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On Solution in Closed Form of
Nonlinear Integral and Differential Equations
of Fractional Order

Anatoly A. Kilbas? (NI N—VEMKF)
Megumi Saigo® (T4 &) (BREKFEEEE)

Abstract

Solutions in closed form of certain nonlinear integral equations and differential
equations of fractional and integral order are given. Uniqueness of solutions of in-
tegral equations and applications to solving boundary value problems for differential
equations are investigated.

1. Introduction

The paper is devoted to study the nonlinear Volterra integral equations

(1L1) o™(z) = ;EZ)) /Ox G _“_’(f))l_a dt+ f(z) (0<z<d< o)

for @ > 0,m € R (m # 0,1), and the nonlinear differential equations of fractional order
a>0 ’ :

(1.2) (D§1y) (2) = a(z)y™(@) + f(z) (0<z<d< o0)

for m € R (m # 0, 1) with the Riemann-Liouville fractional derivative [23, Section 2]

[a]+1 z ,
(13) (Day)(z):(%) i L @ o,

where [a] and {a} are integral and fractional parts of o, respectively.
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The equation (1.1) being arisen in the nonlinear theory of wave propagation [13] and
water perlocation [8], [21] belongs to Abel’s type integral equations [9], [23] and contains the
Riemann-Liouville fractional integral [23, Section 2]

(1.4) (Ig+(,p) (z) = r(la) /OI G f(:))l;a dt (a>0).

Therefore we call (1.1) the integral equation of fractional order.
The equation (1.1) with m > 0 and the equation

(1.5) o™(z) = a(z) /0 “k(e - t)p(t)dt + f(z) (0<z<d< )

for « > 0,m € R (m # 0,1) with the convolution kernel k(z — t) were studied in [1], [4],
(6], [10], [19], [20], [21] for a(z) = 1 and in [2], [3], [5], [7] in general case. These papers in
the main were devoted to study the existence and uniqueness for the solution ¢(z) of the
nonhomogeneous equation (1.5) with m > 1, the stability of such a solution and the method
of successive approximation to constract this solution. Some results of such a type for the
nonlinear equation (1.5) with a(z) = 1 were obtained in [1], [4] and [10] for 0 <m < 1, in
[12] for m < —1, and for the equation (1.1) with m > 0 in [14]. We also note that in [15],
[16], [17] and [22] we investigated asymptotic behavior of the solution ¢(z) of the equation
(1.1) at zero, provided that a(z) and f(z) have special power asymptotics at zero and in [11]
we found the first term of the asymptotics of the solution ¢(z) of the equation (1.5) at zero
in the case when a(z), k(z) and f(z) have power asymptotics at zero. Problems of existence
and uniqueness of the solutions of Cauchy type and Dirichlet type for nonlinear differential
equations of fractional order are also studied by many authors (see [23, Sections 42-43] and
[18]). Explicit solutions are known only for the simplest, basically linear, fractional integral
and differential equations (1.1) and (1.2).

The paper deals with solution in closed form of the nonlinear fractional integral and dif-
ferential equations (1.1) and (1.2) with a(z) = az' (a,! € R, a # 0) and monomial free term
f(z) = bz™ (b,n € R). Section 2 is devoted to obtain the explicit solutions of nonhomo-
geneous and homogeneous (f(z) = 0) integral equations. In Section 3 we give solutions in
closed form of nonhomogeneous and homogeneous differential equations of fractional order,
in Section 4 of the corresponding ordinary differential equations. Section 5 deals with study-
ing the uniqueness of the obtained solutions of integral equations. In Section 6 we discuss
applications to solve the boundary value problems for differential equations.

2. Solution of Nonlinear Integral Equations

We consider the nonlinear integral equation (1.1) with a(z) = az! and f(z) = bz™ for
a,b,l,n €R (a+#0,b#0):

™) Lo el n
(2.1) " (z) = I‘a(iy) /0 @ f(t))1~a dt+bz" (0<z<dS 00).
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withm € R (m # 0,1) and a > 0. We shall seek a solution ¢(z) of the equation (2.1) in the
form

(2.2)  p(a) =

Then according to (1.4) and the relation in [23, (2.44))

(3#)e1- i3

for 8 > —1. We suppose that fm = [+ a + = n and that the equation
| al'(B+1)

Tatprns 70

(2.4) -
is solvable with £ = ¢ being its solution. Then it is diréctly verified that (2.2) givés‘ the
solution of the equation (2.1). From here we arrive at the following statements.

Theorem 1. Let a >0, a,b,m € R (a,b# 0;m # 0,1) and 8 > —1. Let the equation
(2.4) with a,b € R (a,b # 0) be solvable with £ = c being its solution. Then the nonlinear
integral equation

ax—a+(m—l)ﬂ z SD(t)
2. ™(z) = ™o d<
(2.5) o™ (x) o) /0 CEDET dt + b:?: (0<z<d< )

is solvable and its solution ¢(x) has the form (2.2).

Corollary 1.1. Let o > 0 and a, b, m €eR (a, b#0;m #0,1). Let the equation

a

(26) N P

£—b=0

is solvable and let ¢ = c be its solution. Then the nonlinear integral equation

(2.7) o™ (z) = ‘;‘E:; /0 ’ (z f(tt))l_a dt+b (0<z<d< o)

is solvable and its solution ¢(z) is the constant:

(2.8) o(z) =c

Remark 1. The solvability of the equation (2.5) depends on that of the algebraic equa-
tion (2.6). As it was proved in [11], the latter equation can have one or two positive solutions
for m > 0. ‘ | '
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Now we consider the homogeneous nonlinear integral equation

. my _ azTotmDE e p(t)
(2.9) @) = "5 /0 o & (0<z<dSw)

corresponding to the equation (2.5) provided that the conditions in Theorem 1 are valid.
The direct calculation proves that the function

/(m—1)
I'(B+1a ! 5
2.1 S I
(2.10) wlz) {F(a+ﬂ+ 1)} *
gives an exact solution of the equation (2.9). Then, setting [ = —a + (m — 1)3, we come to
the result:

Theorem 2. Let o >0, a,m,l € R (m # 0,1) such that

l+a

211
(2.11) m—1

> —1.

Then the homogeneous nonlinear integral equation

!

(2.12) o™ (z) = Fa(:;) /Of . f(tt))l—a dt (0<z<dZ£ o)

is solvable and its solution ¢(x) has the form

f r{+a)/m=DY+Da Y™V
(2.13) pla) = {I‘(a +{(l+a)/(m-1)}+ 1)} zreln.

Corollary 2.1. Ifa>0,a,m € R (m # 0,1), then the homogeneous nonlinear integral
equation

(2.14) o™ (z) = /0 ’ = f(:))l_a dt (0<z<d< oo),

is solvable and its solution ¢(x) is given by

1/(m~1)
(2.15) o(z) = {F(i'—)} _

a+1

Remark 2. In particular, the equation (2.12) with m > 1 and a = I'(a+5+1)/T(6+1)
arose in the heat theory and its solution was obtained in [24]. For the case I = 0 and a = ['(c)
with m < —1 the solution of the equation (2.12) was given in [12].
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3. Solution of Nonlinear Differential Equations of Fractional Order

Now we consider the nonlinear differential equation (1.2) with a(z) = az! and f(z) = bz™
with a,b,[,n € R (a # 0;b # 0):

(3.1) A (D§y)(z) = az'y™(z) + b2 (0 <<z <‘d < o)

form €R (m #0,1),a > 0. Seeking the solution ¢(z) of the eciuation (3.1) in the form

(3.2) : y(z) = Cz”
by using the relation
F(v+1) -
o 1y - o
(3.3) | @%g)@) ey

for v > —1 (see [23, (2.26)]), similar arguments to Theorem 1 imply that
Theorem 3. Let o >0,a,bbmeR (d, b 0;m #0,1) and vy > —1. Let the equation

C(vy+1)

(3.4) a™ — T —at1)

£4+b=0

be solvable with £ = C being its solution. Then the nonlinear differential equation of
fractional order ' :

(3.5) - (D0+y) (z) = az=™"*y™(2) £ b2 (0 <z < d £ o0)
Is solvable and its solution y(z) has the form (3.2).

Corollary 3.1. Let a > 0, a,b,m € R (a,b # 0;m # 0, 1) and k = 1,2,---, —[~aq].
Then the nonlinear differential equation of fractional order

(3.6) (Do+y) (z) = ag™F=)kym () £ bz (0 -< z<d< o0)

is solvable and its solution y(z) is given by

1/m
(3.7) y(z) = <~é> zo7k,

Corollary 3.1 follows from Theorem 3 by setting v = o — k (k=1,2,---,~[~q]) and
taking into account the relation (see [23, (1.57)]) ‘

1

(38) z—=k F( )

=0 (k=0,1,2,---).
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Corollary 3.2. Let a > 0 (a # 1,2,---) and a,b,m € R (a,b # 0;m # 0,1). Let the
equation

(3.9) “fm"r_(i“é——a)*'b:o

be solvable with & = C being its solution. Then the nonlinear differential equation of
fractional order ‘ '

(3.10) (D8y) (2) = az™*y™(a) +be™® (0 <z <d <o)
is solvable and its solution is the constant:

(3.11) ‘y(:r) =C.

Theorem 4. Let a >0, a,m,l €R (a # 0;m # 0,1) such that

l+a

(3.12) > -1
1-m
and
(3.13) fjfn;éa—-k (k=1,2,-,—[~0]).

Then the homogeneous nonlinear diﬂ"erentié] equation of fractional order
(3.14) (D&y) (z) = az'y™(z) (0<z<dZ< o0)

is solvable and has the nonzero solution y(z) of the form

0 r{+e)/a-mi+1) 1YY s
(319 | y(x)“{P({<l+a>/<l—m>}—a+na} g/,

Remark 3. If the condition (3.13) does not hold, namely if there exists k = 1,2, - - -, —[—q]
such that
l
(3.16) T ek
1-m

then in view of (3V.8) the equation (3.14) has only the trivial solution.

Corollary 4.1. Ifa > 0 (a # 1,2,---) and a,m € R (a # O;m # 0, 1), then the
homogeneous nonlinear differential equation of fractional order

(3.17) (ij;y) () =az™®y™(z) (0<z<dZ 00)
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is solvable and has the nonzero constant solution:

(3.18) y(z) = {al(1 = )}/,

4. Solution of Nonlinear Ordinary Differential Equations

When o =n = 1,2, ---, the equations (3.5) and (3.14) become the ordinary differential
equations

(4.1) y™(z) = az"™ My (2) + "™ (0 < 2 < d < 00),
(4.2) y™(z) = az'y™(z) (0<z<d< ),

and from Theorems 3 and 4 we arrive at the following results.

Theorem 5. Letn =1,2,---, a,b,m € R (a,b # 0;m # 0,1) and v > —1. Let the
equation

[y +1)

(43) a&m - m

E+b=0

be solvable with z = C being its solution. Then the nonlinear differential equation (4.1) is
solvable and its solution y(z) has the form (3.2).

Corollary 5.1. Letn=1,2,---;k=0,1,---,m—1anda,b,m € R (a,b #0;m #0,1).
Then the nonlinear differential equation ‘

(4.4) Yy (z) = azt~™E ™ (2) +brF ™ (0<z < d £ 0)

is solvable and its solution y(x) is given by

1/m
(4.5) y(z) = (—é> "

In particular, the solution of the equation
(4.6) y™(z) = azy™(z) + bz (0<z <d< 00)

is the constant

(47) o(z) = (i)” "
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Theorem 6. Letn=1,2,--- and a,m,l € R (a # 0;m # 0,1) be such that

l+n> l+n
1—m " 1-m

(4.8) £k (k=0,1,---,n—1)

Then the homogeneous nonlinear differential equation
(4.9) y M (z) = azly™(z) (0<z<d< 00)

is solvable and has the nonzero solution of the form

| 1/(m-1)
(4.10) y(z) = {aFF<{(l +n)/(1-m)} +1) ) } L Un)/(1=m).

{(l+n)/Q1-m)}—n+1

5. Uniqueness of Solutions of Nonlinear Integral Equations

To investigate the uniqueness of the solutions of the nonlinear integral equations (2.5)
and (2.12), given in Section 2, we use the results from [14]. For 0 < d < co we denote
by C(0, d) the space of functions continuous on (0,d). Let C*(0,d) be subspace of C(0,d)
consisting of nonnegative functions, and let C; (0, d) be the subspace of C* (0, d) consisting
of functions g(z) 2 0 for which there exists a constant € = £(g) > 0 such that g(z) 2 ¢ for
z € (0,d). The following asertions about the uniqueness of the solutions ¢(z) of the equation
(1.1) and the corresponding homogeneous equation

(5.1) () = I?EZ)) Ox - f%)l_a dt

0<z<d< o)

for a > 0,m € R (m # 0, 1) follow from the results in [14].

Lemma 1. Leta >0, 0<m<1land0<d < oo.

(i) Ifa(z), f(z) € C(0,d) [or C*(0,d)] and the equation (1.1) has a solution in the
space C(0,d) [or C*(0,d)], then the solution is unique.

(ii) If a(z) € C(0,d) [or C*(0,d)] and the equation (5.1) has a solution in the space
C(0,d) [or C*(0,d)], then the solution is unique.

Lemma 2. Leta >0, m>1and0<d < 0.

(i) Ifa(z) € C*(0,d), f(z) € CH(0,d) and the equation (1.1) has a solution in the space
Cg (0,d), then the solution is unique.

(ii) Ifa(z) € C*(0,d) and the equation (5.1) has a solution in the space C;(0,d), then
the solution is unique. -

Using solutions (2.2) and (2.13) and applying Lemmas 1-2, we obtain the following results.
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Theorem 7. Let @ > 0 and a,b,m,8 € R (a,b # 0;m # 0,1) and let £ = ¢ be the
unique solution of the equation (2.4).

(i) If0<m < 1andf > —1, then (2.2) is the unique solution of the equation (2.5) in
the space C(0,d). If additionally a > 0, b > 0 and ¢ > 0, then this solution belongs to the
space C*(0, d).

(i) Ifm>1,-1<8<0,a>0,b>0,c>0and0<d< oo, then (2.2) is the unique
solution of the equation (2.5) in the space C+(0,d) with e = d°.

Theorem 8. Let o >0 and a,m,l € R (a # 0;m #0,1).

(i) Ifo<m<1andl+ «a <1—m, then (2.13) is the unique solution of the equation
(2.12) in the space C(0,d). If additionally a > 0, then this solution belong to the space
C*(O d).

C(il) Ifm > 1, 1—m<l+a<0 a >0, b>0and0<d<oo then (2.13) is the unique
solution of the equation (2.12) in the space C+(0,d),e = d°. :

6. Applications to Boundary Value Problems for Differential Equatibns

The results, given in Sections 3 and 4, can be applied to solve the boundary value prob-
lems for the nonlinear differential equations of fractional and integeral order. For example,
the following results follow from Corollaries 3.1 and 5.1.

Theorem 9. Leta >0, a,bbmeR (m#0,1),n = %[ a) and let k be an integer such
that 1 £ k < n. Then the Cauchy type boundary value prob]em for the nonlinear differential
equation of fractional order :

(6.1) (D&y) (z) = az™F~=kym () L br* (0 <z < d < o0);
with |

(DE7Y) (0) =0 (5—1,2,+,m; j # k),

(6.2) 1/m
(DE4) O = Tla=k+1)(~2)

is solvable and its solution y(z) has the form

(6.3) y(z) = <—,9>1/m z;—k. |

Corollary 9.1. Letn=1,2,---,a,bym €R (m # 0,1). Then the Cauchy problem for
the nonlinear differential equation |

(6.4) y™(z) = az"™Ey™(2) + b2* ™ (0 <z <d £ o0);
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with
b 1/m
(6.5) y9(0) =0 (G #E), y“%m::m<—5>
is solvable and its solution y(z) has the form
b 1/m
(6.6) y(z) = <_E> ",

The uniqueness problem of the solutions (6.3) and (6.6) for the boundary value problems
(6.1) - (6.2) and (6.4) - (6.5) is more comlicated than for the integral equations. For example,
we can not prove even the uniqueness of the solution y(z) given in (6.3) from the known
results for nonlinear differential equations of fractional order.

Indeed, it is known [23, section 42.1] that the Cauchy type problem for the nonlinear
differential equation of fractional order o > 0

(6.7) (D8.v) (@) = f(z,y); (n—1<a<n, n=—[-a);
with initial conditions
(6.8) | (DgT*y) () =b (k=1,2,--,n)

has a unique continuous solution y(z) in the open interval D C R provided that:
(i) f(z,y) is continuous function in D x D;
(ii) f(z,y) is Lipschitz continuous with respect to y:

(6.9) |f(z,91) = f(z,92)] £ Alyn — w2
(iii) f(z,y) is bounded:

(6.10) sup |f(z,y)] < 0.
(z,y)€DxD

For the nonlinear differential equation (6.1) the function
(6.11) Fz,y) = az™F ) ky™ 4 pg=F
satisfies the conditions (i) and (iii), provided that
(6.12) 0<d<oo, mk—a)—k20, kL0,

and the condition (6.9) in (ii) be satisfied only for m > 1. Therefore from (6.12) we obtain
that

(6.13)
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which is impossible. ,

Thus the uniqueness problem of the solution (6.3) of the boundary value problem (6.1)
- (6.2) is open. By the same situation such a problem is still also open for the solution (6.6)
of the boundary value problem (6.4) - (6.5).
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