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1 Introduction

Let (R, m, k) be a complete Gorenstein local ring, and let M be a finitely gen-
erated R-module. Auslander and Buchweitz introduced the notion of Cohen-
Macaulay approximation (1.1) and a finite projective hull (1.2), of M, which
are the exact sequences dual to each other [1], [5] :

oYEoXEMM o, (@D

0 M yMu xM o 12

where X£ XM are maximal Cohen- Macaulay modules and YM, YR are mod-
ules of ﬁnlte projective dimension. - -

If X57 and Y)f (resp. X} and Y') have no direct summand in common,
according to’ the inclusion map appeared in the sequence (1.1) (resp. the
projection map in the sequence (1.2)), it is called the minimal Cohen-Macaulay
approximation (resp. the minimal finite projective hull), which exists uniquely
up to isomorphisms. We may assume henceforth the minimality of (1.1) and
(1.2), omitting common summands if necessary.

The above exact sequences suggest an idea to treat a finite module as.a
kernel or a cokernel of a homomorphism from a finite projective dimensional
module to a Cohen-Macaulay module. Indeed, on researching Cohen-Macaulay
approximations, there arises a natural question: If Xp = Xy, Yu = Yy,
do two modules M and N share any common- property? — We discuss the
problem within a framework of the theory of triangulated categories; which in
this case consists of Cohen-Macaulay modules, finite projective modules, and
finitely generated modules over R. In addition to above two exact sequences
(Cohen-Macaulay approximation and finite projective hull), in the section2 we



construct another exact sequence “original extension” which is the dual of the
other two. For original extensions, as well as Cohen-Macaulay approximations
and finite projective hulls, we define the minimality, though it is not that
simple. The notion of original extensions enables us to consider two R-modules
M and N with Xpy & Xy, Y™ =2 YV as two elements of an R-module
Extp(YM, Qp(X™M)).

Unlike a Cohen-Macaulay approximation and a finite projective hull, a
non-minimal original extension does not always includes the minimal origi-
nal extension. The existence of a non-trivial non-minimal original extension
obstructs the uniqueness of the correspondence between finite modules and
elements of the module of the form Ext}(Y, X). Even though, our Lemma 2.5
shows that Exty(YM,QL(XM)) (where the minimal original extension of M
sits) contains a non-trivial non-minimal original extension if and only if M
is reducible; M = Coker gf for some linear maps f, g between free modules
with QL(M) = Qk(Coker f). In other words, due to that complexity, we can
investigate the homological structure of a module M via Extg(Y™, QL(XM)).

The ensuing section3 deals with chasing the Cohen-Macaulay ap-
proximations ( finite projective hulls or original extensions) through R-
homomorphisms. For a homomorphism f : M — N of modules, we construct
Cohen-Macaulay approximations, etc. of Coker f or Ker f, from those of M
and N. While we extended Auslander’s delta-invariants, defined with respect
to Cohen-Macaulay approximations, to three types of invariants, each of which
belongs to three exact sequences Cohen-Macaulay approximations, finite pro-
jective hulls, and original extensions. And moreover, we observed the change
of these invariants according to homomorphisms. Those method are appli-
cable to concern with the lifting problem; namely how the Cohen-Macaulay
approximations are inherited through ring homomorphisms.

First of all, let us set the notations used throughout the paper. Over the
Gorenstein local ring (R, m, k), a “module” always means a finitely generated
module. An R-complex F, = (F,,dr) denotes a complex of R-modules:

wdF
s B R

The n-th truncated complex 7, F is defined as

_ [ Fn (m2n) _ [ drm (m>n)
(T"F)m“{o (m<m) dTnFm”{o " (m<n)

The shifting complex F,(n) is as follows:

(F‘(n))m = L'nt+m, dF.(n)m = an+m.

st
We use the notation M = N which means that two modules M and N are
isomorphic up to free summands.



2 Original Extensions

Definition 2.1 For a finite R-module M, an original extension of M is the
exact sequence

0-XSMaPSY -0 (2.3)

with a Cohen-Macaulay module X, a free module P, and a finite projective
dimensional module Y .

An original extension (2.3) is called minimal if it satisfies the following condi-
tions: o

1) A Cohen-Macaulay module X is stable.
2) There exists no common summand with P and Y through ¢.

3) For any original extension 0 — X' - M & P' — Y’ — 0 of M, linear
maps a : P — P, b:Y — Y’ and ¢ : X — X’ exist and make the
following diagram commutative.

0 - X — MoP — Y — 0O
le Go b (2.4)
0 - X' - MeP — Y — 0 '

Theorem 2.2 For an R-module M, there exists a minimal original extension
of M.

proof) As in the section 3, for the minimal projective hull (1.2) of M, take a
chain map ups, : Ipre — Gare such that H_j(ups,) = ups for the minimal free
resolutions Ips,(—1) of Y™ and Gj,(—1) of XM,

0 - M S yM Uy XM 500
f f (25)
The exact sequence of the complexes
0 — Gare — Cone (upra) (1) — Ingo(=1) — 0
induces the exact sequence
0 — QF(XM) — Cokerd,,,, — Y™ — 0.
And we have Cokerd,,,, = M & Gj_; from the split exact sequence

0 — H_;(Cone (uns),) — Coker dcone (upre)g— Im deone (urra)_y — 0

I |
M Cone (UM.)._Q = GM_1



since

Keruy @M (i=—1)
H;(Cone (up.),) = { Cokeruy =0 (i=-2)
0 (otherwise)

Consequently, we obtain an original extension of M
0— QXM S MeGy_, SYM -0, (26)

After omitting a common free summand of Gj; and Y from (2.6), we have
an original extension (2.7) of M satisfying the conditions (1) and (2) of the
above definition.

0— QRXM) S MaP S ZM - 0. (2.7)

It remains to check the property 3) to see the minimality of (2.7). Suppose
there exists another original extension of M

0-X S MaP Sy —o. (2.8)

We shall show the existence of maps that make the diagram (2.4) commutative.
On the proof, we may assume X' is stable. It follows from the following
commutative diagram

0 » X & MeP — Y — 0
I I 1
0 —» ¢ & MoP — 7' - 0,

where X' = C' @ V with a stable Cohen-Macaulay module C’ and a free
module V, and Z' is of finite projective dimension because of the induced
exact sequence 0 -V — Z' - Y’ — 0.

Let Gu(—1) be the minimal free resolution of Q%' (X").

— Gy - G_1
/ N\
X' O (X)
/ .
0 0

Put F, :=F e ® P’y where Fyy, is the minimal free resolution of M and Tp/,
is a trivial complex :

Tp, : P = P
(0-th) (—1-st)



We can take a chain map @, : G — F, such that Ho(mw,) = £ by the
following method. We obtain the map as We = Zare ® Tpro. First zpre : Go —
Fy. is naturally induced by the composite map £y : X' LMoP - M ;
Zy—1 = 0 and Ho(7oZnree) = Em. On the other hand, we define a chain map
Zpe : Go — P'y as Tpy := Epdgy, Tp_q := Hompg(z, R) and zpr; := 0 to have
Ho(ToTpres) = Epr where €p is the composite X' S M@P - P and 7 is the
map that makes the following diagram commutative:

HomR(G_l, R) & HomR(P’, R)
f (.
Homp(X', B) TOWRER) o (P R).

The exact sequence of complexes
0 — F, — Cone ().(—1) ) G.(-1) =0,
brings the exact sequence of homologies |
0 — M — H_;(Cone (@),) = Q}(X")—0 (2.9)

because H;(Cone (0),) =0 (i # —1).

We claim that the above sequence (2.9) is the minimal finite projective hull
of M. By definition, Q7' (X") is a stable Cohen-Macaulay module, so it suffices
to show that H_;(Cone (w).,) is of finite projective dimension. Truncations
o: F, — 1oF, and 7 : G, — 73G, induces a surjective chain map Cone (We)e —
Cone (Tow,)e as in the diagram (2.10) '

0 - F, — Cone()s — Go=1) — 0
id. | l L lT.H) o (2.10)

0 — 7moF, — Cone (mois)s — ToGo(—=1) — 0.

More precisely, we get the following commutative diagram whose rows and



columns are exact.

0 — G__l ; Il —
Fod Gy
[ (o)
Cone (W)_9
P = Il
P
| |
0 0

- Cone (o)
Il
Fyy & Gy
l(dplﬁo)

Cone (ToW)_1

Giving the —1-th truncation and taking homology, we get the sequence

Coker dCone (®)p
Al

H_y(Cone (w),)® P’

0 —» G, —

—  Coker dcone (Tow)g - — 0.

(2.11)

Since the bottommost row of (2.10) induces the exact sequence of homologies of
the complexes (2.8), H;(Cone (row),) = 0 for i # —1 and H_;(Cone (row),) =

st
Coker doone (rom)y = Y'+ So the sequence (2.11) tells us QL(H_;(Cone (0),)) =
QL(Y"), which implies that H_;(Cone (@),) is of finite projective dimension,
hence is isomorphic to Y™, -

As o
v JYM i=—1
HZ<COTL6 ('LU).) - {0 Z :¢ _1 ’
and v .
NN~ 7= —
H;(Cone (ryw),) = {0 =t 1
we have isomorphisms of complexes
Cone (We)e = Ipte ® Two,
Cone (ToWe)e = I's® Ty,



where Ij,(—1) is the minimal free resolution of Y™, I',(-1) is that of Y7,
while Ty, and Ty, are the direct sums of trivial complexes.

Adding these split morphisms to the rightmost rectangular of (2.10), we
have the following diagram.

Ue

Inss G.
N /
Ivo(-1)®Tw, =2 Cone (,)e
| Lo | (2.12)
I's® Ty, = Cone (ToWs)e
/! N

u'y

II. T0 G.
Notice that u, here is nothing but w,,,. '
We have the diagram

0 — Go — Cone(upa)e(—1) — Ino(—1) S0
| | NG (2.13)
0 — 717G, — Cone (v.)e(-1) — TI'y(-1) — 0
The topmost row of (2.13) induces the exact sequence
0 — He(rG,) — H_i(7—1Cone (up,),) — Hoi(m_1Iy,) — 0,
Al _ Al 2
QL (XM) M®G, yM
which is (2.6) by definition. ‘
The bottommost row of (2.13) induces the exact sequence
0 — Hy(nG,) — H_1(Cone (v,), — H_(I's) — 0,
2 R 2
X' Mo P Y’
which is (2.8) from the basic property of the mapping cone.

It remains to explicitly describe the maps between each pair of modules
in (2.6) and (2.8). We begin with A, and then the map Cone (up,)e(—1) —
Cone (u's)s(=1). Take a chain map w, : G, — F, as a composite of @, and the
natural map F, - F,. We arrange bases of G,, and F,, so that w, is described
as .

[

Un (28) W
Wp:Gp= ® —— F, =
W, E,
with w,’ ® k at each n > 0. According to these bases, put
u w W E

dv:U g1 12 d :W fu fio ,
CTWN\gn 9n) FTE \fu fa)



Fy P

and G_, = U-,. Remember that @ = (_;"};_ ), since dpy = 7 (0 — 1).
We look at how differentials are described with respect to the bases; first

according to the central rectangular of the diagram (2.12). If n > 0, we have

Cone (We)n = Cone (ToWe)n a0 done (w4)py1 = ACone (ro0)p s 11 which cases

we may change the basis as follows:

W, b 9 98
E;H 912 0 1 0 )
In41 —fun—fiz 01 C’ _ Fpy2
® one (W = ©®
Wint1 ( .)"'H Gn+1
o 0 0 fm fa 0 1
0 22 Wn4l o f21 f22 Wn4+1l o
0 g12f12 -911 O 0 0 -—-g911 912
0 o po- 0 0 0  ~gp; —922
W, 6 9§38
’é‘“ —g12 0 1 0
I, —fu —fiz2 0 1 B Fry1
& Cone (@), = &
And this diagram goes to the next one as n = —1:
BEE
vg; -g12 0 10
Io ~fu1 —fiz 0 1 P
D &b
_ W v Go  _
Wy ’ ‘ ) .
D
I'y Py
D . . ®
Wo Go
o 0 9 1 f11 f21 0 1
0 fa2 wo 0 fa1 fe2 WO .0
0 0 0o 0 l l 0 0 —w-1911 TW-1912
0 g12f12 —911 © 0 0 o1 —d12
Wo )
@ 1 000
‘ Ep 0 100 Fo
0 0 0 1 @ —w-1 0 1 0 ® f11 fiz 9 1
(o = fo wo 0) p -g12 1 01 P (21 f22 w0 o )
0 @_yg912f12 —w_1911 © D ® 0 0" —w_1911 —®-1912
G-y G—l
(1 00 0 ) (1 00 0>
010 0 0100
001 w_y 0010
W BT
Fo ®_1912 0 1 Fo
® : @
P p'

Thus we obtain the complex (Ip,,ds,,,) and the chain map uar,e : Ipre —
G

— n Qg 1
umn=(-1) (_f12 0)
IMn: n+1@Un GMn:Un@Wn

foo w'y l l g11 g21
g12f12 911 912 922

IMn—l = En S7] Un—-lr GMn-—l = Un—l 2] Wn—l




for n > —1 where w_, = 0. While
I;z = IMn, dpn = d]Mn, )\n = id];l, ’U/n =UMn

for n > 0, and

E, Uy
Ey f22 w'o
] —_ / — ~ ~
I'y=FEy® P, dpg = P’ W-_1912f12  W_19n1 1k

E() U_1
E
A= p9 0 w_q|» W1 0.

We are now on the next stage to look at the mapping cones of uys, and u,.
Similarly as above, we have a diagram

(=" 0 0 9
U 0 1 0.0
'é;'l ( w,n+1 0 1 (—1)" 0
I S (=1)n+lgyy (F1)" g1z 00 1 C Gn+1 .
23] one (u = &
. . U" ( Mo)n IMn o ) )n
-1
S 1 hiz b Z%{ ‘3{,5 1"t oo
Q fa1 fa2 @ 0 0 —f22  —wipig
o 0 0 0 -912f12 911
(_1())11—1 (1) 8 8
r ( wh 0 () o)
Fn (-1)"g11 (=)"g12 0 1 o %l
@ > one (u =
Up-1 : ( M.)n_l IMn—l

for n > 0 where Cone (upa)n = Cone (v's)n and deone (upra), = ACone (u'4)p

)



[a]ele)e]
s

10

whose lower part for n =0, —1 is

0 00
Uy 0 1 00
[2>) wi 0 10
Fl —g11~9120 1 %1
% >
_ Uo Imo
Uy
D
D
Uo o o o o . I
0 1 911 9 1
of11 f210 31 952 —f12 0
8!21 fzzg 0 0 ~—faa -wlg
o o 0 0 —gi5f12 911
-1
0 00
0o o %o o B %9 0
® ~w'o - ‘ 911 921 !
11 fa19 Fo W_jg11 ~¥-1912 0 1 Go 931 932 —hi2 0,
21 f220 ® ) R
oo U_1 Ing_q —w_31912f12W-1911
100 0 100 0
010 O 010 O
001 0 001 _0
00 0w_q 00 O0w_y
-1
0 0 0 s
Uo 0, 1 0 0
® —w _ 0 -10
Fo w1911 ~W-1912 0 1 Go
;?I . > II
-1

The above diagram says that (2.13) is modified through isomorphisms as :

0 - G = Cone (upre)e(—1) — Ipo(—-1) — 0
TU. @ Fo ‘ :
}T' l(‘ﬁ ia&,) l(To .,\.(0_1)) l/\.(—l)
’ TU’. @ Fo
0 — 719G, — Cone (ts)e(=1) — I'y(-1) — 0
where p, : Ty — Ty, is the chain map between trivial complexes;
Un 01 Un U
Tye: — CGIBH (9-9) b B — IEJBI — (jé) - v, — 0
n n—1 0 -1
Iz [ [ [ 1[Gt [on
Un+1 Un Uy Up
Tye: — IGIB — U@_l — e — IeJBO — }EE, — p = 0.

Consequently, we have a commutative diagram
0 — QFXM) » MoG, — Y™ — 0
|| Jv((l)iiro_l lH—l(A-)
0 — X' - MoP — Y — 0

(gq.e.d for Theorem 2.2. )



Theorem 2.3 The minimal original extension of an R-module M is unique
up to isomorphism. In other word, if two original extensions of M; 0 — X —
M&P—>Y -0and0— X' - M@ P — Y 50 are both minimal, linear
maps a, b and c in the diagram (2.4) are isomorphisms. The minimal original
extension of M is, after adding some free summand, of the form

- XM s MeG, - YM -0
where G_; » XM is the minimal projective cover:

proof) From the condition 3) of the minimal original extension, there exist
homomorphisms a, b, ¢, @', V', and ¢ that makes the next commutative diagram:

0 - X &% MeP &% Y — 0
| O ) B
0 — X' - MeP —- Y —- 0
e gy
0 - X & MoP 5 Y — 0 -
We shall show that a’a : P — P is an isomorphism. Reviewing the proof of
Theorem 2.2, we may take ¢ and ¢’ as an identity map of X. We have £F =
a'a¢® from the diagram above where £ is a composite €7 : X L MeP P
The minimal cover Gy doo x induces a homomorphism z¥ as

P

Go & P
ldao “
€P
X = P
This ¥ has the same property z¥ = d'az®, which is observed as fol-
lows. With respect to matrix representation a'a "= (ai;),, ) and
¥ = (Th))<charn(p), 1<i<rk(Go) the above equation means (a'az’); = z¥y;,
that is,
rk(P)
Z QikTkj = Tij
k=1 :

for 1 < i < 1k(P), 1 < j < rk(Gp). Now suppose that a'a is not an isomor-
phism. Then it has at least one row, say, the first row, whose all entries belong
to the maximal ideal m. We have ' :
rk(P)
(1- an -le Z A1kTkj

for 1 < j < rk(P) with (1 — ay;) a unit, which implies that =% has a zero row
after some row—transformatlons
On the other hand, it is easy to see the equlvalence of these conditions:

11



1) A common summand split off through ¢ from X and Y.
2) There exists a split épimorphism s : P -» R such that s{zp = 0.
3) There exists a split epimorphism s : P - R such that sz¥ = 0.

4) After some row-transformations, ¥ contains a zero-row.

0 - X & MaP S v - 0

Ty
P I
ls
R = R

So we get a contradiction to the condition of minimality. (q.e.d)

Remark 2.4 The minimal original extension of the direct sum M & N of

modules is the direct sum of the minimal original extension of M and that of
N.

We refresh our memory on our attitude to regard an element of the module
ExtL(M, N) as a chain map. More precisely, an element § € Exty(M, N) as
an exact sequence started from N and ended with M corresponds to a chain
map 0, € Hompg(F,, G,) of degree zero where F(—1) » M and G, » N are
the minimal free resolutions. _

First take a chain map 6, € Hompg(F,,G,), then the exact sequence of the
complexes

0— G, — Cone (6,)e(—1) — F,(=1) = 0

induces the exact sequence of homologies
0 — N — Cokerdcone (6,), = M — 0,

which is the corresponding exact sequence € Extyr(M, N).
-Conversely, for an exact sequence

9:0—>N§>X——>M—+(),

take a chain map &, : G, — I, as Ho(£,) = £ with the minimal free resolutions
G, - N and I, » X. Let F,(—1) -» M be the minimal free resolution. As for
the exact sequence of the complexes

0= I — Cone (&)s(~1) = Ga(~1) = 0,

12



take the chain map 6,(—1) : F,(—1) — G.(—1) so that the composite of
the quasi-isomorphism Cone (&,)s(—1) - Fo(—1) and 6,(—1) is the natural
epimorphism Cone (€,)s(—1) - G¢(—1). Then this 6, is the chain map that
corresponds to the given exact sequence §. And from the fundamental property
of mapping cone, we easily see that 6, goes back to 8 via the procedure above.

From now on, we use the notation 6, to represents an element of
Extk(M, N) and do not distinguish a chain map from the corresponding exact
sequence. And if N = QR(N’), for f, € Homg(F,, G',) with the minimal free
resolution G'o(—1) - N', we define an element rtr(f,), € Hompg(F,, 70G’, =
G.) with rtr(f); :== fi (¢ > 0) and rtr(f)_; = 0.

The minimal finite projective hull of M := Q}(N) is of the form

0— M — QR(Y™)® Wy — QR(X") -0,
which gives an original extension of M
0 — QL(XN) = M & Ung® Wro — YV & Wyo — 0

where Wy and Uy, are free modules and rk(Wyo @ Upng) equals to a minimal
number of generators of Q%(X?). The minimal original extension of M is thus

00— 02 (XN)—>M€BUN0—>Y —0.

As the most extreme case, the minimal original extensioh of a stable Cohen-
Macaulay module C'is , ‘ ’ '
0-C=C—-0-0.

However, as elements of Ext}(—, —), we can ignore those differences by split
exact sequences. In other word, we are not interested in original extensions
that are non-minimal for lack of the property 1) and 2) of the definition.
Alternatively, our next concern is about the non-trivial non-minimal original
extension which differs from the minimal one by the property 3).

Any non-minimal Cohen-Macaulay approximation or finite projective hull
is the direct sum of the minimal one and some trivial complex. Although it is
not the case for non-minimal original extension as seen in Example 2.8. Let
0—-X—>M®P —Y — 0 be an original extension of a stable R-module M
that is not necessarily minimal. We observe that

X 2 Qp(XM) up to free summands, (2.14)

and
0-Gy_1—=»YY®P Y =0 (2.15)

where Gpr_; - XM is the minimal projective cover. from the argument in the
proof of Theorem 2.2.

13



Lemma 2.5 For a module Y with ﬁmte proyectwe dimension, the followmg
are equivalent. :

1)
Ext%(Y,vR) = 0.

2) For any stable Cohen- Macaulay module X, each non-zero element of
- Ext R(Y, X) is the minimal original e:vtenszon of a stable module.

proof) It suffices to prove for a stable Y.

To see the implication from 1) to 2), suppose the contrary; let 0 — X —
M @® P — Y — 0 be a non-minimal original extension of a stable module M.
Then we have a non-split exact sequence (2.15)0— G_; —» YM@®P - Y — 0,
which contradicts to the condition 1). :

Stronger than the other implication, we show the next statement If
Exty(Y,R) # 0, for any stable Cohen-Macaulay module X with the prop-
erty Homg(Y, X) # 0, Exth(Y, X) contains a non-trivial non-minimal original
extension. Notice that if Homg(Y,X’) = 0 for any stable Cohen-Macaulay
module X', then Extyp(Y,X) = 0 for any stable Cohen-Macaulay mod-
ule X and there is nothing to prove. To show this, we have only to see
the epimorphism HomR(Qﬁl(X ), P) —» Extk(Y,X) applying Homg(Y, ) to
0— X — P — Qz'(X) — 0 with a free module P.

So we assume that Hompg(Y, X) # 0 for a stable Cohen-Macaulay module
X. Take a non-zero element f € Homg(Y, X), then together with the minimal
projective cover P — Coker f we have an epimorphism ¥ & P - X whose
kernel we call M;. :
0-M-Y®P—-X-—-0. - (2.16)

While the hyp:othesis Ext}z(Y, R) # 0 gives us the non-split exact sequence
0-Q—-Y -Y -0 (2.17)

with a free module Q. Obviously Y’ has a finite projective dimension.

14



We get the pull-back diagram from the sequences (2.16) and (2.17)

0 0
) |
R = Q
I |
‘ : : Y'eP X :
0 — NS — Il — — 0.
YNEBS XN
| | I
YoP X
0 — M — I — [l — 0
yM XM
| |
0 0

where N is a stable module and S is a free module. The minimal original

extension (added some free modules) of N @ S and the sequence (2.17) make

another pull-back diagram:

0 0
| 1 1
0 - X)) - QXN)eQ - Q@ — 0
l

[ |

0 - QLX) - NeSeG., — YV®S — 0

L

YyM = YM
| L
0 0

Here the middle column is an original extension of N @S that is non-trivially
non-minimal because the rightmost column (2.17) does not split. (q.e.d.)

Lemma 2.6 Let M be an indecomposable Cohen—Macaulay module with codi-
mension T > 1. Let 0 : 0 — QH(XM) - Lo P — YM — 0 be a non-trivial
element of Exth(YM,QL(Xy)) where L is a stable module. Then, L = M.

proof) Lemma 2.5 tells us # is the minimal original extension of L, which
implies YL @ P =2 YM @ G_; hence Y = YM =: Y since P & G_; from
XL~ XM =: X. The sequence 0 - M — Y — X — 0 induces

Hompg(Y, R) = Homg(X, R), (2.18)

15



Exth(Y, R) & Exty(M,R). (i #r,0)
While0) - L - Y — X — 0 induces

0 — Hompg(X, R) — Hompg(Y, R) — Homg(L, R) — 0, (2.19)

Exth(L,R) =0. (i #r,0) (2.20)

If L is also a Cohen-Macaulay module with codimension r, or equivalently
Hompg(L,R) = 0, LY = ExtR(Y, R) & MY therefore L = LV = MYV = M.

Putting F;, — L as the minimal free resolution, we have L* =

Q% (Coker (df,,)") from (2.20). While the exact sequence with a maximal
Cohen-Macaulay module at the tail

0 — Exti(L,R) — Coker(dp,,)* — Fu,"/Ker(dp,,,,)" —0

bl Al
Exth(Y, R) Im ‘(dpLTH)*

Al 2l

MY _ Ker (dp“+2)*

implies depth Coker (df,,)" > dim R — r, hence L* is a maximal Cohen-
Macaulay module.

Now the sequence (2.19) is an exact sequence of maximal Cohen-Macaulay
modules together with (2.18), it remains exact applied ( )* := Hompg(, R);

0—-L"->Y"2X—-X—-0
It follows L** = 0 hence L* = L** = 0. (q.e.d.)

Corollary 2.7 If M is a Cohen-Macaulay module of codimension r > 1, R-
module ExtL(YM, QR(XM)) has the minimal original extension rtr(up, as a
unique nontrivial element.

proof) It follows from Lemma 2.5 and Lemma 2.6 altogether.

Example 2.8 Let R ::‘k[[x,y.]]/(xy)., and M := k. We have
z 0 ‘ y 0 |

(54) R (52 R (zy) Rk —0,

LGy, (62

.= R 5 R R XM 0,

0—->R—(—i—)+YM~—+O.

ceo > R?
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Taking a finite projective dimensional module Y’ as

0 - R SQ» R - YM - 0
I [ ,
o -

0 - R — R - Y - 0

we get
0 —» QLXM) - MeR: - YM - 0

| [(%rye) D ,
0 - QXM - MeR: - Y — 0
where the second row is a non-minimal original extension of M that is not a
direct summand of the first row.

Lemma 2.9 For an R-module Y with a finite projective dimension, assume
that Y* = Hompg(Y, R) is Cohen-Macaulay. Then for any Cohen-Macaulay
module X and each element §:0 - X - L& P — Y of Exth(Y, X), we have
a homomorphism uy, : Y — X such that

Extp(Y,ur*) : Extp(Y,Y*) — Extp(Y,X)
) ‘ (\Y)
rtr{up) 0

where M is the module 0 — M — Y — Y™ — 0.

Lemma 2.10 Let M be an indecomposable module with Homg(M, R) = 0,
Exth(M,R) = 0. Then for any stable Cohen-Macaulay module X and 0, €
Exth(YM, X), there ezists a linear map ¢x : QL(XM) — X such that the in-
duced homomorphism Exth(YM, ¢x) : Exth(YM, QL(XM)) — Extp(YM, X)
sends rtr(ups,) to ..

proof) Let 6, be 4 ,
;0> X > NoP—-YM 0

‘with a stable.-module N and a free module P.
The hypothesis gives us

Homp(Y™ R) = Homg(X™, R) (2.21)
Extp(YM,R)=0. o (222)

By Lemma, 2.5, the equation (2.22) tells us 0. is the minimal original extension
of N, in other word, 8, 2 rtr(uy,). We have X & QL(X") and YM 2 YV =;
Y. On the R-dual ()* := Homg( , R) of the minimal finite projective hull of N

0 (XM) =Y = N* =0,



taking an R-dual again, we have
0— N* — XM % XN _ Exth(N*,R) — 0

from (2.22). To describe the chain map ¢x, : Gue — G, induced by ¢, let
I,(—1) be the minimal free resolution of Y, and consider the diagram:

A

IO* — I_l* . GM—Z*
AN e ‘
%um)* fer Lct»m)*
(X)) » F'
v AN
* ‘ (dGN—l)*V ' ) * !
(GN—:I) A (GN.——2)

We have the commutativity

(uN—l)*(dGN_l)* = A(¢X_2)*- ’ (2.23)
From another commutative diagram

(deps_4)"

(Gm-1)" — (Gu—2)” .
AN Ve
l(uM—lj*
v AN
A

(x™M)”
I, — Gum_o",

S

‘Y*

we have A = (dg,,_;um—1)". By the substitution of this, (2.23) is modified into
dey _1(dN_1um—1 — un_1) = 0, which means ¢n,upme = une up to homotopy.
(g.ed.)

3 Cohen-Macaulay approximations

In this section, we discuss Cohen-Macaulay approximation within the frame-
work of the theory of triangulated categories. Let us begin with the epimor-
phism up : YM — XM in the sequence (1.2). This u induces a chain map
upre : Inge — Gare with the property that H_j(up,) = up where Iny (—1)

18



and Gy (—1) are the minimal free resolutions of Y and XM respectively.
As for the exact sequence

0 — Gare — Cone (uare)e(—1) = Inse(=1) = 0, (3.24)

we have H_;(Cone (upr.),) = Kerupy = M, Hy(Cone (up,),) =0 for i # —1
and moreover Cone (upr,); = 0 for j < —1. In other words, Cone (uw.), (1)
and F), are quasi- 1som0rphlc Define the chain map wa, : Gare — Fire with
the composite G, — C’one (upre)e(—1) - Fpre. Quite similarly, from the
exact sequence : g

0 — Fare — Cone (war)e(=1) — Gare(=1) = 0,  (3.25)

we have H_;(Cone (war.),) & Y™, Hy(Cone (wpr,),) = 0 for i # —1 hence
Cone (wp.), and Ips, are quasi-isomorphic. Another chain map ep, : Fire —
Inte (—1) is defined with the comp081te Fre — C'one (wM.) (=1) —» Fp,.
Finally, the exact sequence ’

0 — Inze — Come (eare)e =: Gare — Fige — 0 - (3.26)

gives us H_;(Cone (ep,),) = XM, H;(Cone (epm.),) = 0 for ¢ # —1 and
hence Cone (ey,), and Gy, are isomorphic. At this stage, the composite
map Iy, — @, - Gpre turns back to uys, up to homotopy.

‘As in the proof of Theorem 2.2, we may choose the base of free modules
such that :

Fri =W ® Evsy, Gui =Unti @ Wi, Iy = Epigy © Uy

Eyvi Um
U 0 1 , o
uMi“WM,-(u’ 0 ), U ®k=0.
Umi Wwi |
Wi 01 b
Wy Eui
_Bwi (0 1) oo
ey = Untiot ( ¢ 0 ), e€®k=0.

Note that Ey; = 0 for i > pd(YM) and UM;- — 0 for ¢ > p'd.(Y]:”)v»thus
wyr; = idg,,, for i > pd(Y™). And the relations among those linear maps are
as follows:

Wwui Ewmi
._WMi—1<fM11 fM12) IMay U )

dF .= =
M Emicy \ Mo fuos w'e' iy
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: Umi Wi
doy, = ngiq (ngl 9M12) _ (“‘I’f‘ﬁl’ ¢ )',
, Mi-1 \9M21  9M22 w'w' fun
» Erviyi Uni
diyy; = gMi‘ ( ~Z:M11 Z:Mlz) L ( fI\Iflzlz w ) |
Mi-1 \ 'M21  tMm22 eu  gmn

Lemma 3.1 1) The ezact sequence (3.26) of complezes induces an exact
sequence of modules

0— QF (VM) = Q%L (XM) @ Bry — QR(M) -0, (3.27)

which is the minimal Cohen-Macaulay approzimation of Q%(M) for n >
bl v

0. Thus QL(XM) 2 Xy, and QL(Y'M) 2 Yy,

2) The ezact sequence (3.25) of complezes induces an ezact sequence of
modules

0 = Qp(M) - QR(YM) & Wiarn_y — Qp(XM) — 0, (3.28)

which is the minimal finite projective hull of Q%(M) for n > 0. Thus
st
On(XM) = XM gnd Qp(YM) = YROD,

3) The ezact sequence (3.24) of complezes induces an ezact sequence of
modules

0 — QEH(IY™M) = QR(M) & Untny — Qp(Y™) — 0, (3.29)

which is the minimal original extension of Q(M) for n > 0 if Qp(M)
includes no Cohen-Macaulay module as a direct summand.

proof) The sequence (3.28) (resp. (3.27) ) is obviously a finite projective hull
(resp. Cohen-Macaulay approximation), so it remains to show the minimality.
1) minimality of (3.28). The sequence (3.28) is minimal for n = 0 by
definition. If n > 0, then Q%(XM) is a stable Cohen-Macaulay module hence
cannot contain a common (free) summand with Q%(YM) @ Wiy, _;.
" 2)minimality of (3.27). Suppose the contrary; let Exs,’ & R be a common
summand of Q% (X™) & Eu, and QF, (YM). We may put En, = En,’ &
Evy", Intn = Inn' @ Euy' since QF (XM) is a stable Cohen-Macaulay
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module for n > 0.: Our hypothesis implies that the natural monomorphism

EMn-H UMn

Unn 0 1
W]\]/I\/[n ‘ ul 0 EMn+1
| Evnir By, fuyy ") @
may be isomorphically transformed into
Iny"  Eny'
EMn—H * 0 EMn+l
" Euy,” 0 0
Ivn™ By, 0 1 Gumn
Infn= @ GMn’ = b
EM'n,, EMn/
o
EM l‘I

And this base change includes only the row-transformations within the bottom
rows corresponding to Ej, and column-transformations. Therefore we can

X 0 0 : .
transform a matrix ( fraeg W ) into 01 ) It is stupid because fyry9 ®

k=0, w'Q®k = 0. We already have 3) for n = 0 in Theorem 2.2, and for

t
the higher n, it is straightforward since Y&() & Qr(YM) and XR(M) o
Q%(XM) from above 1) and 2). (q.e.d.)

With respect to the minimal Cohen-Macaulay approximation (1.1), Aus-
lander defined delta-invariant 6g(M) as a maximal rank of the free summand
in X7 and higher delta-invariant Q%(M) := 6p(Q%(M)) for n > 0. From the
standpoint regarding a Cohen-Macaulay approximation as one side of triangu-
lated categories, we consider other types of invariants belonging to other two
notions.

Definition 3.2 1) For any Cohen-Macaulay approzimation of M

0-Y—-X—->M-—>0,
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put en(M) = p(Y) — u(X) + (M), &1 (M) = en(@(M)) for i > 0,
and e%(M) := p(M) — w(M).

2) For any finite pm]ectzve hull of M
0 - M-Y - X —0,

PutOwR(M) = u(M) g w(Y) + u(X), and wi(M) = wr(Qs(M)) for
12> 0.

3) For any original extension of M

Put ug(M) = u(X) — w(M & P) + u(Y), and ui(M) := w(Q(M)) for
i>0. -

Notice that those invariants are uniquely determined by M independent of
the choice of a sequence. Moreover, we have

(M) = tk(er; ® k), wi(M) = tk(wy; ® k), U'R(M) = rk(up; ® k).

for i > 0. Remember that e} (M) is nothing but Auslander’s delta-invariants
§%(M). In addition, the following are straightforward from the definition.

(M & N) = (M) + €x(N)  fori>0.

(M) = (M) fori+j=i+7,4,754,5>0.

@%(M@N) = wh(M) +wiR<N) fori>0.

whI (M) = ’“(M) fori+j=4i+7, 4,545 >0.

up(M & N) = up(M) +up(N) fori>0.
W (M) =g (M) fori+j =147, 45,5 >0.

In terms of these invariants, the observatlon at the beglnnmg of this sectlon
is rewritten: : '



Remark 3.3

B(M) = wh(M) + (M)
T (XM) = (M) + wh(M)
RO = e () + ()

where i > 0 and B, denotes the i-th Betti number. Moreover, (Y M) =
BO(XM)+e% (M), which is well known. So we put ug' := f9(XM) = rk(uy_,®
k) for convenience.

Example 3.4 If M is-a Cohen-Macaulay module with codzmenswn r, that is,
Exth(M,R) =0 for v #r, we have _

eR(M)  =epi(MY),
wp(M) =ug'T(MY) for0<i<r

and .
W (M) = why ' J(MV) for —1<j<r—1.

proof)

Let n: L — M be a homomorphlsm of modules and let Fro—» L, Fyrg —
M, IL.( ) YL, I}y{.( 1) YM GL.( 1) — ~XL and GM,( 1) — XM be
the minimal free resolutions. We first take a chain map ng, : Fre = Fare With
Hg(ne) = n, then two more chain maps nre Ip, — IM, and nGe GL, — GM.
induced by the next diagrams. '

‘XL — XM

L — M_ _
! ol L !
yt — yM L - ‘M

Since ‘
:Cokern 4= =1

H;(Cone (ne)e,) = { Kern =0 ,

| 0 i #0,-1
70Cone (n,) is a free resolution of the module Coker deone | nv)p Whose invari-
ants we can calculate as follows: :

Lemma 3.5 Under the situation as above, the following formulae hold.
1)

en(Cokerdeone (npy;) = €f (M) +e*(L)

3.30
xk(npy & K) 4 tking, ® ) — tk(np ©F) )
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for n > 1. The left-hand-side of (3.30) is ep(Kern) if n is surjective,

while it is ey (Cokern) if n is injective.

e%(Coker dcone (np);) = €r(M)+e°(L)+1k(ngo®@k)—1k(nro®k). (3.31)

The left-hand-side of (3.81) is e%(Kern & Fu) if n is surjective. If n is
injective, it is ep(Cokern) and

e%(Cokern) = ep(M) + rk(ng_; ® k) — tk(n;_; @ k).

2)
w’}{(Cokér deone (np)y) = Wi (M) + wi(L)
—1k(npps ® k) — tk(ng, ® k) + rk(ng, ® k)

for n > 0. The left-hand-side of (3.32) is wh(Kern) if n is surjective,

while it is wkT (Cokern) if n is injective.

3)

(3.32)

W (Coker deone (npy,) = ui™ (M) + (L)
+rk(n‘Fn+1 ® k) - rk(nGn—H ® k) - rk(nln ® k)

for n > 0. The left-hand-side of (3.33) is uh(Kern) if n is surjective,
while it is u'y ' (Cokern) if n is injective.

(3.33)

proof) As for the chain maps wr, : Gre — Fro and wy, @ Gue — Fu,, the
following diagram commutes up to homotopy:

Gre =2 Gy,
wre | | wa. (3.34)

Fre ™ Fu..

And we get a commutative diagram with exact rows and columns :

0 0 0
! , l !

0 —  Fuy+l) — Cone (Nre)e — Fr. — 0
» ! ! l

0 — Cone (Wpe)e — A(-1) — Cone (wry)e(-1) — 0
! ! !

0 — Gue — Cone (ngs)e(—1) — Gr.(—1) — 0
! ! !
0 0 0

(3.35)
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The complex A, is obtained as a mapping cone;
A := Cone (nj,(hw))e & Cone (da(hiv))s

where nj,(hy) = Cone (Wre)e — Cone (Ware)e and we(hy) . Cone (NGe)e —
Cone (np,) are defined as follows;

F, Gg
m.(hw) = gl\;j (noF ZZ)’
Gu Gi
o= 2 ("0
using a chain homotopy hy.,;
REUL, = WMANGe = Gadgy, + dry e (3.36)

These chain maps are determined uniquely up to. homotopy, independent of
the choice of hyy; for another homotopy h,’, since hy, — hy' : Gro — Faro(+1)
is a chain map, the universal property of Cohen-Macaulay approximation gives
a chain map j, : G, — Gu.(+1) and a chain homotopy h, : G, — Fare(+2)
such that hye — hy's = WareJe + hedg,, + dry,,, Which induces the equation

0 hy—hy' 0 —h\/d d 0 h
(() 0 ):(0 _j)(‘ SL _Z(L;L)“Jr( SM _QSZM)(() j)'
From the middle column of ('3'.35 “we gep!‘a finite projective hull of

Coker dCone (nFr)e n+1;

0 — Coker doone (np)ep,y — Cokerda, — Coker doone (ng,), — 0

on+

since other two columns also induce finite projective hulls as we see in
Lemma 3.1. We have only to look at the number of generators to calculate

w%(COker dcone (TLF.)n+1)

= /L(Coker dcone ("F-)n+1) — ,u(Coker dAn> + u(COker dcone (nG.)n). /

In the matrix form,

Funys  Guatr Frner Gra

FMn+1 dFMn+2 WMn+1 NFnpt1 h
dA _ GMn 0 dGMn—l-l 0 nGgn
n = d
FLn 0 0 dFLn—H Win

GLn—l 0 0 0 dGL n
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can be rewritten as

WMn+2 IMn—H‘ WMn+1 WLn+1 vILn WLn

Wntna1 0 0 1 P11 P12 P13
Ingn (U -0 S P21 P22 P23

dy = Whain 0 0 0 P31 P32 P33
" Wi 0 0 0 0 0 1
In, 1 0 0 0 0 drpn 0
Win-1 0. 0 0 0 0 0

after the base changes of Cone (wy)s and Cone (wp)n—1. The right upper
part corresponds to the chain map 7 : Cone (wp)e — Cone (wp)n-1 hence
satisfying

Ndcone (wp) = dCone (wL)ﬁy*

that is,
0 planIL P, D31 D32 P33
0 padr, P, | = | diypa drypee diy,pos
0 paedr, Psip, /) \ O 0 0

The above equation shows that '

| Pi®k=0, pp®k=0, pu=0,

so we have o A o '
tk(dpy ® k) = tk(Warnsr ® Wi) + 1k(paa, & k).

On the other hand, pa, : Ie — In, is a chain map and coincides with ny, up
to homotopy in view of the following commutative diagram.

npa(+1) \
Fro(+1) Faro(+1)

\ Y
leL' , . Cone ('UJL.)‘ ‘ . C’one(wM,), . ‘leM.
IL. P22+ IM.

Hence the above equatioh is
k(dp, ® k) = wk™ (M) + wi(L) + tk(ng, ® k).

Together with p(Coker deone (np),) = tk(Cone (np)a) — tk(nppi ® k) and
p(Coker deone (ng),,) = tk(Cone (ng)n-1) — tk(ngy, @ k), we have

lUOR(COkei' dCone (nF-)n+1 = ?w’}z(Coker dCone ("Fc)1
= wi (M) +wi(L) — tk(nppqr ® k) — tk(ng, ® k) + rk(ng, ® k)
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and also

e% (Coker doone (np)nH) p(Coker dAn) ~ p(Coker doone (ng),) .
= e’}z“,(M) +eR(L) + rk(nGn Rk)— rk(n;n ® k)

as required. Parallel discussions give the proofs for other invariants. (q.e.d.)
We use this method especially on the lifting problem. Let R := S/z.S with
a Gorenstein local ring S and a non-zero-divisor z. For an R-module M, the
relation between invariants of M as anR-module and those as S-module is
described via Eisenbud operators 0p,, , 01, , and Jg,, - with respect to S, .

Corblléry 36
e3(M) = ep(M) + e (M) = tk(Dpy,, ® k) + k(D @ k) = k(0 @ ).
wZ(M) = wi(M) + wi (M) =1k(Opy 41 @ k) = 1k(Day, @ k) + TK(Oyy, ® ).
up(M) +uf (M) +1k(0r, 41 ® k) = 1K(06 ) sy @ F) = 1K (Opy, , @ ).
Lemma 3.7 ([4] Lemma 3.1) The following isomorphisms holds for n > 0:
GV = GV = YR o

proof) We show that QL(Y2!) 2 Y2 The minimal Cohen-Macaulay approxi-
mation (1.1) gives us the push out diagram as below:

0
! l
YM: YM
077 ol
0 — XMAG’_I-»XMHO
2V 1] I
0 - MS yM L oxM g
i) )
0 0

Here G_; is an R-free module and we may take the cosyzygy as (' ® k = 0,
XM is a stable Cohen-Macaulay module. Then 7' ® k = 0. If otherwise, there
exists a homomorphism s : G'_; — Y, such that sy's = s. Applying var, we
have vir87's = (yrs)C (vms) = (yars) which contradicts to ' ® k = 0.

Similarly we can prove QR(Y,§) = Y& L () and the induction on n completes
the proof. (q.e.d.)
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