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Partitions of the set of positive integers,
nonperiodic sequences, and transcendence

Jun-ichi TAMURA, International Junior College (Hik-, EBEELY)

§1 Partitions of the set of positive integers I

Throughout the paper, we identify a set {s.; n€ N}CN such that

51<s52<s3<... with a sequence {sn}tn-1.2.3... .. It is well-known that for positive
numbers « and B, two Beatty sequences (or sets) {[an]}.-. 2.5. . and
{[Bnl}n-1.2.3,... make a partition of the set N into two parts iff a, B8 are

real irrationals satisfying 1/a+1/8=1, where [x] (x€ R) is the largest
integer not exceeding x, and N (resp. Z, Q, R, R.) denotes the set of the
positive integers (resp. the integers, the rational numbers, the real number::

the positive numbers). This fact can be written in an equivalent form as

J {lryon] +[rin]; neEN} = N,
('Yo,Yl)EA

(1)
A = {(1,a), a'(l,a)}, ad0

iff a is an irrational, where J indicates a disjoint union. Proposition 1
is a generalization of (1), which gives a partition of N into s+l parts by
specific sums of Beatty sequences, cf. [T5], Theorenm 1.

We denote by aS, S+ta, S+T, and ST the set {as; s€S}, {sta: SE SY,

{stt: s€S, tET}, and {st; s€S, tET}, respectively, for given sets S, TCR, .

and a number o € R; by <x>, the fractional part of x€ R, i.e., <x>:=x-[x].

Proposition 1. Let s be a positive integer, and a >0, B8: (0£i<s) be

real numbers. Then the condition
(ai'Z-ai"'B)N(a;"'Z-a;"'B;)NR. = ¢ for all i=j (2)
is necessary and sufficient to have a partition

U { = [rn+5,]; nEN } = N, (3)
(r,8)EB 0<j¢s



where (v,8)=(Yo, Y1, .., 75,830,858 1,...,85), and
B := {(a,B8); a=ai "' (as, ai,...,a,),
B=-a "B >(ac,ar,...,a:)+ (B o>,<B,...,{B D), 05iZs},

Setting a =1, B =0 for all i, we have

Corollary 1. Let s€N, ao=1, ai€R.+ (1£i£s). Then the condition

a:€Q, and a;/a;&€Q for all 1£i{j<s implies

U { = [rn]; nEN} = N,
(Yo,...,7:)EC 0&j¢s
and vice versa, where C:={a ;i '(ao,...,a.); 0£i<s}.

If we take s=1 in Corollary 1, we obtain (l1). We remark that we may choose
ao=1, B6=0 in Theorem 1 without changing the form of the components of the

partition. Related to the condition (2), we can show the implications
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(7)2(6)2(5)3(2)3(4) in the case of ao=1, B =0, where (4)-(7) are the following

conditions:
-Bi&aiN+Z for all 1Si<s; (4)
aiBi-a;Bi&aiZ+a;Z for all 0Li{j<s; (5)

'1, a;, B are linearly independent over Q for each 1£ifs, and
(a i (Z+B8:)Q)N(a;(Z+B8;)Q)=1{0} for all 0L i{j<s;

2s+l numbers 1, and a;, aiBi (1£i<s) are linearly independent

(6)

(7)

over Q.
We remark that a result obtained by J. V. Uspensky [Us] says the impossibility
of having a partition into t parts by Beatty sequences for t=>3. Proposition 2

is a generalization of Proposition 1 (cf. [T5], Theorem 3).

Proposition 2. Let fi:R+U{0}—>R (0£i<s, 1£s€ N) be continuous,

strictly monotone increasing functions with - 1lim f;(x) = o for all i. Then
X-00 :

“the condition

fi-'(Z)Nf;"'"(Z)NR+ = ¢ for all i=j (8)
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is necessary and sufficient to have partition

U = ([f(F - (n+[£,(0)1))]-[£,(0)]); nEN} = N. (9)
0¢iss 0&jss

The property )l{ig fi(x) = c© can be omitted from Proposition 2, at most,
for s indices i. In that case, some of the components of the partition (9) turn
out to be a finite set. We remark that in this sense, any partition of N into
s+]1 parts can be given by (9) under a suitable choice of the functions f;
(without loss of generality, we may assume that all the f, are of €= class with
fo(x)=x), that will be clear by the following argument.

 The idea of the proof of the propositions is very simple. First, we refer
the fact that if an infinite word (to the right) w=w,w.ws... strictly over

an alphabet S ,:={ao,a:,...,a.} (i.e., every symbol a: eventually occurs in w)

is given, then it gives rise to a partition of N into s+l parts:

) x(w:a:) = N, (10)
0¢iss

which will be referred to as the partition corresponding to the w, and vice
versa, where x (w ;a) is the characteristic set of w with respect to a:
x(w;a) := {PEN; w,=a}, a€ S ..
We denote by II; IT;CR*®**' the set of hyperplanes defined by
Mi:={(Xo,...,Xi,...%X:); X;€ER (j#i), xi€Z} (0¢iss), H:=o§kii s,
by KCR**' the curve
K := {f(x)=(fo(x),...,fs(x)); XER.}.

Secondly, we consider an infinite word w=w (K )=w ;w:ws... given by

W an=ai if f(Xn)e IT i

where the sequence {Xn}n-1.2.3.... is defined by
{f(xn); 0<x1<x2<. .. <xad. ..} := KNI
Note that the sequence {Xu}uw-1.2.a.... is well-defined, since the set KNI is

a discrete one in R**' if the functions f; are continuous, and strictly

monotone increasing; and that the word w is well-defined by the condition (8).



Under the assumption that the functions f: are continuous, strictly monotone
increasing, we can calculate the nth term of the sequence (or the set) x (w;ai)
by using the intermediate value theorenm, aﬁd we can obtain Proposition 2. Taking
K to be a half-line L, we get Proposition 1. For further details of the proof,
see [T5].
| Proposition 1 has some conection with higher dimensional billiards: Let
I**t (I:=[0,1]) be the unit cube of dimension s+1 with the faces

{(x1,...,%i,... Xu); €1 (Vj=1i), xi=0, or 1} (0£ifs)
labelled by a:. Let a particle start at a point 8 €[0,1)**" along a vecter a €
R.**! with the condition for a:, B, stated in Proposition 1, and be‘reflected
at each face of I**! specularly. Then the word w (L) (L :={at+8; tER .}
defined above coincides with a word obtained by writing down the label a: of the
faces which the particle hits in order of collision. The complexity p(n)=p(n;w)
of an infinite word w=w,w.w3... is a function p:N—N defined to be the number
of subwords of length n of w:

p(n;w) := H{WaWnes.. . Wmsn-1; MEN} (>0, p(0;w):=1).

An infinite word w (or a sequence) is called sturmian (on s+l letters) if
p(n;w)=n+s for every n. It is known that if w is not an ultimately periodic word
strictly over the alphabet S, then p(n;w)=n+s, cf. [He-Mo, F-M]. It is a
classical reéult that for s=1, w (L) is sturmian on 2 letters provided that w
is not periodic. A conjecture of G. Rauzy says that p(n;w (L ))=n?+n+1 for s=2
when oo, i, a. are linearly independent over Q, which was proved
affirmatively in [A-M-S-T1], cf. [R1, R2, A-M-S$-T2]. An exact formula for
p(n; w (L ))=p(n,s;w (L)) as a function of n and s in the case where ao,..., Qs
are linearly independent over Q was conjectured in [A-M-S-T1]:

p(n,s) = > n!-st/((n-i)!-it-(s-i)!)
0¢ismin{n, s}

and proved affirmatively by Yu. Baryshnikov [B]. Consequently, p(n,s)=p(s,n),

and p(n;3)=n%+2n+1 holds, that was one of my conjectures, from which P. Arnoux
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and Ch. Mauduit derived the exact formula under some minor hypotheses. It will
be an interesting question, which was posed by Ch. Mauduit, that asks for a
direct (or combinatorial) proof of the symmetry; it still remains mysterious why
p(n,s) is a symmetric function.

Quite recently, a remarkable result was obtained by S. Ferenczi and Ch.
Mauduit [F-M], which asserts that the numbers having a sturmian sequence
consisting of any number of letters€{n€N; 0<n<h} as their expansion in some
base g(2 h+1) are transcendental, that was conjectured by Ch. Mauduit for
himself in 1989. They gave further results on transcendency of numbers having a
sequence (or an infinite word) with low complexity as their expansion in base
8.

We say that the partition (10) is nonperiodic (resp. totally nonperiodic)
if w (resp. 3 x (w;a;) for all i) is not an ultimately periodic word (or
sequence), and vice versa, where we mean by 8 C the sequence {Co+1=Cnln=1.2.3...
for a given sequence C:={Cn}n-1.2.3.... We may assumé that a =1 in Proposition
1 as we have already seen. In that case, the partition (3) is nonperiodic if one
of the a: (1£i<s) is irrational, since the irrationality of p(a:)/p(a.)
implies the nonperiodicity of w (L), where p(a;) is the frequency, in the limit
sense, of a symbol a; appearing in the word w (L ) corresponding to the
partition (3).

In what follows, we shall give some classes of nonperiodic partitions of N
(or some classes of nonperiodic infinite words), and some results and problems

related to transcendence and complexity.

§2 Partition of the set of positive integers I
By S=S, we mean the alphabet {as,a;,...,a.} (s=1) as in Section 1. We
denote by S * the set of all finite words over the S, S* is a free monoid
generated by the S with the operation of concatenation and the empty word A as

its unit. S~ denotes the set of all infinite word (to the right) over S. A
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substitution ¢ (over S) is a monoid endomorphism ¢ on S* extended to S~
defined by o (w):= o (w) o (w2) o (w3)... for w=w,w.w3...€E S~. A fixed point of
o is an infinite word w € S~ satisfying o (w)=w. Any substitution of the
form
o (a)=au (a€ S, u#1l), o (x)#1 (Vx€S8)

has a unique fixed point w prefixed by a, i.e., w=auo (u) o 2(u)o *(u)..., where
o " is an n-fold iteration of ¢ (o0 ° is an identity map on S *U S*=).

We denote by |w| the length of a finite word w, and by |w|a. the number of
occurrences of a symbol a€E S appearing in a word w€ S *. For a given sequence
C={Cn}n-1.2.3..., | C indicates the sequence

1
I_C .= {i"’ >, Cm}n=l.2.3 .....
1

ISmSn-1

Then we can show the following

Proposition 3. Let o be a substitution over the S defined by

ks-—.i
o(a;):=ao a;+1 (0£j<s-1), o (a,):=ao,

where k; (0£i<s) are integers satisfying ka2 ke.-12...2ko=1. Let L; be the
set {lo i '(ao)l, o "(ao)ltloi " (a)], ...,10 7 "(ao)l+|l o '(a,)|}, and let

T ;:S*>L;* be a monoid morphism defined by

Ks-i
(lo' ' (a0)l) (1o " (ao) I+l o "' (a:i)] (0£i<s-1),

Ir

Ti(ai) :

Ti(a.) := [oi ' (ao0)l.
Then

085 o F ) TN o

where w is the fixed point of o.
It is clear that (11) follows from x (w;a;)= I| -1 (@) | T ;(w), which
g'” Qo
is Theorem 4 in [T4].
Note that the partition (11) is a totally nonperiodic one for all s21, and
all k,€ Z satisfying k.2ks-:12...2ko=1, that follows from [T4], Lemma 11:

rlxiﬂ ] 0"(ao)|a / lom(ae)]= a*‘“/(a°+d"“+--~+a+l), (12)
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where a >l is an algebraic number with minimal polynomial f(x):=x”‘-0 iéskix‘;

in

the minimality follows from [T4], Lemma 10.

We rémark that in general, the partition (11) can not be the partion of the
form (3). For instance, suppose that (11) with s=2, k,=k.=1 coincides with (3)
corresponding to some infinite word w=w (L) (L={t(l,a., a:)*B8; tER.},
then (12) implies that a:i=a~'" (i=1,2). The minimality of f(x) implies that 1,
.1, a are linearly independent over Q. Hence, p(n;w )=n2?+n+l, which
contradicts that p(n)=2n+1 is the complexity of the fixed point of the
substitution o with s=2, ki=k.=1 (the fixed point is an Arnoux-Rauzy sequence,
cf. [A-R], [F-M]). On the other hand, in the case of s=1, the partition (11)
turns out to be the partition (1), that will be seen by the following argument:
Proposition 3 with s=1 implies f(x)=x?-kx-1 (k:=k,), so that a=(k+(k?+4))'72/2.
Setting x (wjai)={t, <t V< ..t <.} (i=0,1), we get by Proposition 3

ta D =kntt, ', x (w:a) U x (w;a)=N. - (13)
Noting that the sets x (w;a:) are uniquely determined by (13), and
[7inl=kn+[7n on], 1/7no+l/n =1 (no:=1+1/a, ni:=l+a),

we obtain x (w;ai)={[7n:n]; nEN} (i=0,1).

Let t :S*'—’G* (G=G,:={0,1,...,8-1}*, 2£g€EN) be a monoid morphism
such that t (a)#X for all a€ S. We denote by 0.7 (w) (w=w,W.w;...E S=,
wiE€E S ) the number defined by 2 T (wi)/g'. We say w is transcendentél if
«0. T (w) is transcendental for an integer g and a morphism 7 . The fixed point

w is not only totally nonperiodic, but also transcendental:

Proposition 4 ([T4], Theorem 3). Let w be as in Proposition 3, g=2 an

integer, T a monoid morphism such that 7 (a)#) for all a€ S, and
rank (|7 (ai)li)osics, osise-1 » 1.

Then the number .0. 7t (w) is transcendental.

The key for the proof of Propositon 4 is to show that the w has a prefix

which is (2+¢)-power of a nonempty word (cf. Proposition 9 below, and [T4],
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Lemma 13); that can be connected with Roth’'s theorem. A stronger argument works-:
in [F-M], where S. Ferenczi and Ch. Mauduit made use of a theorem of Ridout
([Mah], pp. 147-148) instead of Roth’s theorem. We.shall mention their results

in the following sections.

§3 Partition of the set of positive integers |
Let -D (®1) be a subset of N. In some cases, we can show that there exists
a subset I’ such that

) dr = N (D= ¢, {1}) o (14)
dE D

Such a partition will be referred to as a similis paftition (of ﬁ[ with fespect
to D). We gave some results on similis partitions in [T1]. I would like to
mention that a simplevexample of similisvpartitions came‘from a lingﬁistic
phenomeha in Hungarian and Japénese language that are probably well—known-to
linguists, cf. [Ta, Tol: Numerais one, two, three, four, ;.. in Hungarian (resp.
Japanese) are egy, kété, harom, négy, ... (hi, fu, ni, yo;... ). So, we can maké
the following diagram, where in eéch language, underlined consonants of two
numerals in each row are common, or they have a reseﬁblaﬁce (e.g., n and ny=
palatalized n in the 3rd stage of the diagram); énd simultaneously, in éach row,

the number corresponding to the right group is exactly the two times of the

left:
r 2r
1): 1 egy (hi-fiepi) 2 kettd (fue-pu)
2): 3 harom (mi) 8 hat (mu)
3): 4 negy (yo) 8 nyolc (ya)
4): 5 ot (itsu-itu) 10 tiz (to)

Here, among the numerals in Japanese language that are written in parentheses,

for instanse, itsu-itu indicates tha@[contemporary Japanese word itsu comes from

e ‘ :
jpld Japanese word itu, that is a kind of palatalization. If we look at the
the
numerals of older Japanese in parentheses, the consonants correspondence turns

out to be an exact one. (Related to vowels, see, e.g., [Ha]; vowel harmony is

also common to Hungarian and old Japanese.)
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Considering what will happen, apart from numerals in natural language, when
we formally prolong the diagram downwards, we get a similisvpartition (14) with
D={1,2}, which is uniquely determined. In fact, it is clear that r,:=1€ T, so
that 2y,€20, which gives the first stage 1) of the diagram. Now, consider the
smallest positive integer 7. among the numbers that have not appeared in the
stage 1). Then the minimality of 7y, implies v.€ T, othewise y,€2I , so that
12072/2€ T, i.e., the second stage is of the form y./2€ T, y,€ T, which
contradicts the minimality of r.. (Forget that 7.€ ' follows from that 7.=3 is
odd; we shall see that yrs(=4) is even in the folowing argument.) Suppose that we
have obtained a diagram with stages 1)-n). Considering the number y.., defined
to be the smalliest positive integer that differs from all the numbers appearing
in the stages 1)-n). Then 1..; €T follows from its minimality. We can continue
the process, and we must have I'={y.,72,7s,...} as far as all the numbers dy..,
(d€ D) are different from the numbers dy. (d€ D, 1¢m¢n). Hence, noting that
the argument given above is vaid for any nonempty finite, or infinite subset

D C N, we obtain

Proposition 5. If there exists a similis partition (14) for a given
nonempty subset D of N, then the partition is unuquely determined by the set.

D.

On the other hand, it is clear that a similis partition (14) for D ={1, 2}
exists, since I'={2%im; j=0, m>1, m is odd} satisfies (14), that will be
refferred to as the H.-J. (Hungarian-Japanese) partition. The H.-J. partition can

be easily generalized as

Proposition 6. Let D=D(k;q1,...,9;€1,...,€x) be a set defined by
Ji
D := { ITI qi ;Oéjiéei (lﬁiék)},
1€igk

, (15)
k21, q:22, ei21 (1£i£k), G.C.D.(q:,q;)=1 for all i#j. ‘

Then
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B (ei+1)Ji
r—{lﬁi ai

k

m; ji=20, m21, G.C.D.(m,q: - -qv)=1}

A

satisfies (14), which is uniquely determined by D.

One of my old conjecture says that if a similis partition (14) is a
partition of N into finite components, then there exist numberé k, and
di, w.., 9x, €1, ..., € satisfying (15); that is probably still open. It is
easily seen that there are no partitions (14) for some explicitely given D
which are not of the form (15), cf. [T1], Theorem 12. For example, if we take
D={1,2,3}, and trace the uniqueness proof of (14) above, we see 27,=12=37.,
which contradicts that (14) is a disjoint union. Proposition 6 can be extended
- to infinite partitions with respect to D given by (15) with 0L j; for some
indices i instead of 05jie: (1£i5Kk):

Ji Ji

D :={ I1 q; q; ; 0&jise (lgiék—h); 0= ji (k“h+l§i§k)}

1£isk-h ‘k—h+l§i§k
k21, k2h21, qi22 (1£i¢k), ei2l (1¢i¢k-h), G.C.D.(qi,q;)=1 for all i#j.
For D given above, we can show

(ei+1)Ji
I ={ Il q;

1£igk-h

. m; ji20, m21, G.C.D.(m,q:-"q«)=1} (k=2).
If k=1, then ' =N\q,N, and the partition (14) is periodic (not interesting).
We remark that for some infinite partitions (14), D .is not always of the form
above. Fo-r instance, if we take D={pi‘ji'; Ji20 (0£i¢s)} with prime numbers p;
(PodP1>...0Ps, s21), then
F'={(po- pa)'m; i20, m21, G.C.D.(m,po--ps)=1}
satisfies (14). By the way, we remark that a sequence w=w w.ws... over S,
defined by
wai=a; if m,.E{sz; J20} ({1<m1<mz<...<mn<...}:=D={paji; Ji20 (0¢iss)})

coincides with a word w (L ) defined by the billiard in I**' with
a=(a 0"‘“’0“), B=0, ai=log pi/log po, cf. [R2].

Now,’ we return to the first example of (14), the H.-J. partition. We shall
show that the word w=w w:ws... (w.€ S ) corresponding to the H.-J.

partition is a totally nonperiodic word, which is the fixed point of a
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substitution. We mean by UV the set {uv; u€U, vEV}, by U* the set {u;...un.;
ui €U (1€i¢n), n20} for subsets U, V of a monoid, and by T D1 the component of
the H.-J. partition. Then y& T iff E.(r)=u0?"(n20, u€{0,1}* is a word having
1 as its prefix, and suffix), where E,(y) denotes the base-g expansion of
TENU{0} (E.(0):=1), and w" (wE S .*) is the word obtained by concatenating n
copies of w. So, r€ ' iff E.(y-1)=v1?" (v€ G ,*={0,1}*, n=0). Hence the set
{0}*{E.(r-1); 1€ T} coincides with the language accepted by an automaton M
defined by

M:=(S.:,Gi,0,20,{a0})
with a transition function §

§(ao,0):=a0, d§(ao,1):=a,, 3(a,,i):=a, (i=0,1),

Ifor the definition and notation related to automata, see [Ho-U]. Therefore,
noting that w=0(ac,E.(0))...8(ao,E2(n-1))..., we see that w is the fixed point
of a substitution over S, given by

6 (ao0):=aca., 0 (a,) :=a,a,. ' (18)
Using this fact shown above, we can prove that the w is a totally nonperiodic
word by the following manner: We remark that so far as similis partitions are
concerned, nonperiodicity implies total nonperiodicity. So, it suffices to show
the nonperiodicity of w. Suppose that w is an ultimately periodic word, then
:=20. T (w)E€ Q (7 (ai):=i). We put a=ao, b=a,, 0.,=,0. 7 (u.)* (un=0"(a)),
where u* denotes the periodic word uuu... for a nonempty word u. We write u—v
if v is a prefix of u. The binary relation — is transitive. In view of (18), we
get uz=abaa=u,uoc?®, s0 that un+2=un+iu.? for all n20, [u.|=2", and

—-Q2.9n-1

W T'Un+1 Unlan-1. Hence, we obtain |6-6,]52 . For any n21, we can put

n

2
0.=E.7"(u)/(2 -1) with certain u€1G,*. Let 8. equal P./Q., G.C.D.(P.,Q.)=1.

-3/2
Then |0-P,/Q.1<Q. , which together with € Q implies that {P./Q.; n=0)} is a
finite set. Therefore 6,=0:.; for some i20 and j21, so that Ui+;=u: . Since
) i-t

u_i+1:ui+j—lui+.i-lzr we get Ui+i-1=U; , and lnductively, ui+l:ui2. By

Ui+1=Wili-1?, we get ui=u;-,%. Repeating the argument, we obtain U:1=uo? which
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contradicts u,=ab#aa=u,?.

By direct calculation, we see @ I' =2112221121121122. .. for the H.-J.
partition. We can show that the sequence (or word) 8 I' is the fixed point of a
substitution over {1,2} by the following manner: Let w -be the fixed point of
the o (16).: Noting that bb does not occur in w, .we can factorize w into two
words A:=ab and B:=a, and we get a new word @ over {A,B}:

a>=abaaabababaaabaaabaaabab...‘,
w=A BBA A A BBA BBA BBA A...,
and noting that w is the fixed point of o, we see that ® is the fixed point
of a substitution © over {A,B}:
A=ab—> o (ab)=abaa=ABB
B=a — o (a)=ab=A.
Since d I'=¢ (&) with T (A)=2, T (B)=1, a T .is the fixed point of the .
substitution 2—211, 1—2.

We can generalize all the statements given above forvthe H.-J. partition to
those for the partition with D={q'; 0<i<e} as in Proposition 7-8, by
considering an automaton

Moo := (S.,Gq,0,80,{a0})
with a transition function §=§. « defined by .
8(ay,J)=a0, §(ai,q-1)=a;+; (0¢ide-1, 0L jSq-2),

3(as,.j)=ao (Oéjéq—l)-

PropoSition 7. Let w be the word corresponding to a similis partition

(14) with respect to D={q'; 0<i<e) (ex1, q=2), then  is totally
nonpe‘riodic word over S ., which is the fixed point of a substitution over S,
defined by

o(‘a'i):=ao“"ai+1 (Oéiéé—l),’ o(a‘e)::ao“. | (17)

Proposition 8. Let (14) be a-similis partition with respect to D 'as in

Proposition 7. Let 7t :S.*>S.* k :S.*>{1,2}* be morphisms defined by
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T (ai):=aoai+1 (0Si<e-2), T (as-1):=a0a.2%, T (a.):=ag,
k' (a;i)=2 (0£ige-1), « (a.)=1
for g=2, and
T (a0):=a0" %a,, T(ai):=ao" 2a,a0" %ai+1 (I1£ife-1), 7 (as.):=a0" 22,407,
k (ai)=1 (0£ige-1), « (a.)=2
for g>2. Then 9 F; is a nonperiodic word ovef {1,2}, which is‘given by-
| 3T =k () |

where w  is the fixed point of T.

Let w be as in Proposition 7. Then, in view of a locally catenative
formula o "*e(ao)=(o "tetl(ag)) ... (o (a0)) (o “(ao))“, we Caﬁ easily
find that the frequency of a; apearing.in w is rati‘onal for .all i. This fact
together with the nonperiodicity of w implies that a similis partition with‘
respect to D given by (15) can not be neither a partition (3) nor (11)..

Let us consider a similis partition (14) with respect to D={1,2,3,6}. Then
I ={2%73%%k; 120, j20, k21, G.C.D.(2-3,k)=1}, which equals {22'k; i20, (2,k)=1}N
{3%27k; 120, (3,k)=1}. So, it is clear that

F=x(w(1,2);20)N x (w (1,3);20),
where w (e,q) is the fixed point of a substitution over S . defined by (17Y. In

general, we can show, considering the languages accepted by the automata

M :=(S ,G 8 a0, fa_ }) (0$j:<e; (1¢i¢k)) that
€i,di,Ji € q; ei,qd; Ji :
J Ji ‘ . .
ar g I = M x(wl(ei,qi);a ) (0&§ifer (1£igk)) (18)
1€i¢k Ji i : ’ :

holds for any finite similis partition with respect to D given by (15). We
denote by Q the word (strictly over _I1 (ei+l) letters) corresponding to a
partition given by Proposition 6. Then, it folows from (18) that Q is an

interpretation of w (ei,qi) (i.e., whenever the ith symbol counted from.the
beginning differs from the jth symbol in w, then so does in Q, .cf. [Sa]).

Hence, Q is not an ultimately periodic word by Proposition 7. Therefore, any

similis partition given by Proposition 6 is totally nonperiodic. Related to the
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transcendence of the word 8 ' and the word corresponding to a finite similis
partition, the following result obtained by S. Ferenczi and Ch. Mauduit is
usefull (a substitution ¢ over S is called primitive if (| o "(a)|s)a.bes iS a

positive matrix for some n):

Proposition 9 ([F-M], Proposition 5). If the expansion of 0 in some

base k is non-ultimately periodic fixed point of a primitive substitution, and
does contain at least one word of the form v?*® (that is, vvv" for nonempty word

v and a prefix v’ of v with |v |2¢lvl (¢>0)), then 0 is transcendental.

If we apply Proposition 9 to the word w in Proposition 7, and note that
the transcendence of w implies the tarnscendence of Q, we obtain Proposition

10 (resp. Proposition 11) by Proposition 7 (resp. Proposition 8) as follows:

Proposition 10. Let (14) be a finite similis partition with respect to

D given by (15) with the word Q corresponding to (14). Then Q is

transcendental.

Proposition 11. Let ' be a set satisfying (14) with D given by (15).

Then 4 I' is transcendental.

§4 Log-fixed point
A word (or a sequence) & ~ over {1,2} is referred to as a Kolakoski word
if the word definedvby its run-lengths is equal to & itself:

212211211221211212211 21121221 2211...

21221
Rt e I e e i e e et e o S Sv i S I U S N U R
112 1

2 212 2 112 112 2 12 112 12 2...=&",
where we mean by a run a maximal subword consisting of identical letters, cf.
[Ko], [D2] with its references. The word & :=1& ~ is the only other word having
this property. It can be easily seen that £ is not an ultimately periodic word,

cf. [U]. Related to the complexity p(n)=p(n;& ), n+1<p(n)<n’ ? has been shown
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by F. M. Dekking; his conjecture says p(n)<n'°® 2/'°s(372) = f [D1, D2].
Let S be an alphabet with §S = 2. We denote by S * the set
S* = (S*US*N\( U S*{a*}),
aES
i.e., S™ is the set of all finite or infinite words that are different from all
the words of the form ua* (u€E S*, ac S ). We shall write S *w instead of
S *{w}. For any word w=w 1®wz2...w....E€ S*, we can define two words log w,
and base w by

log w := e;eze;..., base w := b;b;bs...,

if @=b,"'bs bs '... (€21, BiE€S, by#bs, for all i21).
In what follows, we take SCN. A word w € S* satisfying w=log w will be
referred to as a log-fixed point. The Kolakoski word & is defined to be a
log-fixed point with base & =(12)*. If §S=2, then H{w € S~; w=log w}=2: if
}S 23, then the set {w € S™; w=10g w} has continuum cardinality, since so
does the set {base w}. It can be easily seen by the similar manner to that
given by [U] that all the log-fixed points are not ultimately periodic. Now, for
instance, conéider a log-fixed point w with base w=(26)*, and factorize it
into the words of length 2:
w=22 66 22 22 22 66 66 66 22 66 ...
=A B A A A B B B A B...
=W W2 Ws Wo Ws We Wo We Wo Wi .
Then it is clear that Wi is A:=22 or B:=66 (since the length of the period of
base w is 2, which divides 2, 6€ S ), and w as a word over {A,B} is invariant
under a morphism
A=22 —> 2266=AB
B=66 — 222222666666=AAABBB.
Note that such an argument does not work at all for the Kolakoski words, but it

can be applied to some general cases:

Proposition 12. Let s21 be an integer, S={ao,...,a,JCN such that s
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divides a; for all 1<i<s. Let o be a substitution over {Ao,,...,A:} defined -
ai/s ai/s ; R , _
by o (A;)=A, ¥ (0£i<sg), 'and let Q be its fixed point. Then the log-

fixed point w with base w=(ao...2,)* can be given by w=1t (Q), where t is

a morphism defined by 7 (Ai)=a:® (0£i<s).

Now, we retu?n to the Kolakoskirwérd & . Cdnsider What is thevo in
Proposition 1 for é ’ in forﬁal sense. Then, the it becomes a “substitution”
defined by “ | |

0 (Ao)=AoA:, © (Al):ADl/;All/z,

where we mean’by A'/? a half of a symbol. If we define (W,W.---W.)!”? (each W,
is a symbol, or a half-symbol) to be a “word” Wi...Wia,zy (resp. Wi - -Win 2
Winsz1+1172, WhiCh is possibly ‘a “word” containing a fourfh of a symbol) for
even n ( resp. odd n), o (W'“2?) to be a “word” (f(W)‘/é, and consider an
infinite word Q=lim o "(As), then |

Bo D Aok B Aoh Ao 728, /2% oA Ro 7 2AL T 2 hoRo 172 S,

Y WY PR PC Wy WIS PET W W W ELTW W PR W VLT W
We can define the sequence Q to be the fixed point of éksubStitution over an
alphabet {a, b, ¢, d} in usual sense, where we identify a=Ao, b=A,, c=A,'”?,
d=A,'7%. Can we find any relation between & and Q? (Probably, no!; then find
a better treatment for half~$ymbols.) It will be.remarkéble that the word & is
a fixed point of the map

W iNN-{0,1,2)", W (w):=Bs(Bzual(n(c(w)))+1/2),

‘where c, 9, Ezﬂs, Bs are maps defined as follows:

1) ¢c:N"U (N*\N*1)—1=[0,1], c(a,a.a;5...):=[0;a.,a,,as,...] for
aazas...€ N"U (N*\N*1) , where the right-hand side denotes
a continued fraction as usual;

2°) ¢:I—1 is the so .called point-of-interrogation-function
introduced by Minkowski determined by the following conditions::
(i) ¢ is continuous with ¢(0)=0, »(1)=1,
(i) o((p+p )/ (a*+q”))=(9(p/a)+9(p /q"))/2 for all
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" p,q,p ,q9 € NU{0} such that p/q, p /g9 €1, p g-pq =*1;
3°) B .o:1[0,1/2], Bz.a(:0.b,bsbs...):=30.b,bebs.... for
bibzbs. .. €{0,1}"\{0,1}*0* (Bz-5(0):=0);
47) By:1—1{0,1,2}", Bs(x)=cic2Cs... for x=50.ciCzCs..

with cicz2Cs...€{0,1,21"\{0,1,2}1*0* (Ba(0):=0*)

We can see that € is uniquely determined by W (& )= by the fact

a; Az A3 A4 Qas
m([O;al,ag,ag,...])=gO.07 1 01 0 ..., _ (19)

cf. [P]. Related to the existence of frequencies of words, it is known as
Keane's problem which asks whether the frequency of ! in &€ exists, and it
equals 1/2, [Ke]. This is still open. If it does not exists (probably it does!),
or if it equals 1/2 (probably it does), then it is easy to see that the words w
corresponding to the partition (3), (11), or (14) can not be the word & .
Instead of (19), we may ask for a number x€ I satisfying
[0;a1,22,83,...]1=,0.a,323....(=x), (20)
where
a.€7, 1<a,<g-1 (i21). (21)
Such a number x exists for a square number g=h? (2<h€&€ Z ), since
[0;h]=1/h=h/g=,0.h; this is not interesting. Now, we ask for an irrational
number x€ I satisfying (20) with (21). If we take g=10, then by simple
calculations, we can show that such a number does not exist. If we consider (20)
with |
avazas... € ({0, ., g-1}™\{0, .., g-1}*0" (22
instead of (21), then it seems very likely that a number x€ I satisfying (20)
exists; a caluculation says that |
[0;3,3,5,8,3,4,7,...]1=,,0.3358347. . .,
where we mean, for example, |
[0;3,3,5,...,1,1,9,10,0,...,0,2,9,...1=[0;3,3,5, ..., 1,1,9,10+2,9, ... 1,

odd number of Os

[0;3,3,5,...,1,1,9,10,0,...,0,2,9,...1=[0;3,3,5,...,1,1,9,10,2,9, ... 1.

—_

even number of 0Os
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The difficulty of the proof of the existance of a number x satisfying (20) for
g=11 comes from the possibility of a long run of Os. Probably, the length of a
run of Os which begins by nth symbol counted from the begining is bounded by a
function of n taking sufficiently small values; and probably, such a number x

satisfying (20) with (22) exists for infinitely many g. It is clear that if an
irrational number x satiéfying (20) with (21) exists, then x is an irrational

number being different from all the quadratic irrationals. Note that periodic,
or nonperiodic infinite continued fraction with (22) can be a rational number,
for instance, [0:3,1,0.3,0,0,0.5,0,0,0,0,0,7, ...]=[0:3,0]=1/3, |

[(0;3,1,0,7,0,7,0,7,...1=1/3.

§5 Problems
1°) We denote by ¥ ;(z) the analytic function on the unit disc defined by

Yvi(z)=vi(z;0):= >, z" (0£i<s)
ne x (w:a;)

for w€ S~, S={ao,...a.}, and we take w to be the word w (L) defined by the
billiard as in Section 1 with L={ta+8; tER.}, then

[ai tan~ai ' <{B D>ai+<{B ;D]

ll)i(z): Z, 05jsSs
1¢n<w
follows from Proposition 1. We suppose that aoo,...,a . are linearly independent

6§é; ii; Ié the number X ci ¥ i(g™') (ci,g€ Z, g22) always transcendental
except for the case where c;=c for all i? It follows from a result ([F-M],
Pfoposition 2) that for s=1, Zci ¥ (g7') (co#ci) is transcendental since w is
sturmian forrs=1, as we have mentioned in Section 1. It will be a difficult
problem which asks for a proof of transcendence of words having complexity
bounded by a polynomial of degree 2. (Note that it is difficult to show the
transcendence of the number 0.6 for 6=10'10%210°..., and that

d{p(n; 6 )}n-o.1.2....=12223%. .., i.e., p(n;0)=n?/4+n/2+9/8+(-1)"*'/8, cf.

[TO]. 6 is, in some sense, a simple word, i.e., p*(n; 8 )=n+1, where p*(n;w )

denotes the humber of subwords w such that |w|=n and w occurs infinitely often
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in w.) Recalling that p(n;w (L ))=n?+n+1 for s=2, we see the difficulty to
prove the transcendence of w=w (L) for s>1. For a proof of the transcendence
of w=w (L), it suffices to show the transcendence of ¥ ; (g ':s) for some i.
Taking s=2, ao=1, B =0, 0<{B iK1, we have

[(a+1)n+B J+[a .n+B ;]
Z .

Yo(z)= 1$na

(23)

Can we show the transcendence of the value ¥ o(g"')? (Probably, yes; (23) is a
simple expression similar to that in the case s=1.) Problems related to linear

independence and transcendence for ¥ (z), see [T5], (i)-(v), p.213.

2") It is difficult to show that there is no number x satisfying (20) with
(22) for g=10. The difficulty comes from that, for example,
[0:2,0.2.1,0.0,.9.0.8....1=0.202100908. .. (in base 10)
may be a solution for (20).
We may ask for the existance of a number x satisfying (20) for irrational
g, e.g.,
[0;3.2,4,6,9,8,2,...1=0.3246982. .. (in base B =((1+5!'72)/2)5)
is possibly such a number.
It is easy to show that there exists a number 8=8 (w) satifying
| [0;a1,8z,83,...]=0.a,23,a,... (in base B) (24)
for any given w=aia.as;...€{0,1,...,h}"\{0,1,...h}*0*. For instance, for the
Kolakoski sequence & ,
[0;1,2,2,1,1,2,1,2,2,...1=60.122112122. . ., B =2.837559...;
for the fixed point of a substitution 1—10, 0—1,
[0;1,0,1,1,0,1,0,1,1,...]=BO.101101011..., [3=2.729451....
Can we show the transcendence of such a number B (w) for a nonperiodic fixed
point w of a substitution? We give two conjectures:
(Conjecture 1) For any integer g=h?+h+i (i=0,1, h23), there exits an
irrational number satisfying (20) with (22); such an irrational number is always

transcendental.
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(Conjecture 2) The number B (w) defined by (24) is transcendental for any

nonperiodic word w .

3") Let w be the word corresponding to the partition (9), i.e., w=w (K)
for a curve K={(fo(x),...,f.(x); xER.+} for fi as in Proposition 2.
’Suppose that f(x)€ Q (x) for all i. Then, can we show that p(n;w (K)) is
bounded by a polynomial in n (resp. s) for fixed s (resp. n)?, cf. [T5]. (v, i),

p.214.
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