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Introduction

The purpose of the present paper is to give a family of “non-Torelli”
subgroups of the Teichm\"uller modular group of genus 2 by confirming a
conjecture, posed by Takayuki Oda, on the image of the Jones representation.

In [J], Jones attached to a Young diagram a Hecke algebra $\mathrm{r}\mathrm{e}_{\mathrm{I}^{)\mathrm{r}\mathrm{e}\mathrm{S}}}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$

of t,he braid group $B_{n}$ on $n$ strings. As was shown in [ibid,10], the Jones
representation of $B_{6}$ corresponding to the rectangular Young diagram $\mathrm{f}\mathrm{f}\mathrm{l}$

factors through the Teichm\"uller modular group $\Gamma$ of genus 2, namely, the
mapping class group of a closed orientable surface of genus 2, and we thus get
the representation $\pi$ : $\Gammaarrow GL_{5}(\mathrm{Z}[X, X^{-1}])$ which is explicitly given ([ibid,
p362). Now, for a certain natural number $n$ , specializing $x$ to $exp(2\pi\sqrt{-1}/n)$ ,
we get a representation $\pi_{n}$ : $\Gammaarrow GL_{5}(O\kappa)$ , where $O_{K}$ is the ring of integers
in the n-th cyclotomic field $K$ . Let $F$ be the maximal real subfield of If and
take a non-zero ideal $I$ of $O_{F}$ , the ring of integers of $\Gamma$ . The reduction of $\pi_{n}$

modulo $I_{K}=IO_{K}$ gives a representation $\pi_{n,I}$ : $\Gammaarrow GL_{5}(O_{I}\backslash \cdot/I_{I\backslash }’)$ . Then,
Oda conjectured that the image of $\pi_{n,I}$ is a certain unitary group if $I$ is prime
to an ideal of $O_{F}$ containing $(n)$ . (For the precise formulation, see Section
2).

The main result of this paper is to confirm Oda’s conjecture when $I$

is a product of prime ideals of $O_{F}$ which are inert in $K/F$. The proof
consists of two steps. We first show that $\pi_{n,\wp}$ is irreducible undcr certain
conditions on $n$ and a prime $\wp$ , and then investigate the list of all irreducible
subgroups of $PSL_{5}(Q_{K}/\wp_{K})$ due to Martino and Wagoner [M-W]. For the
case of a product of inert primes, we apply a criterion of Weisfeiler on the
approximation of a Zariski-dense subgroup in a semisimple group over a
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finite ring [W]. This proof is similar to that of Oda and Terasoma $([\mathrm{o}_{-}\mathrm{T}])$

for the similar problem on the Burau representations, where they use the
induction after working with $2\cross 2$ matrices (see also [Be]). Our case is more
complicated, for we work with $5\cross 5$ matrices and so the finite group theory
is more involved.

We also check that the kernel of $\pi_{n,I}$ does not contain the Torelli group
using its explicit generator given by Birmann [B1].

Since the Teichm\"uller modular group is the fundamental group of the
moduli space $\mathcal{M}$ of compact Riemann surfaces of genus 2, our result gives a
tower of 3-folds, namely, finite Galois coverings of $\mathcal{M}$ with the Galois groups
of finite unitary groups.

Notation. $\Gamma^{\prec}\mathrm{o}\mathrm{r}$ an associative ring $R$ with identity , $M_{n}(R)$ denotes the
total matrix algebra over $R$ of degree $n$ , and $GL_{n}(R)$ denotes the groups of
invertible elements of $M_{n}(R)$ . We write $R^{\mathrm{x}}$ for $GL_{1}(R)$ . For $A\in \mathit{1}lf_{n}(R)$ ,
${}^{t}A,$ $tr(A)$ , and $det(A)$ stand for the transpose, trace, and determinant of $A$ ,
respectively. We write $0_{n}$ and $1_{n}$ for the zero and identity matrix in $M_{n}(R)$ ,
respectively, and $e_{ij}$ for the matrix unit and diag $(\cdot)$ for the diagonal matrix.

1. The Jones representation of the Teichm\"uller modular group
of genus 2 and its unitarity

In [J], Jones attached to each Young diagram with $n$ tiles a IIecke algebra
representation of the braid group $B_{n}$ on $n$ strings. As was shown in [ibid,
Section 10], the representation of $B_{6}$ corresponding to the rectangular Young
diagram $\mathrm{E}$ factors through the Teichm\"uller modular group $\Gamma$ of genus 2,
namely, the mapping class group of a closed orientable surface of genus 2.
It is known that $\Gamma$ admits the following presentation ([Bi2], Theorem 4.8, $\mathrm{p}$

183-4).
generators: $\theta_{1},$ $\theta_{2},$ $\theta_{3},$ $\theta_{4},$ $\theta 5$ .
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defining relation:

$\{$

$\theta_{i}\theta_{1+1}.\theta.\cdot=\theta.\cdot+1\theta_{i}\theta:+1(1\leq i\leq 4)$ ,
$\theta_{i}\theta_{j}=\theta_{j}\theta_{i}(|i-j|\geq 2,1\leq i,j\leq 5)$ ,
$(\theta_{1}\theta_{2}\theta_{34}\theta\theta_{5})^{6}=1$ ,
$(\theta_{1}\theta_{2}\theta_{3}\theta 4\theta_{5}^{2}\theta_{4}\theta 3\theta 2\theta_{1})^{2}=1$ ,
$\theta_{1}\theta_{2}\theta 3\theta 4\theta_{5}2\theta 4\theta_{3}\theta 2\theta_{1}$ commutes with $\theta_{i}(1\leq i\leq 5)$ .

The Jones representation of $\Gamma$ mentioned above is given explicitly on
generators as follows ([J], p362).

$\pi$ : $\Gammaarrow GL_{5}(\mathrm{Z}[X, X-1]),$ $x=t^{1/5}$ ;

$\pi(\theta_{1})=X-2,$ $\pi(\theta_{2})=X-2$

$\pi(\theta_{3})=x^{-2},$ $\pi(\theta_{4})=X-2$

$\pi(\theta_{5})=x^{-2}$ .

We see that $\det\pi(\theta_{i})=-1,1\leq i\leq 5$ .
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Let $A=A(x)\in M_{n}(\mathrm{Z}[X, x^{-1}]),$ $x=t^{1/5}$ . We write $A^{*}$ for ${}^{t}A(x^{-1})$ and
call $A$ $x$ -hermitian if $A=A^{*}$ . For a $t$-hermitian matrix $A$ , we define the
unitary group with respect to $A$ by

$U_{n}(A):=\{g\in GL_{n}(\mathrm{Z}[X, X^{-}]1)|g^{*}Ag=A\}$ .
Lemnua 1.1. Let $\pi$ be the representation given in Section 1. Then, there

is a $t$ -hermitian matrix $H\in M_{5}(\mathrm{z}[X, X^{-1}])$ so that the image of $\pi$ is contained
in $U_{5}(H)$ .

Proof. By the straightforward computation, the following x-hermitian
matrix satiafies the desired prope..rty.

$((1+t-(1t^{-1})-(1^{+}+-(1+t-1))(1+l-1)2t-1)$ $1^{-()}-(1+t)+t+t111+t-1$ $(1+t)(1-(1+l-1)-(1+t^{-}1)-(1+t^{-}2+1t^{-1}))$ $1+t-(1t)-(1+t1^{+}1+t)-1$ $1+t+-(1-(1+lt)11^{+}t)-1)$

If $H’$ is such a matrix, then $H’H^{-1}$ commutes with $\pi(\theta_{i}),$ $1\leq i\leq 5$ . By
the computation, we check that $H’H^{-1}\in \mathrm{Q}(x)^{\mathrm{x}}1\mathrm{s}$ .

We write $h=h_{t}$ for the matrix in the proof. We see that $\det(h_{t})$ $=$

$(t+t^{-1})^{4}(1+t+t^{-1})$ .

2. The reduction of the specialized Jones representation at root
of unity and the conjecture of Oda

Let $n$ be a natural number. We assume that $n$ is bigger than 2 and prime
to 10. Let $\eta=exp(2\pi\sqrt{-1}/n)$ and $\zeta=\eta^{5}$ . Set $I\iota’=\mathrm{Q}(\zeta),$ $O_{K}=\mathrm{Z}[\zeta],$ $F=$

$\mathrm{Q}(\zeta+\zeta^{-1})$ and $O_{F}=\mathrm{Z}[\zeta+\zeta^{-1}]$ .
By specializing $tarrow\zeta,$ $x=t^{1/5}arrow\eta$ in the representation $\pi$ , we get a

representation
$\pi_{n}$ : $\Gammaarrow GL_{5}(\mathcal{O}_{K})$ .

Take a non-zero ideal $I$ of $O_{F}$ which is prime to $n$ , and set $I_{I\mathrm{s}’}=IO_{K}$ . The
reduction of $\pi_{\zeta}$ modulo $I_{I<}$. defines the representation

$\pi_{n,I}$ : $\Gammaarrow GL_{5}(O_{K}/I_{I\mathrm{f}})$ .
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Then, $\pi_{n,I}$ certainly inherits the unitarity from $\pi$ .

Lemma 2.1. The image of $\pi_{n,I}$ is contained in

$U_{5}(\mathcal{O}_{K}/I_{I\backslash }\cdot;h_{n,I}):=\{g\in GL_{5}(O\kappa/I_{K})|g^{*}h_{Ig}=h_{I}\}$ ,

where $h_{n,I}:=h_{(}$ mod $I_{K}$ and $g^{*}=^{t}g^{\tau_{1}}\tau$ is the involution induced from the
generator of $\mathrm{G}\mathrm{a}1(K/F)$ .

Proof. Immediate from Lemma 1.1. $\square$

To formulate the conjecture, we twist $\pi_{I}$ a little bit. Let $\chi$ : $\Gammaarrow O_{I\mathrm{s}}^{\mathrm{x}}$ ,

be the character defined by $\chi(\theta.\cdot)=-1$ , and set $\chi_{I}:=\chi$ mod $I_{K}$ . We then
consider $\rho_{I}:=\pi_{n,I}\otimes\chi_{I}$ . Since $\det(\pi_{\zeta(\theta_{i}))}=-1$ , by Lemma 2.1, we have
$\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ inclusion

$\rho_{I}(\Gamma)\subset SU_{5}(O_{K}/I_{I<}’;h_{n},I):=\{g\in U_{5}(O_{K}/I_{I\{^{-;}}h_{n,I})|\det(g)=1\}$ .
Then, the conjecture posed by Oda is formulated as follows.

Conjecture 2.2. There is a non-zero ideal $C$ of $O_{F}$ containing $(n)$ so
that the image of $\rho_{n,I}$ coincides with $SU_{5}(h_{n,I})$ if I is prime to $C$ .

3. Non-split prime case

In this section, we verify Conjecture 2.2, when $I$ is a maximal ideal $\wp$

of $O_{\Gamma}$, which is inert in $K/F$ . Set $\mathrm{F}_{\wp}=\mathcal{O}_{F}/\wp,$ $\mathrm{F}=\mathrm{F}_{\wp K}=O_{K}/\wp_{K}$ for
simplicity. We simply write $\pi_{\wp}$ and $\rho_{\wp}$ for $\pi_{n,\wp}$ and $\rho_{n,\wp}$ , respectively, also $h_{\mathcal{D}}$

‘
for $h_{n,\wp}$ .

First, the following lemma shows each $\pi_{\wp}(\theta_{i})$ is a quasi-reflection.

Lemma 3.1. Assume that $\wp$ is prime to $1+\zeta$ . Let $V=\mathrm{F}^{\oplus 5}$ be the
representation space of $\pi_{\wp}$ . For each $1\leq i\leq 5$ , there are subspaces $X_{i}$ and
Y. of $V$ such that

$V=X_{i}\oplus Y_{i}$ , $dimX_{i}=3,$ $dim\mathrm{Y}_{i}=2$ ,
$\pi_{\wp}(\theta_{i})|xi=-\eta^{-2}idX_{i}$ , $\pi_{\mathrm{P}}(\theta.\cdot)|\mathrm{Y}.\cdot=\eta i3dY_{i}$ ,
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where $\eta$ denotes a primitive n-th root of 1 in $\mathrm{F}$ by abuse of notation.

Proof. By the direct computation, $X_{1}$ and $Y_{i}$ are given as follows:

$X_{1}=\{^{t}(x_{1}, x_{2},0, X_{4},0)\}$ , $Y_{1}=\{^{t}(y_{1}, y2, (1+\zeta)y_{2}, y_{2}, (1+\zeta^{-1})y_{1})\}$

$X_{2}=\{^{t}(0,0, x_{3}, x_{4}, X_{5})\}$ , $Y_{2}=\{^{t}((1+\zeta)y_{1}, (1+\zeta^{-1})y_{2}, y_{2}, y1, y1)\}$

$X_{3}=\{^{t}(x_{1}, x_{2},0,0, X5)\}$ , $Y_{3}=\{^{t}(y_{1}, y_{2}, (1+\zeta)y_{2}, (1+\zeta^{-1})y1,y_{2})\}$

$X_{4}=\{^{t}(0, x_{2}, x_{3,4}x,0)\}$ , $Y_{4}=\{^{t}((1+\zeta)y_{1}, y_{1}, y2, y_{1}, (1+(^{-1})y_{2})\}$

$X_{5}=\{^{t}(x_{1},0,0, x_{4}, X_{5})\}$ , $Y_{5}=\{^{t}(y_{1}, (1+\zeta^{-1})y_{1}, (1+\zeta)y_{2}, y_{2}, y2)\}$ ,

where $x_{i}’ \mathrm{s}$ and $/li’ \mathrm{S}$ run over $\mathrm{F}$ and $(=\eta^{5}$ . $\square$

Lemma 3.2. Assume that $\wp$ is prime to $(1+\zeta)(\zeta+\zeta^{-1})(1+\zeta+\zeta^{-1})$ .
$Then_{J}$ the representation $\pi_{\wp}$ is irreducible.

Proof. Suppose that $V$ has $\pi_{p}(\Gamma)$ -invariant subspace $W\neq 0,$ $V$ . First, as-
sume $\dim(W)=1$ . Let $w$ be a base of $W$ and write $w=x+y,$ $x\in X_{1},$ $y\in Y_{1}$ .
If $\pi_{\wp}(\theta_{1})w=\alpha w,$ $\alpha\in \mathrm{F}^{\mathrm{X}}$ , by Lemma 4.1, we have $(\alpha+\eta^{2})x+(\alpha-\eta^{3})y=0$ ,
from which we see that $w\in X_{1}$ or $w\in Y_{1}$ . Let $w={}^{t}(x_{1}, x_{2},0, x_{4},0)\in X_{1}$ .
Then, $\pi_{\wp}(\theta_{2})w=\eta^{-2}{}^{t}(\zeta_{X_{1}}, \zeta_{X}2, \zeta x_{2}, x_{1}-x4, x1)$ should be in $X_{1}$ and so we
get $w=0$ . This is a contradiction. Similarly, $w$ can not be in $Y_{1}$ . Hence,
$\dim(W)>1$ . Note that the hermitian form $h_{n,\wp}$ is non-degenerate by our
assumption. So, we may assume $\dim(W)=2$ , since the orthogonal comple-
ment of $W$ with respect to $h_{n,\wp}$ is $\pi_{\wp}(\Gamma)$ -invariant. For this case, consider
the exterior square $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\wedge^{2}\pi_{\wp}$ : $\Gammaarrow GL(\wedge^{2}V)$ . Then, $\wedge^{2}W$ is
an invariant subspace $\mathrm{o}\mathrm{f}\wedge^{2}V$ and $\dim(\wedge^{2}W)=1$ , and the similar argu-
ment to the above can be applied. Fix a basis of $X_{1}$ ; $v_{1}={}^{t}(1, \mathrm{o}, 0, \mathrm{o}, 0),$ $v_{2}=$

${}^{t}(0,1,0,0,0),$ $v_{3}={}^{t}(0,0,0,1,0)$ and a basis of $Y_{1}$ ; $v_{4}={}^{t}(1,0,0,0,1+\zeta^{-}1),$ $v5=$
${}^{t}(0,1,1+\zeta, 1,0)$ and set $V_{1}=\mathrm{F}v_{1}\wedge v_{2}+\mathrm{F}v_{2}$ A $v_{3}+\mathrm{F}v_{1}\wedge v_{3},$ $V_{2}=\mathrm{F}v_{4}$ A $v_{5}$ , and
$V_{3}=\mathrm{F}v_{1}$ A $v_{4}+\mathrm{F}v_{1}$ A $v_{5}+\mathrm{F}v_{2}$ A $v_{4}+\mathrm{F}v_{2}$ A $v_{5}+\mathrm{F}v_{3}$ A $v_{4}+\mathrm{F}v_{3}$ A $v_{5}$ . Then, we
get the $\mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\wedge^{2}V=V_{1}\oplus V_{2}\oplus V_{3}$, and by Lemma 4.1, $\pi_{\mathrm{p}}(\theta_{1})$ acts
on $V_{1},$ $V_{2},$ $V_{3}$ by the scalar multiples $\eta^{-4},$ $\eta^{6},$

$-\eta$ , respectively, from which we
see $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\wedge^{2}W$ sits in one of $V_{i^{\mathrm{S}}}’$ . Suppose $W=\mathrm{F}w\subset V_{1}$ . Then, $\wedge^{2}\pi(\theta_{j})w$ ,
$2\leq j\leq 5$ , should be in $V_{1}$ . Using the above base of $V_{1}$ and the assumption
on $\wp$ , just write down these and we get $w=0$ . Similarly, $W$ can’t be in
$V_{2},$ $V_{3}$ . We conclude $\pi_{\wp}$ is irreducible. $\square$ ..

47



Now, we shall determine the image of $\rho_{\wp}$ and there is a list of irreducible
subgroups of $PSL_{5}(\mathrm{F})$ due to Martino and Wagoner [M-W]. Here, we assume
further that $\wp$ is prime to 2. By abuse of notation we write $\rho_{\wp}$ for the asso-
ciated projective representation and set $G=\rho_{\wp}(\Gamma)$ , which is an irreducible
subgroup of $PSL_{\mathrm{s}(\mathrm{F}}$ ) by Lemma 3.2.

First, we have the following

Lemma 3.3. The group $G$ can not be realized over $\mathrm{F}_{p^{a}},$ $a<2f$ , where
$p^{2j}$ is the $ca\uparrow\gamma finality$ of $\mathrm{F}$

$\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{i}P_{\Gamma}oof.\mathrm{s}_{\mathrm{u}}\mathrm{P}\mathrm{p}_{\mathrm{o}1\mathrm{i}1()}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}G\mathrm{S}\mathrm{u}\mathrm{b}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{o}\mathrm{f}PSL5(\mathrm{F}_{p^{a}}),a<2f.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{p}\mathrm{y}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{a}x_{-}^{\mathrm{i}_{\mathrm{S}}\mathrm{a}}\eta^{-}2(X+\eta^{3})\mathrm{o}\mathrm{f}\rho_{\wp}(\theta 1)\mathrm{i}\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{V}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{h}\mathrm{e}$

action of the Galois group $\mathrm{G}\mathrm{a}1(\mathrm{F}_{p^{2\prime}}/\mathrm{F}_{)^{a}},)=<\sigma>$, where $\sigma=$ Frobenius
automorphism, and so $\eta^{\sigma}=\eta^{p^{a}}$ , by $(\eta^{-2})^{\sigma}=\eta^{-2}$ . Since $(n, 10)=1,$ $p^{a}\equiv 1$

mod $n$ . This contradicts to the minimality of $2f$ so that $p^{2j}\equiv 1$ mod $n$ . $\square$

By Lemma 3.2, the following groups in the list of Martino-Wagoner can
not be $G:(1.3)-(\mathrm{a}),$ $(1.5),$ $(1.7),$ $(1.10)-(\mathrm{a}),$ $(1.12),$ $(1.13),$ $(1.14)-(\mathrm{a}),$ $(1.15)$ ,
(1.16), where the numbers are those in [M-W].

Next, since the image of $\rho_{\wp}$ is contained in $SU_{5}(o_{K}/\wp_{K}; h_{\mathrm{P}})\simeq SU_{5}(\mathrm{F})$,
$G$ can not be $PSL_{5}(\mathrm{F}),$ $PSO5(\mathrm{F})$ and $P\Omega_{5}(\mathrm{F})$ , by comparing the orders. So,
the groups (1.4), (1.8), (1.9) and $(1.10)-(\mathrm{b})$ in [M-W] are excluded.

The following useful lemma was suggested by Eiichi Bannai.

Lemma 3.4. The subgroup of $G$ generated by $\rho_{p}(\theta_{1})$ and $\rho_{\wp}(\theta_{3})$ is iso-
morphic to $\mathrm{Z}/2n\mathrm{Z}\cross \mathrm{Z}/2n\mathrm{Z}$ .

Proof. By Lemma 3.1, the order of $\rho_{p}(\theta_{i})$ is $2n$ . We easily check $<$

$\rho_{\wp}(\theta_{1})>\cap<\rho_{p}(\theta_{3})>=id$ . $\square$

The group (1.2) in [M-W] is a subgroup of the group which is an exten-
sion of a cyclic subgroup by $\mathrm{Z}/5\mathrm{Z}$ . So, by Lemma 3.4, $G$ can not be this
group. Next, (1.11) is $PSL_{2}(\mathrm{F})$ or $PGL_{2}(\mathrm{F})$ . We have a list of subgroups of
$PSL_{2}(\mathrm{F})$ due to Dickson, [H], p213, Satz 8.27. Looking at this, by Lemma
3.3, $G$ can not be a subgroup of $PSL_{2}(\mathrm{F})$ . Since $PGL_{2}(\mathrm{F})$ is an extension
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of $PSL_{2}(\mathrm{F})$ by a cyclic subgroup of order 2, $G$ can’t be in $PGL_{2}(\mathrm{F})$ . The
similar argument can be applied to the groups $(1.3)-(\mathrm{b}),(\mathrm{c})$ .

Finally, the group (1.1) can be excluded as follows (E. Bannai). The
group (1.1) is an irreducible subgroup of $A$ , where $A$ is a global stabilizer in
$PSL_{5}(\mathrm{F})$ of a simplex. Note that $A$ is a monomial group and has a normal
subgroup $N$ so that $A/N\simeq S_{5}=\mathrm{t}\mathrm{h}\mathrm{e}$ symmetric group on 5 letters. Assume
that $G$ is an irreducible subgroup of $A$ . Then, $\overline{G}=G/(G\cap N)$ is a subgroup
of $S_{5}$ and then $\overline{G}$ can be one of $S_{5},$ $A_{5}$ , Frobenius group of order 20, dihedral
group of order 10, or cyclic group of order 5. The images of $\rho_{\rho}(\theta.)$ in $\overline{G}$ satisfy
the relation induced from that of the mapping class group, from which we
can conclude $\overline{G}$ is cyclic of order 5. This is a contradiction by the assumption
$(n, 10)=1$ .

Summing up the above, we have

Theorem 3.5. Assume that $n$ is prime to 10 , bigger than 2 and that a
prime ideal $\wp$ of $O_{F}$ does not divide $2(1+\zeta)(\zeta+\zeta^{-1})(1+\zeta+\zeta^{-1})$ and is
inert in $K/F$ . $Then_{J}$ the image of $\rho_{\wp}$ coincides with $SU_{5}(O_{K}/\wp_{K};h_{\mathrm{P}})$ .

4. The case of a product of non-split primes

In this section, we extend Theorem 3.5 to the case where $I$ is a product of
non-split primes. For this, we apply a criterion of Weisfeiler on the approxi-
mation of a Zariski-dense subgroup in a semisimple group over a finite ring
to our situation. In the following, we simply call (i) $\sim(\mathrm{i}\mathrm{v})$ for Weisfeiler’s
assumptions (i) $\sim(\mathrm{i}\mathrm{v})$ in (7.1) of [W].

Let $I$ be a product of different prime ideals $\wp_{i}$ of $\acute{\mathcal{O}}_{F},$

$I= \prod_{i=1}^{r}\wp_{i}^{\mathrm{e}}$ , where
each $\wp_{i}$ is inert in $K/F$ and prime to $6(1+\zeta)(\zeta+\zeta^{-1})(1+\zeta+\zeta^{-1})$ . Set
$A=O_{F}/I$ and $B=O_{K}/I_{I\backslash }’,$ $I_{I\{}\cdot=IO_{K}$ . Write $\mathrm{F}_{q_{1}}$. $=O_{F}/\wp_{i},$ $q_{i}=N\wp_{i}$ , for
simplicity. The radical of $A$ is $R= \prod_{1=1}^{r}.\wp_{i}$ .

Let $G_{h}$ and $G$ be the special unitary group schemes over $A$ with respect to
the hermitian forms $h_{I}=h_{\zeta}$ mod $I_{K}$ and $1_{5}\in M_{5}(B)$ on the free B-module
$M=B^{\oplus 5}$ , respectively.

Our task is to show $G_{h}(A)=\rho_{I}’(\Gamma)$ . Fixing an isometry $\phi$ : $(M;h_{I})\simeq$

$(M;1_{5})$ of hermitian modules, it is reduced to show $G(A)=\Gamma’$ , where $\Gamma’=$

$\phi\rho_{I}(\mathrm{r})\phi-1$ .
Let $T_{1}$ be the norm 1 torus attached to the quadratic extension $B/A$;
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$T_{1}:=\mathrm{K}\mathrm{e}\mathrm{r}(R_{B/A(\mathrm{G}_{\mathrm{m}}},B)arrow N\mathrm{G}_{\mathrm{m}’ A})$ , where $\mathrm{G}_{\mathrm{m}}$ is the split multiplicative
group scheme of dimension 1 and $R_{B/A}$ is the Weil restriction of the scaler,
and $N$ is the norm map attached to $B/A$ .

A maximal $A$-torus of $G$ is given by $T:=\{t=diag(t_{1},t_{2},t_{3}, t4, t_{5})|t_{1}$. $\in$

$T_{1},$ $\prod_{i1}^{5}=t_{i}=1\}$ . Fix an isomorphism $T_{1}\simeq \mathrm{G}_{\mathrm{m}}$ over $B$ and define the
character $\chi_{i}$ of $T$ by $\chi_{i}(t):=t_{i},$ $1\leq i\leq 4$ . Then, the character module
$X^{*}(T)$ of $T$ is generated by $\chi_{i},$ $1\leq i\leq 4$ . Suppose that $\chi|_{T(\mathrm{r}_{q},)}=x’|\tau(\mathrm{F}_{q:})$

for $\chi,$ $\chi’\in X^{*}(T)$ . Then, writing $\chi$ and $\chi’$ as products of powers of $\chi_{i}’ \mathrm{s}$ , we
easily see that $\chi=\chi’$ . So, the assumption (i) is just $q_{i}\geq 10,1\leq i\leq r$ . The
assumption (ii) is satisfied for our $G$ and (iii) is a consequence of Theorem
3.5.

Finally, let $Ad:G(A)arrow GL(L(A))$ be the adjoint representation, where
$L$ is the Lie algebra of $G$ and given by $L(A)=\{X\in M_{5}(B)|tr(X)=$
$0,{}^{t}X^{\sigma}+X=0\}$ . Write $B=A+A\beta,$ $\beta^{2}\in A$ , and take $\beta(e_{11^{-e)}}55,$ $\cdots,$ $\beta(e44^{-}$

$e_{55}),$ $e_{ij}-e_{j}i,$ $\cdots,$ $\beta(eij+e_{j}.),$ $(i<j)$ as a basis of $L(A)$ . Using this basis, a
straightforward calculation shows that $tr(Ad(g))=N_{B/A}(t_{\Gamma}(g))-1$ for $g\in$

$G(A)$ , where $N_{B/A}$ is the Norm map attached to $B/A$ and $N_{B/A}(tr(\rho_{I}(\theta_{1})))=$

$13-6(\zeta+\zeta^{-1})$ . From this, we get $\mathrm{Z}[trAd(\mathrm{r}’)\mathrm{m}\mathrm{o}\mathrm{d} R2]=A/R^{2}$ which certifies
the assumption (iv).

Summing up the above, we have

Main Theorem 4.1. Let I be a product of prime ideals $\wp_{i}$ of $\mathcal{O}_{F}$ . As-
sume that each $\wp_{i}$ is inert in $K/F$ and prime to $6(1+\zeta)(\zeta+\zeta^{-1})(1+\zeta+(^{-1})$

and $N\wp_{i}\geq 10$ . Then, the image of $\rho_{I}$ coincides with $SU_{5}(\mathcal{O}_{K}/I_{I\{’}, h_{I})$ .

5. Comparison with the Torelli group and coverings of the mod-
uli space of compact Riemann surfaces of genus 2

Let $Sp_{2}(\mathrm{Z})$ be the Siegel modular group of degree 4, namely, the group
consisting of all $S\in GL_{n}(\mathrm{Z})$ such satisfing

$SJ{}^{t}S=J$, $J=$ .

Let $\theta$ : $\Gammaarrow Sp_{2}(\mathrm{Z})$ be a canonical homomorphism induced by the abelian-
ization map of $\Gamma$ and the Nielsen isomorphism. We call the kernel of $\theta$ the
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Torelli group of genus 2 and write $\Gamma(.N)$ for $\theta^{-1}(Sp2(\mathrm{z};N))$ , where $Sp_{2}(\mathrm{Z};N)$

is the principal congruence subgroup of $Sp_{2}(\mathrm{Z})$ modulo a natural number $N$ .
The following result of Birmann allows us to compare our groups $\Gamma_{n,I}$ with
the Torelli group and $\Gamma(N)$ .

Lemma 5.1.([Bil], Theorem 2) The Torelli group of genus 2 is generated
by the normal closure of $(\theta_{1}\theta_{2}\theta_{1})^{4}$ .

Proposition 5.2. Under the same assumption in Theorem 4.1, the group
$\Gamma_{n,I}$ does not contain the Torelli group, hence any $\Gamma(N)$ .

Proof. It is straightforward to check that $\rho n,I((\theta 1\theta 2\theta_{1})^{4})\neq 1$ . $\square$

The geometrical interpretation of the above result is as follows.
Let $\mathcal{T}$ be the Teichm\"uller space of genus 2 and $\mathcal{M}=T/\Gamma$ be the moduli

space of compact Riemann surfaces of genus 2. Let $S$ be the Siegel upper
half space of degree 4 and $A=S/Sp_{2}(\mathrm{Z})$ be the moduli space of principally
polarized abelian varieties. The period map $\mathcal{T}arrow S$ is compatible with the
actions of $\Gamma,$ $Sp_{2}(\mathrm{Z})$ and $\theta$ , and thus we obtain the Torelli map $\mathcal{M}arrow A$ .

The Galois covering $A_{N}=S/Sp_{2}(\mathrm{Z};N)$ over $A$ with the Galois group
$Sp_{2}(\mathrm{Z}/N\mathrm{Z})$ is the rnoduli space of principally polarized abelian varieties with
level $N$-structure. Then, Corollary 5.2 tells us that the spaces $\mathcal{T}/\Gamma_{n,I}$ give
a family of Galois coverings over $\mathcal{M}$ with the Galois groups $SU_{5}(O_{K}/I_{I<}\cdot)$ ,
which can not be obtained by the pull-back of any $A_{N}$ via the Torelli map.
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