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Abstract

A finance automaton is a sixtuple < X,Q,6.5,F,f >, where < ©,Q.,6.5.F > is a
finite automaton, f : @ x ¥ x Q@ — RU{—oc} is a finance function, R is the set of real
numbers and it holds f(q,a,¢') = —oc iff ¢’ & 6(¢,a). The function f is extended to
f:29 xT* x29 — RU{—oc} by the plus-max principle. For any w € ©*, f(S, w, F) is the
profit of w. It is shown that the equivalence problem of finitely ambiguous finance automata
is decidable.

1 Introduction

A finance automaton is a finite automaton with a finance function. It may be regarded to be
a model describing financial activities. In this paper, we prove decidability of the equivalence
problem of finitely ambiguous finance automata by reducing the problem to the problem of
finding integer solutions in simultaneous linear inequalities. We also study several subproblems
and present a different proof to each subproblem so that the proof is easier if the complexity
of the subproblem is easier. The paper consists of five Sections. In Section 2, we present the
definition and elementary properties of finance automata. In Section 3. we present the definitions
of a union finance automaton and a vector finance automaton each of which is composed from
a finitely many deterministic finance automata. In Section 4, first we present a proof showing
decidability of the equivalence problem of a union finance automaton and a determininistic
finance automaton. Then we show that the inequality problem of a union finance automaton
and a deterministic finance automaton is decidable. This implies decidability of the equivalence
problem of union finance automata. In Section 5. we present a method for decomposing a finitely
ambiguous finance automaton to a union finance automaton. This fact together with results in
Section 4 implies decidability of the equivalence problem of finitely ambiguous financ¢e automata.

2 Finance Automata

An alphabet is a nonempty set of symbols. A word is a finite sequence of symbols from the
alphabet. A word of zero length is called a null word and denoted by A. Y* denotes the
set of all words over an alphabet ¥, and Y% denotes the set of nonnull words. For a word.
w=a1ay---a, (n>0,a1, -+,a, € ), nis the length of w, and denoted by |w|. The cardinality
of a set A is denoted by |A|. R denotes the set of real numbers. R_,, denotes RU {—oc}.
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2.1 Basic definitions

Definition 2.1 A finance automaton (in short, an F-automaton) is a sixtuple A =<
Y,0,6,5,F, f >, where

¥ : an input alphabet, @ : a finite set of states, ¢ : a transition function
S : the set of initial states, F' : the set of final states, f : a finance function

Thus < £,Q,6,5,F > is a finite automatopn. A word w € X* is accepted by A if §(5,w) € F.
The finance function f is a mapping from Q XXX Q to R_o (f: @ XX XQ — R_.). f satisfies
the following.

‘v’(p,a,q) € Q X ¥ X Qa q ¢ 6(]),(1) = f(p’G'VQ) = -0

In the rest of the paper, a finance automaton is called an F-automaton.

Definition 2.2

(1) fisextendedto f: @ X X" X @ — R_o and to f: 29 x ©* x 29 — R_. in the following
way.

(1.1) ¥p,q € Q, f(p,Aq) =0 (ifp=4q), f(p,A,q) = ~c0 (if p# q)
(1.2) Vp,g € Q, Yw € ¥*, Va € L,

f(p,wa,q) = max{f(p,w,q) + f(¢',a,9) | ¢ € Q}

Here, for Vi € R_,, max{i,—oco} =7 and ¢ + (—00) = —00.
- (1.3) Vit C Q, Yw € T*, f(t,w,t') = max{f(p,w,q) | pEt,get'}

(2) The set of words accepted by A is denoted by L(A) : L(4) = {w € £* | §(S,w) N F # 0}

(3) Tow F-automata A; and A, is said to be L-equivalent if L(A;) = L(Ay).

(4) For Yw € X*, f(S,w, F) is the profit of w (by A). The profit of w is sometimes denoted
by F(w,A) (= f(5,w,F)). »

(5) Let Aj and As be two F-automata over the input alphabet ¥.If Vw € ¥,

(5.1) If for any w € ¥*, it holds F('lD,A]) = F(w,As), then A; and A, are said to be
equivalent and write A; = As.

(5.2) If for any w € ¥*, it holds F(w, A1) > F(w, Ay), then A; is said to be equal or greater
than A,, and write 41 > Aj.
(6) An F-automaton A is deterministic if the following hold.
For Vg € Q, Va € X, it holds |6(¢,a)| < 1 and |S| < 1.
When A is deterministic, for Vg € Q, Ya € X, V¢’ € é(q,a), we write §(¢,a) = ¢'.

(7) For any m > 1, m deterministic F-automata A; =< X,Q;,6;,{si}, Fi, fi > (1 < ¢ < m)
- are said to be disjoint if for V7,k(1 < j <k <m), Q; N Qk = 0.

It is shown that two deterministic F-automata A; =< X,Q1,601,{s1}, F1, fi > and Ay =<
¥,Q2,62,{s2}, Fo, f» > are equivalent iff for all w € ¥* with at most 2 X |Q1] X |Qa2l,

f{s1},w, F1) = f({s2},w, Fy) [4]-
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3 Union F-automata and vector F-automata

In this section, from a finite set of deterministic F-automata, we define a union F-automata
whose set of states is the union of the set of each deterministic F-automaton, and a vector F-
aotomaton whose set of states is the direct product of the set of each deterministic F-automaton.

3.1 Union F-automata

Definition 3.1 For disjoint m(m > 1)

deterministic F-automata, 4; =< X,Q;,6;,{s;}, F}, f; > (1 < i < m), a union F-automaton
AU---UA, =< X,0,6,5,F, f > is defined as follows.

(1) Q:QlU"‘UQT)"HS:{51,"',3m}aF:F1U"'UFm
(2) For Vi(1 <i<m), Vg€ Qj, Va€ X,

6(g,a) = 6i(q,a) and f(q,a,6(q,a)) = fi(¢,a,b:(q,a))

Propsition 3.1  Let A; =< X,Q;,6;, {s;}, Fi, i > (1 < i < m) be disjoint m(m > 1) deter-
ministic F-automata. Then for Vw € £*, it holds

F(w,AyU---UAp) = max{F(w,4;) |1 <i<m}

[Proof] ForVw € X*, F(w, A1U---UAp) = f(S,w, F). By definition, for Vt,¢' C Q, Yw € ¥*,
it holds f(t,w,t') = max{f(p,w,q) | p € t,q € t'}. Thus

(S, w, F) = max{f(si,w,pin) | 5; € $,pin € F;,1 < i <m}
max{F(w,A;) |1 <i<m} '

Il

Hence F(w,A; U - U Ap,) = max{F(w,4;) |1 <i< m}. ]

3.2 Vector F-automata

Definition 3.2 For disjoint m(m > 1)
deterministic F-automata A; =< ¥,Q;,68;,{si},F;, f; > (1 < i < m), a vector F-automaton
V(A1 -, An) =< 5,Q,6,5,F, f > is defined as follows.

(1) Q:Ql X"'XQm-, 5:{(317"'7'5771)}7FZF1 ><"'X}'—’m
(2) For Y(p1,- - ,pm) €EQ1 X -+ X Qmm,Va € T,

6((]71’ T 7pm)7a) = (61(171’“)7 Tt 76n7,(pmaa))
f((pla" '7Pm)7a75((P17‘ "7pm)7a‘)) = max{fi(pi7aa§i(pi7a)) I 1 < 2 S m}

Proposition 3.2 Let 4; =< %,Q;,6;,{si},F, fi > (1 < i < m) be disjoint m(m > 1)
deterministic F-automata. Then for Vw € £*, w = ajaz---a,(n > 1,a1,---,a, € I), there
exist foreach 1 < j <n, 1 <i<mand p;j_1,pi; € Qi with p;j = 6;(pij_1,a;) € Qi(1 < j < n)

such that it holds F(w,V(A4y,---,An)) = 2 i=1max{fi(pij—1,a;,pi;) | 1 < i< m}.
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[Proof] For Vw € T*, |w| = n, it holds F(w,V(A1, -+, Am)) = f(S,w, F). By definition, for
V(p]j—la"'7pmj-—1)7(plj" 7pm_7) € Ql X e X va Va € 27

F((1jm1y > Pmi—1)s @ (D1 Pmj)) = max{fi(pij—1,a,pi;) | L <i<m} =b; (1<7<n)

It also holds for Vp,q € @, Vv € £*, Va € X,

f(p,va,q) = lllaX{f(p,'v,q’) + f(dha,9) | ¢ € Q}

Thus
f(Sw,Fy=b+---+b, = ij = Zmax{f,-(pij_l,aj,pij) |1 <i<m}
j=1 1=1
Hence F(w,V (A1, An)) =Y max{fi(pij-1,a;,pij) | 1 <i<m}. U

i=1

3.3 Properties of union F-automata and vector F-automata

It is shown [4] that for disjoint m(m > 1) deterministic F-automata 4; =< X, Qi,0i,{si}, Fi, fi >
(1 < i < m), the union F-automaton A;U---UAp, and the vector F-automaton V(Ay, -+, An)
are equivalent iff for any w € £* with length less than or equal to (m + 1) X Q1] X -+ X |@m],
it holds

F(w,A;U---UAp) = F(w,V(Ay,--+,An))

4 The equivalence problem of union F-automata

In this section, we show the equivalence problem of union F-automata is decidable.

4.1 The equivalence problem of A; U---U A, and A4y

We shall first present an algorithm for deciding whether for n > 1, a union F-automaton A;U---U
A, and a deterministic F-automaton A+ are equivalent. Let n > 1 and foreach1 <i<n+1,
A; =< 8,Q;,0;,{s:}, Fi, fi) be a deterministic F-automaton.

Definition 4.1 A finite automaton ['(Aq, -+, Any1) =< 5,0, 6, {s}, F > is defined as follows.

(1) Q:Q1X"'XQn+1, S’—‘(Sl,-'-,.sn_l_l), F:F1X"'XF7L+1

(2) for Ya € X, Y(q1, **qn41) € Q1 X -+ X Qny1,

6(((117 e 7q’n+1)7 (l) = (51(‘11,0)7 T 6.n+1(qn+11 CI,))

Proposition 4.1 Assume that Ay U --- U Ay = Apy. Then for Vz,z € ¥* y €
Y, (g1, qnt1) € @, if 6(s,2) = 6(s,zy) = (q1,*-,qn+1) and 6(s,zyz) € F, then there
exists 1 < i < n for which the following (1)-(3) hold.
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(1) F(zyz, A1 U---UA,) = F(zyz, A;) = F(zyz, Ant1)
(2) F(zz,A U---UA,) = F(zz2,A;) = F(z2,An+1)
(3) filai,y,4) = max{fi(¢;,y,¢;) | L < < n} = fat1(gns1, ¥ 1)

[Proof] We put ¢ = max{fi(¢;,¥.¢;)|1<i<n}and b= F(azyz,A; U---UA,). Define two
sets X Ybe_{L|1<L<nandfl(ql,y g)=ua}, Y ={i [1<1<nandF(ly~., ;) =b}.
Since Ay U---UA, = A4, it holds b = F(ayz, Apy1). Put ¢ = max{F(zyz,A;)|i € .X }, and
define a set W by W = {i € X | F(zyz, A;) = ¢}. We consider the following two cases.

(i) b=c. Itholds X NY =W and forany : € X NY, a = fi(gi,y,q¢;) and ¢ = F(ayz, A;) =
F(zyz,A1U---UAy). It is clear that F(z2,4;) =c—a = F(zz,A1U---UA,). Moreover
Ay U---UA, = A,41. Hence for any ¢ € W, (1)-(3) hold.

(ii) b # ¢. Clearly b > ¢. Put d = max{f;(¢;,y,4:) | © € Y}. Since b > ¢, it holds
d < a. For each k > (b—d+ a — ¢)/(a — d), consider the word w = zy*z. Then for
each 1 ¢ W, F(mykz,Al U---UAd,) = F(zyl”L,A) Since F(a2z,Ap41) = Flaz, A1 U

U Ay), F(ez,Apy1) > F(zz, A;). Together with this fact and F(zyz, Apt1) = b, we
have fr41(¢n+1-Y,¢nt1) < a. If we consider a sufficiently large £, it would hold for each
i€ W, F(zy*z,Apny1) < F(ay*z, A;) = F(zy*2,A1 U---U A,). This is a contradiction to
Ai1U---U A, = Apy1. Thus the case b # ¢ is impossible. O

We shall present a necessary and sufficient condition for4;U---UA, and 4,41 to be equivalent.

Theorem 4.1 Let A; =< ¥,Q;,6;,{si}, Fi,fi>(1<i<n+1,n>1) be n + 1 deterministic
L-equivalent F-automata, and let I'(Ay,---, Ap4+1) be as in Definition 4.1. Then the following
four conditions are equivalent.

i

(1) Al U---u An = An+1
(2) For any w € ¥, F(w,AyU---UA,) = F(w,Apy1)
(3) For any w € ¥* with length <3 x (n+1) X |@1] X -+ X |@n+1], the following (A) holds.

(A): For Va,y,z € %, (¢1,"*,qny1) € Q, if w = zyz, 6(s,2) = 8(s,2y) = (g1.-**+¢n)
and 6(s,zyz) € F, then there exists 1 < ¢ < n such that the folowing (3.1)- (3.3)
hold.

(3.1) F(ayz,A1U---UA,) = F(ayz, A;) = F(ayz, Any1)
(3.2) F(az,A1U---UAp) = F(zz,Ai) = Fzz, Ant1)
(3.3) filgiry,qi) = max{fj(gj,y,4;) | 1 <J < n} = far1(@nt1s Y5 gns1)

(4) For any w € ¥*, the following (B) holds.

(B) For V$7ysz € E*a (qlv"'7Qn+l) € Q7 if w= TYz, 6(571') = 5(571&/) = ((Il*-qn)
and é(s,zyz) € F, then there exists 1 < ¢ < n such that the following (4.1)- (4.3)
hold.

(4.1) F(zyz, A1 U---UAy) = F(ayz, A;) = Fzyz, Ans1)
(4.2) F(zz,AyU---UA,) = Flaz, A;) = F(az, Antq)
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(43) fl(%ay7q1) = maX{fj(‘]jaZ/ij) | 1 S .] S n} = fn+1(Q'n+17y7 qn+1)

[Proof] (1) & (2) is clear. (1) = (3) follows from Proposition 4.1. (3) = (4). Assume (3)
holds. We shall prove (4) by induction on |w|. Put ¢ =3 x (n+1) X [@Q1] X -+ X |@n41|. When
|w| < ¢, (B) holds. Let k > ¢, and assume that for |w| < k, (B) holds. Consider the case |w| = k.
Assume that for w = zyz and (g1, -+, qn+1) € @, it holds é(s,z) = 6(s,2y) = (q1,---,¢n) and
§(s,zyz) € F. Since |w| > ¢, it holds |z| > ¢/3, or |y| > ¢/3 or |z| > ¢/3.

First consider the case |y] > ¢/3. By the definition of ¢, y has a decomposition y =
YoU1 - Ynt2s YosUnt2z € S yi € BT(1 < i < n+ 1) such that for some (p1,-+,pnt1) € @,
§(s.ayo) = 6(s,ayoyr) = -+ = 6(s,2Yoy1--Ynt1). For each 1 < @ < n+ 1, put v; =
Y1 Yi—1¥i+1 - Yn+1-

Consider the case i = 1. v; = yays- -+ Yns1- By the inductive hypothesis, for 2] = 2yo, ¥j =
V1, 2z} = Ynt27, there exists A;; to which (B) holds. The set of such A;, is denoted by Xi1.
Next for 2, = Yo, Y5 = Y2, 25 = Y3¥a - - - Ynt272, there exists A;, satisfying (B). The set of such
A;, is denoted by Xi,. Clearly X7 C X1;. Each A; belonging to X;2 has the maximum profits
at Y2, Y3Ya - Ynt1, and TYoYny22z. Then for 25 = xyo, Y3 = ¥3, 23 = Yays - - Yn+272, there exists
A;, satisfying (B). The set of such A;; is denoted by X13. Then X3 2 Xi2. By continuing this
argument, each A; belonging to X1, has the maximum profits at y2, yaya - Yn+1, and 2YoYnt22-

In the same way, for each 2 < i < n, the set X;, can be defined. Then there exist 1 < p <
g <n+1and 1< r < nsuchthat 4, € Xp, N Xy, holds. This implies A, has the maximum
profits at y1,¥2,**, Ynt+1, and TYoYn+22, i-€., A, satisfies (B).

When |z| > ¢/3, if y = A, then we consider @ = xgZ1 - Tn41Znt2, 6(5,20) = 8(s,2021) =
cooo= 6(s,2021Tpy1) (z; € BT,1 < ¢ < n+4 1) and the argument is similar to |y| > ¢/3.
If y # A, we consider z = ToT1 - TnTnyp1, 0(5,%0) = 6(s,z01) = -+ = 8(8, 0Ty Tp)
(z; € 2¥,1<i < n) and y (in sum, n' + 1 subwords), and the argument is similar to |y| > ¢/3.
The case |z| > ¢/3 can be handled in the same way. Thus (3) = (4) is proved. (4) = (2) is
clear. This completes the proof of Theorem 4.1. O

The following theorem is now clear.

Theorem 4.2 Given
n + 1 L-equivalent deterministic F-automata A; =< %,Q;,6;,{si}, Fi, fi > (1 <i < n+1),
one can decide whether or not A; U---U A, = A,41 holds.

4.2 The equivalence problem of A;U---UA,, and A1 U---UA,4,

In this subsection, we shall show decidability of the equivalence problem of union F-automata.

4.2.1 Preriquisites

Proposition 4.2  For m + n(m,n > 1) deterministic
F-automata Ay =< X, Q, 0k, {sk}, Fx, ft > (1 < k < m + n), the following two conditions
are equivalent.

(1) A1U - UAp = Appr U- - Udppn

(2) For each 1 <3 < m, A4; < A1 U -UApyn and for each m+1 < 57 < m + n,
A <A U---UA,
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4.2.2 The inequality problem of union F-automata

Definition 4.3 The following problem is called the inequality problem of union F-automata.

Problem input: n+ 1(n > 1) deterministic F-automata
Ai =< 5,Q:,6,{s:}, I, fi > (1 <i<n+1).
output : if AyU---UA, > An41, then "yes”. ’
if AyU---UA, # A,yq, then "no”.

Definition 4.4 For n + 1(n > 1) deterministic F-automata A; =< ¥,Q;,6;,{s:}, Fi, fi >
(1 <i<n+1), define a deterministic finite automaton II(A4;,---,Ap41) =< X,Q,6, {s}, F >
as follows.

(1) Q=Q1 X - X Qny1, s= (51, ,5041)

(2) ForVa € &, Y(p1,-+-,Pn+1) € &,

6((]’17 Tt 1pn+1)aa’) = (61(p17a’)7 ST, 6n+l(pn+l7a))

B) F=(FixQax - XQn1)U(Q1 X Fy X Q3 XX Qry1)U---U(Q1X - XQnxFryy)

Proposition 4.3 For :
any n + 1(n > 1) deterministic F-automata 4; =< X,Q;,6;, {s:}, Fi, fi > (1 <

<1< n41l),
it holds L(H(A], ey, An+1)) = L(A]) U---u L(An+1)
Proposition 4.4 For
any n + 1(n > 1) deterministic F-automata A; =< X,Q;:,6;,{s;}, Fi, fi > (1 < ¢ < n+ 1),

if AyU---U A, > Apt1, then it holds L(II(Ay,-+-,A,)) 2 L(Any1)-

Let n > 1, and A; =< ¥,Q;,6;,{s:i},Fi, fi > (1 £ 1 < n+1) be n+ 1 deterministic F-
automata. As in Definition 4.4, define the deterministic finite automaton II(A;,- -, Apt1) =<
2,Q,6,{s}, F >.

Definition 4.5 For any w € X7T, define a deterministic finite automaton A(w) =<
E,Q(w),é(w),{s}, F(w) > as follows.

(1) Q(w) = {(p1,--pas1) | for some v,y € S*,w = ay and (p1,- -, Pat1) = 8(s,2)}

(2) 6(w) is a mapping from Q(w) x ¥ to Q(w) ( §(w) : Q(w) x ¥ — Q('w)), and for
Y(p1,- . Pat1) € Q(w) and Va € X, define (2.1)-(2.2).

(2.1) If for some z,y € £*, it holds w = xay and (p1,--+,pns1) = 6(s,2), then

§(w)((p1-- - Pat1),a) = 6((p1, -+ s Prt1), @)

(2.2) Otherwise é(w)((p1,--*,Pnt1),0) =0

(3) F(w) = {6(s,w)} N F
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Definition 4.6 Define a set S(Ay, -+, Apy1) by @ S(A1, -+, Ant1) = {A(w) | w € T}

Definition 4.7 For m > landl <r < m, put p, P, = m(m - 1)---(m — (r — 1)).

Definition 4.8 Define an integer -I(A1,- -, A,41) as follows, where m = |Q] x |Z|.

I(Ala"'aAn+1) = (mPI +m P2+"'+m P'm + 1)('@' + 1)
Definition 4.9 Let w € £* and A(w) =< I, Q(w), 8(w), {s}, F(w) >. For Vp € Q(w), i >
1, a1,--+,a; € X, if it holds é(w)(p,ay---a;) = pand i = 1 or for 0 < j < k < 4, it holds
S(w)(p,ay---a;) # 6(w)(p,ay---ag), then (p,ay - --a;,p) is called a minimal cycle of A(w).

Lemma 4.1 Forany w € X%, A(w) has at most ,, P 4+, Py + - - - 4+, P, minimal cycles. Here
m = Q| x |Z|.

[Proof] Let ¢ = (p,a;---a;,p) be a minimal cycle of A(w). If i = 1, then the
number of such ¢ is at most, 4 = m. If ¢ > 2, then for each ¢, put #(c) =
((p,a1),(6(p,a1),az2),---,(6(p,a1---ai—1),a;)). Since ¢ is a minimal cycle, each of ¢ pairs of
t(c) is distinct. Thus 7 < m and the number of minimal cycles of length i is at most ,, P;. Hence
the total number of minimal cycles is at most ,, Py 4+, Po + -+« +m Pp. O

Proposition 4.5  S(A;, -+, Ant1) = {A(w) | w € Bt and |w| < I(Ay,--+, Ant1)}

[Proof] Put B = {A(w)]|w € Xt and |w| < I(Ay,---,Ans1)}. We shall prove by induction
on |w| that for Vw € Xt, A(w) € B. When |w| < I(A;,-++,An41), the assertion is clear.
Assume that for |w| with length less than k + 1, the assertion holds, and consider the case
wl=k+12>I(A1,-,Ant1). Pt m = |Q| X |Z|, ¢ = Po4+m Po+ -+ +m Py + 1. Since
|w] > I(A1,---,Ant1), there exists a decomposition of w, w = wywz -+ wywy41 With |w;| =
@] + 1(1 < i < q). Since |w;| = |Q| + 1, in the path of A(w), (s, w1y -+ wywy41,6(s, w)), in
each part of w;, there exists a minimal cycle (p;, v;,p;). Here w; is decompsed as w; = z;v;y;.

Namely in A(w), there exists a path

(3»-7711[717 V1,P1,Y1%2,P2,V2,P2, Y223, -, Yq-12q,Pgy Vg, Py, quq-f-lyé(sv ’lU))

The number of minimal cycles is at most ¢ — 1 by Lemma 4.1. Thus for some 1 < i < j < g,
it holds (p;, vi,p;) = (pj,vj,p;). Now by putting w’' = wywy -+ wj_12;yjwjq1 -+ W1, We can
see A(w') = A(w) by definition of minimal cycles and A(w). By induction, A(w’) € B. Hence
A(w) € B. U]

Definition 4.10 When for w € X+ N L(An41), A(w) has a minimal cycle, define the following
(1)-(2).

(1) MCD(w) denotes the set of all sequences

(87331,171,y1,P173327p2,yz,P2, * Ty Pk ykvpkal'k+lapk+l)

which satisfy the following (1.1)-(1.2). Each sequence in MC D(w) is called a minimal
cycle decomposition of w.

(L1) w = 21912292 - ThYkThi1

(1.2) For each 1 <i <k, p; = 6(s,z19122¥2 - Tic1¥i—12:). (Pi» ¥, p;) is a minimal cycle
of A(w) and it holds |z;| < |Q|-
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(2) Let MCD(w) = {f1,B2,---,B:}(t > 1). For each $;(1 < i < t), define a set of linear
inequlities LIS(w,(;) as . follows.
Let /Bi = (valaplv Y1,P1,22,P2,Y2, P2, "71:167])167yk»pkv‘fl’.k+17pk+l)' The set of fOHOWng
inequlities over &k variables Xy, X3, -+, Xy is LIS(w, ;).

For each 1 < i < n,
X;20 (1<j<k)
ai +0i1 X1 +bi2Xo + -+ ik Xi < pg1 + bngp11 X1 + bng12 X+ -+ b1k Xk

Here ay = F(z129 - 2k41,A5)(1 < f < n+ 1), and for each 1 <f<n+1,1<j5<k,
byj = es(bs(spy 1z 25), 45, 8(sf, w122+ - ;).

Lemma 4.2 The following two conditions are equivalent.
(1) AzU---UA, > Apt1
(2) For any w € £+ N L(Ap41), (2.1) or (2.2) holds.

(2.1) If A(w) has no minimal cycle, then it holds F(w, A1 U---U A,) > F(w, Api1)

(2.2) If A(w) has a minimal cycle, then for eacy minimal cycle decomposition of w, 3 €
MCD(w), the simultaneous linear inequlities LI.S(w, 3) have no integer solution.

[Proof] (1) = (2). Assume (1) holds. Clearly (2.1) holds. Assume that for w €
£t N L(An41), A(w) has a minimal cycle, and consider a minimal cycle decomposition of
w, = ($,21,P1,Y1,P1, 22, P2, Y2, P2, * * » Tk, P» Y» Ph> Tk 15 Ph41)- By definition of 3, for any
11 2 0,---,2 > 0, the following hold.

T1Y1 22Y5” TRy Th1 € L(Antr) and o _

Py eoyy - apyfersn, At U U Ag) > F(ery) 2995 - ey T, Angr)

From this, one can see LI5(w, ) has no integer solution. _
(2) = (1). We shall prove the contraposition. Assume (1) does not hold. There exists
w € ¥t N L(A, + 1) such that F(w,A; U---U A,) < F(w,A,y1). If w has o minimal cycle,
then (2.1) does not hold. If w has a minimal cycle, consider any minimal cycle decomposition

of w, B = (571'171)17 Y1.P15T2,P2:Y2: P25 s ks Py ykapk‘v"l’.kﬁ-l’pkﬁ'l)’ and let LIS(w’/j) be the
following simultaneous linear inequlities.

X;20 (1<j<k)

a; + b1 X1 +bi2Xo+ -+ b X < tpp1 +H0pp11 X1+ 0pp12Xo 4+ - F by 1 Xy (1< < n)

Here a; and b;; are as in Definition 4.10. Since F(w,A; U---U A4,) < F(w, Apy1), LIS(w,3)
has an integer solution X; = X3 =--- = X}, = 1. Hence (2.2) does not hold. |

Theorem 4.3 The following three conditions are equivalent.
(1) AzU---UA, > Ay

(2) For each w € X% N L(Ap41) with length less than |Q| x I(A;,--+, Anpq1), the following
(2.1) or (2.2) holds.
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(2.1) If A(w) has no minimal cycle, then it holds F(w, A; U---U Ay) > F(w, Ant1)
(2.2) If A(w) has a minimal cycle, then for each minimal cycle decoposition of w, 8 €
MC D(w), the simultaneous linear inequlities LI.5(w, #) have no integer solution.

(3) For any w € T N L{Ap41), the following (3.1) or (3.2) holds.

(3.1) If A(w) has no minimal cycle, then it holds F(w,A; U---UAy) > F(w, Anq1)

(3.2) If A(w) has a minimal cycle, then foe each minima cycle decoposition of w, 8 €
MCD(w), the simultaneous linear inequlities LIS(w, 3) have no integer solution.

[Proof] (1) = (2) and (3) = (1) hold from Lemma 4.2. Thus it suffices to prove (2) = (3).
Assume (2) holds. We shall prove (3) by induction on |w|. When |w| < |Q| X I(A1,- -+, Ant1),
the assertion is clear. Assume (3) holds for each w € ¥* with length at most £ > |@Q] x
I(Aq,--+,Apy1) — 1. Consider w € I* with jw| = k+1 > |Q| x I(A1,--,Ant1). Since
|w| > |Q|x I(A1,- -+, Ant1), A(w) has a minimal cycle. Consider a minimal cycle decomposition

of w, ﬂ = (5,$17P17y171317172ap2ay271727 *t s Tky Pk Yk Py $k+17pk+1)- It suffices to show the
simultaneous inequlites LIS(w, ) have no integer solution. Let LIS(w,[) be of the following
form as in Definition 4.10.

X;>20 (1Lj<k)

ai +0;1X1 +biaXo + -+ 4+ ik Xk < g1 + bnp11 Xy +Hbpgpr2Xo 4+ bk X (1505 0)
Assume these simultaneous inequlities have an integer solution X; = r;(1 < j < k). Since
|w] > |@Q] X [(Ay,--,Aps1), there exists 1 < f < g <k such that the minimal cycle (ps,yy,ps)
and the minimal cycle (py, yg,pg) are the same. Consider the word

V=T1Y1x2Y2 T pYsT 1Y 41 Tg—1Yg—12gTg41Yg4+1 0 TRYET k41

The word v has the minimal cycle decomposition

/6, = (Sa$17p1’y17P1,~7327P27y27P2,‘ v 7$f7pf;yf7pfal'f+l7pf+1’ Yf4+1,Pf41," "
o 7*7;g—17pg—17yg—17pg—-1,A7pg+layg+1apg+l’ T 7*75k7pkayk7pkal'k+lvpk+1)

Here A is z,2441 if |242441] < |@], and otherwise the corresponding minimal cycle.
We consider the case A = z,2441. In the other case, the proof is similar. The simultaneous
linear inequlities LI.S(v,[3’) are of the following form.

Y, >0 (1<g<k-1)
cr+dpYi+dpoYod oo+ dip1Ye1 <
Cnt1 + dnt11Y1 + dny12Yo + -+ dpy15-1Yio1 (1< f <)

By comparing LIS(w,3) with LIS(v,’), one can see easily that LIS (v, ) have the following
integer solution.

(1) Y;=r; (1<j5<g,7# )
(ii) Yf =rrt+71y

(i) ;=101 (9<j<k-1)
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Since |v| < |w]|, this is a contradiction to the inductive hypothesis. Thus LIS(w,#3) have no
integer solution. Hence (3) holds. : 4/

By Theorem 4.3, the inequlity problem of union F-automata can be reduced to the problem of
solving simultaneous linear inequlities. The latter problem is decidable [3]. Thus- the following
theorem holds.

Theorem 4.4 The inequlity problem of union F-automata is decidable.

4.2.3 Decidability of the equivalence problem of union F-automata

Definition 4.11 The following propblem is called the equivalence problem of union F-
automata.

Problem input: m(m > 1)deterministic F-automata
A; =< E,Qi,éi,{vﬁ'i},ﬂ,fi > (1 << TI’L).
n(n > 1) deterministic F-automata

Amy; =< X, Qm+tjs6m+js {Smti}s Foutjs fmtj > (1 <5 < m).
output : f Ay U---UA, = A1 U+ U Apgy, then yes”.
if A U UA, # Apt1 U+ U Apgy, then "no”.

Theorem 4.5 The equivalence problem of union F-automata is decidable.

[Proof] From Proposition 4.2 and Theorem 4.4, the assertion follows immediately. O

5 Decidability of the equivalence problem of finitely ambigu-
ous F-automata

In this section, we shall prove decidability of the equivalence problem of finitely ambiguous
F-automata. To do this, we shall present an algorithm for decomposing a finitely ambiguous
F-automaton A to a finite set of deterministic F-automata whose union is equivalent to A.

5.1 Finitely ambiguous F-automata

In this subsection, we prove the problem of decidibg whether a given F-automaton is finitely
ambiguous is decidable. This result is already known, but we shall present the proof since the
proof seems new.

Definition 5.1 For a nondeterministic F-automaton A =< %,Q,6,5,F,f > and a word
W= aiaz---am € L(A) (m > 1,a; € X), a successful path of w is a path spelling w from S to
Fie., ‘

path (po, ai,p1,a2,pP2," " 7pTll—11aTl’L’p771)

Here pi € QO < i<m), pj €6(pj—1,¢;)(1 <j<m), po €S, pn € F.

Definition 5.2 A nondeterministic F-automaton 4 =< %,Q,6,5, F, f > is k- ambiguous if
there exists a positive integer k£ such that for any w € L(A), the number of successful paths of
w is at most k. A is finitely ambiguous if for some positive integer k, it is k-ambiguous.
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In the following, we shall present a necessary and sufficient condition for a nondeterministic
F-automaton A =< X,Q, 4,5, F, f > not to be finitely ambiguous.

Definition 5.3 Let A =< ¥,Q,4,5,F,f > be a nondeterministic F-automaton. For any
w € Yt N L(A) and a decomposition of w, w = uv(u,v € ¥*), SP(A,w,u) denotes the number
of subpaths appearing at the part from S to 6(.5, u) of all successful paths of w. We denote by
Q(A,w,u) the set {g€ Q | g € 6(5,u) and 6(q,v) € F}.

Theorem 5.1 For any nondeterministic F-automaton A =< ¥,Q,6,5, F, f >, the following
three conditions are equivalent.

(1) A is not finitely ambiguous.

(2) There exist w € S+ N L(A) with length at most 219142 311d a decomposition of w, w = ayz,
such that it holds 2,z € ©*, y € &%, Q(A,w,2) = Q(A,w,xy) and SP(A,w,z) <
SP(A,w,zy). '

(3) There exists w € ¥ N L(A) such that the number of successful paths of w is at least

|Q|2lQI-

[Proof] Putm=|Q|.

(1) = (2). Assume (2) does not hold. Put n = max{SP(4,w,w) | w € L+ N L(A) and |w| <
2m+2}. For w € X+ N L(A), we shall prove by induction on |w]| that it holds SP(A,w,w) < n,
and for a decomposition of w = 2yz as (2), it holds SP(A,w,z) = SP(A,w,zy).

When |w| < 2™+2, the assertion is clear.

Let |w| > 2™*2, and assume for any word with length less than |w|, the assertion holds.
Consider a decomposition of w as (2), w = ayz, z,z € ¥*, y € L%, Q(A,w,2) = Q(A, w,zy).
Since |w| > 2™*2, it holds |z| > 2™, [y| > 2™t or |z] > 2™. We shall present the proof in the
case |z| > 2™. Other cases can be handled similarly.

Since |z| > 2™, there exists a decomposition of z, z = zoyoz1, such that Q(A,w,zo) =
Q(A,w,zoY0), To,x1 € X*, Yo € ¥t. Put wy = zoyori1z and wy; = zoriyz. By
induction, SP(A,wo,z0) = SP(A,wo,xoy0), SP(A,w1,z0r1) = SP(A,wi,2or1y) and
SP(A,wg,wp), SP(A,wy,wy) < n.

Then on can see the following holds.

SP(A,w,z) = SP(A,w,zy) and SP(A,w,w) <n
Hence A is finitely ambiguous.

(2) = (1). Assume there exist a word w and a decomposition of w, w = zyz, satisfy—
ing (2). Since Q(A4,w,z) = Q(A,w,zy), for any i > 0, Q(A,w,zy') = Q(A,w,z). Let
Q(A,w,z) = {p1,p2,-*+,pr}. Since w € L(A), r > 1 and SP(A,w,z) < SP(A, w,:Ly), there
exists p; € Q(A,w,z) such that |6(p;,y) N Q(A,w,z)] > 2. Then for any ¢ > 1, by com-
paring SP(A,w,zy""!) and SP(A,w,2y'), on can see that for each path P of zy'~! form §
counted in SP(A w,zy’~1), when y follows z3*~!, a subpath of y after P continues to F. Thus
SP(A,w,zy’) > SP(A,w,zy' ).

Moreover in the subpath corresponding to Pj» when y follows zy'~!, the number of subpaths
increases. Thus SP(A,w,zy") > SP(A,w,zy*"'). By induction on i, 1t holds
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SP(A,w,zy') > 1+ 1

Hence A is not finitely ambiguous.
(1) = (3) is clear. v
(3) = (1). If Ais finitely ambiguous, then in the proof of (1) = (2), for any w € £+ N L(4),
there exists v € X+ N L(A) with length at most 2/9l — 1 such that the number of successful
paths of w is equal to that of v. Thus if v = ay - --a,,(a; € ), then for each a;, the number of
successful subpaths corresponding to the part of a; increases at most by factor |Q|. Hence (the
number of successful paths of w) = (the number of successful paths of v) is at most [Q|2|QI_1.

U
The following theorem holds.

Theorem 5.2 It is solvable to decide whether any given nondeterministic F-automaton is
finitely ambiguous.

5.2 Decomposition of finitely ambiguous F-automata

We consider the following problem.

Problem Find an algorithm for decomposing any given finitely ambiguous F -automaton
A to a union F-automaton equivalent to A, that is, finding a set of deterministic F-automata
A (1<i<m,m>1)satisfying A= Ay U---U Ap,.

From the following Definition 5.4 to Theorem 5.3, let A =< £,Q,6,5,F, f > be a finitely
ambiguous F-automaton.

Definition 5.4 For any w € ot
with length at most |@Q| and a path P = (po,a1,p1.- -, Pme1sGm.Pm ), define a deterministic
F-automaton A(P) =< ¥,Qp,ép,Sp, Fp. fp > as follows.

(1) Let X = {qo,--,¢m} be a new set with m + 1 elements. Then put Qp = X.

(2) For each 0 < ¢ < m, define the following.

O0p(gi, @) = qivrs fP(Gi,@irqiv1) = F(pi, ais pig1)

Sp ={q}. Fp = {¢n} if pn € F and Fp = ¢ otherwise.

Definition 5.5 For any w € Xt with length gfeater than |@| and a path of w,
P = (po,a1,p1,a2,p2,"** yPm—1,0m,Pm), define a deterministic F-automaton A(P) =<
Y, 0p,6p,Sp, Fp, fp > as follows.

(1) Let X = {qo,---,¢m} be a new set of m + 1 elements.

(2) For each i > 0, define an equivalnece relation =; over X inductively as follows. where
equiviyy is a refinement of equiv; for ¢ > 0.

(2.1) For any gj,qx € X, q; =o qx iff p; = py.

(22) For0<r<m,let B={g€ X |g=0¢}={g. "¢}, 0<j1 <--- < ji <m. Then
=; over B is the maximal equivalence relation such that for any 1 < s < t < k, ¢;, %1 ¢, iff
@jo+1 = Gjey1 and pjo41 # pjo41-

(2.3) For any i > 1 and ¢;,q; € X, q; =; g iff (i) ¢; =1 qx and Gj+1 =i—1 Qry1 ik +1 # m,
and (ii) ¢; =1 qx ifk+ 1= m.
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(3) Let =’ be the equivalnece relation over X such that for some i > 0, ='==;==,1,. Define
the equivalence relation = by : VO < j < k <m—1, ¢; = ¢ iff ; = gr and if for 30 < j <m -1,
¢j = gm—1, then ¢, = gj41. For each ¢ € X, let [g] denote the equivalnece class of ¢ under =.

(4) Define Qp = {[g] | ¢ € X} and for each 0 < i < m and a; € X, define the following.

(4.1) ép([g:], ai) = [giv1]

(4.2) fp(lgi) ai.lgi+1]) = f(pi> @i, pis1)

(5) 5 = {[qo]}, F = {[gm]} if pm € F, and F = ¢ otherwise.

The following proposition is clear.

Proposition 5.1 For any w € ¥ and a path P of w, A(P) is deterministic.

The following proposition is clear since A is finitely ambiguous.

Proposition 5.2  §(A) is a finite set.

The following theorem holds.

Theorem 5.3 For any given finitely ambiguous F-automaton A =< ¥,Q,6,5,F, f >, one
can construct a finite set of deterministic F-automata {A;, -+, A, }(m > 1) such that A =
AU U A,

[Proof] For each i > 1, construct the set of deterministic F-automata ¥; by Y; = {A(P) |
for some w € ¥¢, P is a path of w} untill it holds Y}, = Yj4, for some k£ > 1. Such k exists
since S(A) is a finite set. Then it holds S(A) = Yj. Let Yy = {A1,---,An}. Then it holds
A=A U Ay : |

From Theorems 4.5 and 5.3, we have the following theorem.

Theorem 5.4 The equivalnec problem of finitely ambiguous F-automata is decidable.
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