On Certain Starlike Functions

Mamoru Nunokawa, Hitoshi Saitoh

Abstract

Let $f(z)$ be analytic in $|z| < 1$, $f(0) = f'(0) - 1 = 0$ and suppose that

$$1 + \text{Re}(zf''(z)/f'(z)) < 3/2$$

in $|z| < 1$. Then, R. Singh and S. Singh [Colloquium Mathematicum, 47, 309-314 (1982)] proved that $f(z)$ is starlike in $|z| < 1$. The authors proved that if $f(z)$ is analytic in $|z| < 1$, $f(0) = f'(0) - 1 = 0$ and suppose that

$$1 + \text{Re}(zf''(z)/f'(z)) < 1 + (\alpha/2)$$

for $0 < \alpha \leq 1$, then we have

$$|\text{arg}(zf'(z)/f(z))| < (\pi\alpha)/2$$

in $|z| < 1$.

1 Introduction.

Let A denote the class of functions $f(z)$ analytic in the open unit disk $U = \{z : |z| < 1\}$ and normalized so that $f(0) = f'(0) - 1 = 0$.

A function $f(z) \in A$ is called starlike with respect to the origin if

$$\text{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0 \quad \text{in} \quad U.$$

It is well known that every starlike function is univalent in U. Ozaki [2] proved that if $f(z) \in A$ and

$$1 + \text{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{3}{2} \quad \text{in} \quad U,$$

then $f(z)$ is univalent in U. R. Singh and S. Singh [4, Theorem 6] proved that if $f(z) \in A$ and satisfies the condition (1), then $f(z)$ is starlike in U.

In this paper, we need the following lemma.
Lemma 1. Let \(f(z) \in A \) and starlike with respect to the origin in \(U \).
Let \(C(r, \theta) = \{ f(te^{i\theta}) : 0 \leq t \leq r \} \) and let \(T(r, \theta) \) be the total variation of \(\arg f(te^{i\theta}) \) on \(C(r, \theta) \), so that
\[
T(r, \theta) = \int_0^r |\frac{\partial}{\partial t} \arg f(te^{i\theta})| dt.
\]
Then we have
\[
T(r, \theta) < \pi.
\]
We owe this lemma to Sheil-Small [5, Theorem 1].

2 Main result.

Main Theorem. Let \(f(z) \in A \) and
\[
1 + \text{Re} \frac{zf''(z)}{f'(z)} < 1 + \frac{\alpha}{2} \quad \text{in} \quad U,
\]
where \(0 < \alpha \leq 1 \).
Then we have
\[
|\arg \frac{zf'(z)}{f(z)}| < \frac{\pi}{2} \alpha \quad \text{in} \quad U
\]
or \(f(z) \) is starlike in \(U \).

Proof. Let us put
\[
\frac{2}{\alpha}(1 + \frac{\alpha}{2} - 1 - \frac{zf''(z)}{f'(z)}) = \frac{zg'(z)}{g(z)}
\]
where \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \).
From the assumption (2), we have that
\[
\text{Re} \frac{zg'(z)}{g(z)} > 0 \quad \text{in} \quad U.
\]
This shows that \(g(z) \) is starlike and univalent in \(U \).
From (3) and by an easy calculation (see e.g. [1]), we have
\[
f'(z) = \left(\frac{g(z)}{z} \right)^{-\alpha/2}.
\]
Since \(g(z) \) is univalent in \(U \), we have that
\[
f'(z) \neq 0 \quad \text{in} \quad U.
\]
Therefore, we have

\[
\frac{f(z)}{zf'(z)} = \int_0^1 \frac{f'(tz)}{f'(z)} dt \\
= \int_0^1 t^{\alpha/2} \left(\frac{g(tre^{i\theta})}{g(re^{i\theta})} \right)^{-\alpha/2} dt
\]

where \(z = re^{i\theta}, 0 \leq \theta < 2\pi \) and \(0 < r < 1 \).

Since \(g(z) \) is starlike in \(U \), from Lemma 1, we have

\[
-\pi < \arg g(tre^{i\theta}) - \arg g(re^{i\theta}) < \pi
\]

for \(0 < t \leq r \).

Putting

\[
s = t^{\alpha/2} \left(\frac{g(tre^{i\theta})}{g(re^{i\theta})} \right)^{-\alpha/2},
\]

then we have

\[
\arg s = -\frac{\alpha}{2} \arg \left(\frac{g(tre^{i\theta})}{g(re^{i\theta})} \right).
\]

From (5) and (6), \(s \) lies in the convex sector

\[
|\arg s| \leq \frac{\pi}{2}\alpha
\]

and the same is true of its integral mean of (4), (see e.g. [3, Lemma 1]).

Therefore we have

\[
|\arg \frac{f(z)}{zf'(z)}| < \frac{\pi}{2}\alpha \quad \text{in } U
\]

or

\[
|\arg \frac{zf'(z)}{f(z)}| < \frac{\pi}{2}\alpha \quad \text{in } U.
\]

This shows that

\[
\Re \frac{zf'(z)}{f(z)} > 0 \quad \text{in } U.
\]

This completes our proof and this is another proof of [4, Theorem 6].
References

Mamoru Nunokawa
Akira Ikeda
Naoya Koike
Yoshiaki Ota
Department of Mathematics
University of Gunma
Aramaki, Maebashi, Gunma 371, Japan

Hitoshi Saitoh
Department of Mathematics
Gunma College of Technology
Toriba, Maebashi, Gunma 371, Japan