(a;) cannot be {67, 8%, ...}, where 0 < B, < B, <

As any subset of (u;) of cardinality at least two is not a member of Lf the only case
which remains to be considered is p(a;) = {a*¥%,a*2b%,...}, where o’s and fB’s are
natural numbers and there is n such that a, # Bn. There is also an p, p 9é n, such that
either a, # o, or B, # B,. A straightforward analysis shows us that no matter how the
language ¢(a;) is catenated to the left or to the right we cannot obtain only words in
o(u;j)- |
In both cases we have derived a contradiction and hence L ¢ RLE . O

Corollary 4.1 RL§, C RLgy.

Proof {a"b"|n >0} € L C RLg, and {a"b" |n <0} ¢ RLE,. O
Corollary 4.2 The families RL,, and £, are incomparable. »
Proof {a"h"|n >0} € L, — RLE, and {a"db"ec” |n > 1} € RLE, — £,. O

5 Finite Jumping Nets and Global Inhibitor Nets

We will make a connection between finite jumping nets and a subclass of inhibitor nets,
global inhibitor nets. We recall that ([9]) an inhibitor net is a pair v = (X, I), where X is
a Petri net and I € S x T such that INF = 0.

In an inhibitor net v the transition ¢ is i-enabled at a marking M, abbreviated M|t).;,
iff t— < M and M(s) = 0 for any s € {s € S|(s,t) € I}. If M[t),; then ¢t may occur
yielding a new marking M’, abbreviated M|[t),;M’, given by M’ = M + At. As we can
see, an inhibitor net has the capability to perform zero-tests on some places. A global
inhibitor net is defined as an inhibitor net performing zero-tests on all places, that is
(s,t)el = (s\t)el, Vs'eS.

Now we show that FJPTN’s can be simulated by global inhibitor nets. Let v =
(L, R, My, 1) be an FJPTN with only a jump, R = {(M, M')}. Construct the following
inhibitor net (the net is picturially represented in Figure 6.1 and the relation I is glven
by I = {(s,t')|s is a place}).

175

: P
|
| | “ow Sl
Ll \
| JF - — _] L _ 1 _ _
| . M(Sl)
I ¢
! 1A
I
I — o —
I t
I
I A
: M’(S]_) A tl
I
Figure 6.1

It is clear that ¢’ performs a zero-test on all places and so this net is a global inhibitor
net. Its activity can be described as follows:

- the transition ¢ blocks ¥ and then the transitions t},...,¢, check whether or not the

current marking covers M (if all ¢} can occur than the current marking covers M).

The zero-test performed by ¢’ checks when the current marking is exactly M (¢’ can

occur iff no token is in the net). If this is the case the marking M’ is setted for ¥.
The above construction can be easily generalized to an FJPTN with arbitrarily many
jumps. ‘ '

Now we show that any arbitrarily labelled global inhibitor net can be simulated by an
FJPTN. Indeed, let v = (X, 1, My,l) be such an inhibitor net. Assume I = {(s,t)|s €
S}, where t is a fixed transition. If I(t) = A then we can simulate the extent of change
caused by the occurrence of ¢ using the jump (0, M), where M(s) = W(t,s) foralls € S
(we recall that I N F' = 0, that is W(s,t) = 0 for all s € S). If I(t) = a # A then
we simulate the extent of change caused by ¢ using the net Figure 6.2 and the jump
{((0,1,0),(M,0,1))} (M is as above). By this jump the net ¥ will be blocked; it is
relieved after occurring the transition t labelled by @ (¢ being a new transition).

The generalization to an arbitrary global inhibitor net is straightforward.

;oI ICC , i 5
NS T t !
':OIC ll . .'
e T Ty . |
L e e e e e e e e - — J

Figure 6.2

176

Final Remarks

We consider that the extension of Petri nets allowing finite jumps is quite reasonable:
on the one hand such nets have the basic decision problems decidable and, on the other
hand the finite jumps strictly increase the power of the nets.

We close with some important open problems, in our estimation.

P1. Are the inclusions RLgan € L1, RLg, € Lree, RLan C RL3,, RPan C RLgy,
RLj, € RL3, proper or not?

P2. Are the families RPEn and RPg, closed under ”*”?

P3. Define RX{; (RXy, RX}, resp.) as being the family of X-type languages generated
by jumping nets having at most k jumps (k > 0), that is |R| < k. We have

xf ¢ Rxf ¢ Rxf , ¢ RX{,
X C RXy € RXyxy,1 € RXggp
X* ¢ RX{ C RX},; € RXj,

for all k > 1 and X € {P,L}. :
Does this restriction define proper hierarchies of jumping Petri net languages?

P4. What about the connection between F.J PT N’s and global inhibitor nets in the case
we do not allow A-transitions? '

References

[1] E. Best, C. Fernandez: Notations and Terminology on Petri Net Theory, Arbeitspa-
. piere der GMD 195, 1986. .
[2] H.D. Burkhard: On priorities of parallelism; Petri nets under the mazimum firing
strategy, Int. Conf. "LOGLAN 777, Poznan, 1980.
[3] H.D. Burkhard: The Mazimum Firing Strategy in Petri Nets Gives More Power,
ICS-PAS Report 441, Warszaw, 24-2, 26, 1980.
[4] H.D. Burkhard: Two pumping lemmata for Petri nets, EIK, vol. 17, no. 7, 1981, 349
- 362.
[5] H.D. Burkhard: Ordered firing in Petri nets, EIK, vol. 17, no. 2/3, 1981, 71 - 86.
[6] H.D. Burkhard: Control of Petri Nets by Finite Automata, Preprint 26, Sektion
Mathematik, Humboldt-Universitat, Berlin, 1982.
[7] H.D. Burkhard: What Gives Petri Nets More Computational Power, Preprint 45,
Sektion Mathematik, Humboldt-Universitat, Berlin, 1982.
[8] H.J.M. Goeman, L.P.J. Groenwegen, H.C.M. Kleijn, G.Rozenberg: Constrained Petri
nets (Part I, II), Fundamenta Informaticae, vol. 6, no. 1, 1983.
[9] M. Hack: Petri Net Languages, CSG Memo 124, Project MAC, MIT, 1975.
[10] J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and Com-
putation, Addison-Wesley, Reading, Mass., 1979.
[11] M. Jantzen: Language Theory of Petri Nets, LNCS 254, Springer-Verlag, 1986.
[12] T. Jucan, C. Masalagiu, F.L. Tiplea: Relation Based Controlled Petri Nets, Scientif
Annals of the Al I. Cuza” University, Informatics Section, Tom 2, 1995.

177

[13] W. Reisig: Petri Nets. An Introduction, EATCS Monographs on Theoret. Comput.
Sci., Springer-Verlag, 1985.

[14] W. Reisig: Place Transition Systems, LNCS 254, Springer-Verlag, Berlin, Heidelberg,
1986.

[15] G. Rozenberg, R. Verraedt: Restricting the in-out structure of graph of Petri nets,
Fundamenta Informaticae, vol. 7, no. 2, 1984.

[16] F.L. Tiplea, T. Jucan, C. Masalagiu: Conditional Petri net languages, J. Inf. Process.
Cybern. EIK, vol. 27, no. 1, 1991, 55 - 66.

[17] F.L. Tiplea: Selective Petri net languages, Intern. J. Computer Math., vol. 43, no.
1-2, 1992, 61 - 80.

(18] F.L. Tiplea, T. Jucan: Jumping Petri Nets, Foundations of Computing and Decision
Sciences, vol. 19, no. 4, 1994, 319 - 332.

[19] F.L. Tiplea: On Conditional Grammars and Conditional Petri Nets, in: Mathemat-
ical Aspects of Natural and Formal Languages (Gh. P3un, ed.), World Scientific,
Singapore, 1995, 431 — 455.

[20] T. Ushio: On controllability of controlled Petri nets, Control Theory and Advanced
Technology, vol. 5, no. 3, 1989, 265 — 277.

[21] R. Valk: Self-modifying nets, a natural extension of Petri nets, LNCS 62, Springer-
Verlag, 1978.

[22] R. Valk: On the computational power of extended Petri nets, LNCS 64, Sprlnger—
Verlag, 1978.

