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REPORT ON THE FUNDAMENTAL LEMMA FOR GL(4) AND GSp(2)

Yuval Z. FLICKER

Introduction.

Langlands’ principle of functoriality [B] conjectures that there is a parametrization of the
set Repr(G) of admissible [BZ] or automorphic [BJ] representations of a reductive group G
over a local or global field F', by admissible homomorphisms p : Wp — G xWg. Here Wg is
a form of the Weil group [T] of F, and G is the connected (complex) Langlands dual group
[B] of G, on which Wg acts via the absolute galois group of F. If H is another reductive
group over F' and there is an admissible map H x Wgp — G x W, then composing with
p  Wp — H x Wg we get p: Wp — G % Wr, and by the functoriality conjecture we
would expect a “lifting” map Repr(H) —Repr(G).

The trace formula has been used to establish the lifting in a few cases. For a test function
f = ®f, € C*(G(A)), the convolution operator r(f) maps ¢ in L2(G(F)\G(A)) to the
function whose value at h € G(A) is fG(A\) f(g)#(hg)dg. It is an integral operator with

kernel K ¢(z,y) which has geometric expansion ) vear) S (z~yy), and spectral expansion

S S e r(f)e(z)d(y). Here m ranges over the set of the irreducible direct summands of L?
as a module under the action of G(A) by multiplication on the right, and ¢ ranges over an
orthonormal basis of smooth vectors. Integrating over z = y € G(F)\G(A) we obtain the
trace formula Y _tr7(f) = Y g /P #(7). Here G/ ~ denotes the set of conjugacy classes

in G(F), and ®¢(v) = _fG(A)/Z(W) f(zyz~1)dz is an orbital integral of f. In this outline we

ignore all questions of convergence, which make the development of the trace formula such
a formidable task.

To develop a theory of liftings of representations from the group H to G, one proves a
trace formula for a test function fg on H(A), of the form Y trwu(for) =3 g/ @ry (yH)-
One then compares the geometric sides of the two trace formulae. For this one needs: (1) A
notion of a norm map N : {G/ ~} — {H/ ~}, sending a stable conjugacy class v in G(F)
to vy in H(F), locally and globally. In our context, this has been defined by Kottwitz-
Shelstad [KS]. (2) A statement of transfer of orbital integrals, asserting that given a test
function f € C°(G(F)), where F is a local field, there exists a test function fg, and given
fr there is an f, with “matching orbital integrals”, i.e. ®;(y) = ®¢,(N+v). The global test
function f is a product of local functions which are almost all the unit element fO of the
Hecke algebra of spherical (bi-invariant by a standard maximal compact subgroup K of the
local group G(F) (K is hyperspecial, [Ti, 3.9.1]) functions on G(F'). Hence one must have
also the statement: (3) ®o(y) = ®yo (N7) for all (regular) v. This statement is called the
fundamental lemma. It is a necessary initial point for the comparison to exist.

Further, the admissible map H x Wg — G x W defines a lifting map for unramified
representations from H(F) to G(F), and via the Satake transform a dual map from the
Hecke algebra of G (locally) to the Hecke algebra of H, and one needs: (4) an extended
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fundamental lernma, relating the orbital integrals of the corresponding spherical functions.
Once all this is accomplished, the spectral sides of the trace formulae are equal for sufficiently
many corresponding test functions, which are used to isolate individual contributions to the
formula, and thus derive the lifting of global and local representations.

The technique of comparison of trace formulae has been applied to lift representations
of the multiplicative group of a central simple algebra of degree n, to GL(n). Note that
inner forms of G all have the same dual group G. This is due to Jacquet-Langlands for
n = 2, Deligne-Kazhdan for all n and local as well as automorphic representations with
two supercuspidal components, and [FK2] with “one” rather than “two” such constraints
(see [F1] for the special case of a division algebra). However, in this case the two groups
under comparison are isomorphic for almost all completions of the global field F', and the
fundamental lemma holds automatically.

The next case of such a comparison concerns endoscopy for G = GL(n,F), where
H = GL(m,E), E/F is a cyclic field extension of degree n/m. Labesse-Langlands dealt
with n = 2, Kazhdan [K] with all n and m = 1, and Waldspurger [W1] with the general case.
The fundamental lemma in this endoscopic case implies the fundamental lemma needed to
establish the metaplectic correspondence of [FK1], between GL(n) and any central topo-
logical covering group of it. This lifting generalizes Shimura’s in the case of n = 2. The
extended fundamental lemma, follows (as in [F2]) from the fundamental lemma of [W1] by
means of the (simple) regular functions technique introduced in [FK1], or alternatively by
using the spherical functions technique of Clozel. ‘ ‘

For a cyclic extension E/F one has the base change lifting from H(F) to f(E). Viewing
H(E) as the group of F-points of the F-group G = Resg,r H obtained by restricting scalars

from FE to F', the lifting is compatlble with the diagonal map of HxWg to GxWg. Here G
is a product of [E : F] copies of H, on which Wr acts via its quotient Gal(E/F). H. Saito
used (in the context of modular forms) the twisted (by a generator o of the galois group
Gal(E/F)) trace formula ¥ tr 7(fo) = 3. ®;(va), for the convolution operator r(fo). Here
the twisted orbital integrals are [ f(z~!yo(z))dz. For n = 2 the base change lifting for
GL(n) has been carried out by Saito, Shintani, Langlands, and for general n by Arthur-
Clozel [AC]. The stable fundamental lemma, matching stable orbital integrals and stable
twisted ones, has been proven by Kottwitz [Ko] for any G. Regular functions are used in
[F3] to give a simple proof of the (unconditional) base change lifting for GL(2), and in [F4]
for cusp forms on GL(n) with a supercuspidal component.

Naturally one can consider actions other than that of the Galois group. Tw1st1ng by
the outer automorphism 6(g) = *¢g~! (¢ for “transpose”) of GL(n) would lead to liftings
from symplectic and orthogonal groups to GL(n). The first example in this line concerns

the symmetric square lifting ([F6]) from H = SL(2) to G = PGL(3), whlch is assomated
with the dual group homomorphism embedding H = PGL(2,C) = SO(3 ,C) &Y in

G = SL(3,C). Here H= Za (é) is a twisted endoscopic group. More generally, for n > 3,
G = GL(n,C), 8(g) = Jtg~1J~! for some symmetric or anti-symmetric matrix J, since
H = Sp(n/2,C) or SO(n,C), one expects to obtain liftings from orthogonal or symplectic
groups to the general linear group. The purpose of this lecture is to report on a proof of
the fundamental lemma in the next case, of GL(4), by means of a new technique, which
also provides a more elementary proof in other (known) cases, and a hope for extension.
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The orbital integral [, f°(z~!yz)dz is the number of cosets 2K in G/K (G is a p-
adic group and K denotes a hyperspecial maximal compact subgroup), which are fixed by
the action of 7. Since G/K is the Bruhat-Tits building of G, Langlands interpreted the
computation of the orbital integral as a problem of counting points on the building. This
led to a satisfactory proof of the stable fundamental lemma for base change ([Ko]), and to
a counting proof for the symmetric square lifting ([F5, §4]). Langlands and Shelstad then
studied the asymptotic expansion of orbital integrals of general (C2°) functions for a general
G, and Hales [H] in the context of Sp(2). A recent coherence result of Waldspurger [W2]
for the unit element f° should lead to a computation of the orbital integral of f° too. Our
— elementary - approach is entirely different. It involves neither buildings nor germs.

To start with, we note that a useful reduction of the computation of the orbital integral
of fO at an element k of K is given by Kazhdan's decomposition [K] of k¥ as a commuting
product of an absolutely semi-simple element s, and a topologically unipotent element w.
The integral is then reduced to that of u, where G and K are replaced by the centralizers of
s in these groups. A twisted analogue of this result is developed in [F7], where - taking the
group to be the semi direct product of PGL(3, F') and the group generated by the twisting o
- the twisted orbital integrals of f° are reduced to orbital integrals on forms of GL(2), which
can be directly computed, and compared with the orbital integrals on the “lifted” groups
(SL(2) and PGL(2)). This reduction is carried out in the context of GL(4) rather than
GL(3) in the work reported about below. It permits us to compare the resulting integrals
on the group Sp(2) of fixed points of o(g) = Jtg~'J~! on GL(4), with the integrals of f°
on GSp(2) at the norm of the element w.

The basic idea for the computation of the non twisted orbital integrals comes ;from the
work of Weissauer [We]. Since the orbital integral is an integral over T\G /K, where T is
the centralizer of our regular element in G, it suffices to find a double coset decomposition
for H\G/K, for a subgroup H of G which contains T, and then the computation of the
orbital integral is reduced to one on the subgroup H, which should be simpler than G.
Weissauer [We] proved the fundamental lemma for GSp(2) and its endoscopic group SO(4).
We report here on the proof of this lemma from GL(4) to all of its twisted endoscopic
groups, especially GSp(2), using this approach. Of course here we consider all tori T' of
GSp(2), not only those which transfer to its endoscopic group, and compute the norm map.

T. Oda pointed out at the end of my talk that results of Murase and Sugano [MS] on
double coset decompositions of the form H\G/K existed for all classical quasi-split groups,
and our direct and clementary approach might extend to deal with twisted GL(n) for all n,
namely with all symplectic and orthogonal groups. It is easy to obtain such a double coset
decomposition in the context of U(2) x U(1)\U(2,1)/K, where U denote unitary groups of
a quadratic field extension E/F. T have recently used this to prove the fundamental lemma
for U(2,1) and its endoscopic group U(1,1) x U(1), for a torus T split over £ when it is a
quadratic unramified extension of F, or over a biquadratic extension of F.

It is my great pleasure to express my deep gratitude to Toshio Oshima for his invitation to
Tokyo, to Atsushi Murase and Takayuki Oda for the invitation to the enjoyable conference
at RIMS, and for fruitful conversations, and to them and Bernhard Runge and Tadashi
Yamazaki for their hospitality. The work [F8] was supported by the Humboldt Stiftung and
the hospitality and inspiration of Rainer Weissauer.

Let us proceed to describe the fundamental lemma in our case, and steps in its proof.
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We simply extract paragraphs from [F8], following its numbering.
Part 1. Preparations. A. Statement of Theorem.

Let R denote the ring of integers in a local non archimedean field F. Let G be the
F-group G; x Gy, where G; = GL(4) and G,, = GL(1). Put *g; for the transpose of
91 € Gy. Definew = (J7), J=(_,7), 0(g1) = Jtg7 ' I}, and 6(g1,¢) = (8(g1), ellg1])
for g = (g1,€) € G; ||¢91]| denotes the determinant of g;. Put H = GSp(2) = GSp(J) for
the group {g1 € G1;0(g1) = eg for some e = e(g1) € GL(1)} of symplectic similitudes.
We write G = G(F) and H = H(F) for the groups of F-points, and K = G(R) and
Ky = H(R) for the standard maximal compact subgroups. Similarly we have Gy, Ky, .. ..

We choose Haar measures 1g, dh,... on G, H,..., and denote by 1x = 1k, the quotient
by the volume |K| of K of the (‘hardcterlstl( functlon of K = K¢ in G, by 1k, the
analogous object for Ky, 1k, for K; in G, etc. Then 1k lies in the space C(G) of
locally constant compactly supported functions on G. We often omit the subscript of K,
when it is clear from the context. Identify C°(G) with C(GO) by f(g) = f(g8), put
Int(g)(t0) = gtfg~' = gt#(g~1)f, and introduce the orbital integral

3G (t0) = 5 (t0; da/dzq0) = /

1 ((1nt(9)) (t9) ) dg/d 7e0
G/Za(t0)

of f € C(G) at t0,t € G (it is also called the 0-orbital integral of f at t). Here
Zg(t0) = {g € G; Int(g)(t0) = t6}

is the -centralizer of t in G, or the centralizer of t0 in G.

The elements ¢,t' of G are called stably 6-conjugate if t'0 = Int(g)(tf) for some g € G
( = G(F),F = algebraic closure of F). There are finitely many 6-conjugacy classes
(Int(g)(td),g € G) in a stable H-conjugacy class, and we define the stable orbital inte-

gral @? *'(t0) of f at t@ to be the sum Z@G(f’ 6) over a set of representatives t’ for the
9-conjugacy classes within the stable 6-conjugacy class of ¢ (in G). Note that Zg(t0)
and Zg(t'§) are isomorphic when t,t' are stably #-conjugate, this isomorphism is used
to relate the measures on these groups. Similarly we have the stable orbital integral
& (hidp/dz, ny)) of f € C(H) at he H.

The purpose of this lecture is to outline steps - mainly involving listing tori, conjugacy
classes within stable ones, endoscopic groups, decompositions, norms, but not the compu-
tations themselves - in the proof of the following.

Theorem. For any strongly 0-regular t € G we have

O (205 dg/dre) = O (Nt; dpr /dro).

An element ¢ of G is called 9—semi—simple if t0 is semi-simple in the group G x (@) (@
is an automorphism of G of order two). Such an element is called 0-regular if Zg(t0)°,
the connected component of the identity in Zg(#0), is a torus. Further it is called strongly
6-regular if Zg(t0) is abelian. In this case Zg (Zg(t0)°) is a maximal torus T in G which
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is stable under Int(t8), and Zg (t8) = T™*(*) (see Kottwitz-Shelstad [KS, 3.3]). According
to [KS, Lemma 3.2.A(a)], we may assume that the strongly f-regular ¢ lies in a 6-stable
F-torus T. Thust € T = 6(T).

To define the norm map — which appears in the statement of the Theorem - following
[KS] we fix a f-stable F-pair (T*, B*) consisting of a minimal #-stable F-parabolic subgroup
B* of G, and a maximal f-stable F-torus T* in B*. Namely we take B* to be the upper
triangular subgroup of G, and T* to be the diagonal subgroup (thus T* = T} x Gg,).
Any two #-stable F-tori T* and T are 6-conjugate in G, thus given T (T* is fixed) there
is h € G with T = h~'T*0(h), and in particular t* € T* such that ¢t = h=2t*6(h). The
norm of t is defined to be the stable conjugacy class in H which is conjugate to Nt* over
F, where Nt* is defined as follows.

Put V = (1 —6)T* and U = T} = T*/V. Here T* consists of (a,b,c,d;e)

(= (diag(a, b,c,d),e)), and 8(a,b,c,d;e) = (d~',c71,b71,a };eabed). Then V consists of
(e, B, B,a;1/af). Choose the isomorphism N : UST% given by

(z,y, 2, t;w) mod{(e, B, B,a; 1/aB)} = (zyw, x2w, tyw, tzw; zyztw?) = (a,b,e/b,e/a;e).

It is surjective since (b,a/b,1,e/a;1) — (a,b,e/b,e/ase). Of course T} 1s the diagonal
subgroup in H, and any torus Ty in H is conjugate to T} over F. The stable conjugacy
class of a regular element in H is the intersection with H of its conjugacy class over F. The
choice of the isomorphism U-T}; is dictated by dual groups considerations, namely that
H is an endoscopic group in G; this we explain in Section F below.

Our explicit computations permit comparing also unstable twisted orbital integrals of
1x on G with stable orbital integrals on the associated twisted endoscopic groups, as well
as reproving Weissauer’s transfer of the unstable orbital integrals of 1x on GSp(2) to its
endoscopic group, but this will not be described here.

B. Stable Conjugacy.

Let us recall the structure of the set of (F-rational) conjugacy classes within the stable
(F-) conjugacy class of a regular element ¢ in H. By definition, the centralizer Zu(t) of ¢ in
H is a maximal F-torus Tg. The elements t,t' of H are conjugate if there is g in H with
¢ = Int(g~1)t(= g~'tg). They are stably conjugate if there is such g in H( = H(F)). Then
go = go(g~") lies in Ty for every o in the Galois group I' = Gal(F/F), and g — {0 — g5}
defines an isomorphism from the set of conjugacy classes within the stable conjugacy class
of t to the pointed set D(Ty/F) = ker[H'(F,Ty) — H'(F,H)]. In our case H'(F,H) is
trivial, hence D(Ty/F) is a group.

1. Lemma. The set of stable conjugacy classes of F-tori in H injects naturally in the
image in HY(F,W) of ker[H*(F,N) — H'(F,H)], where N = Norm(T%, H), and W is the
Weyl group of T% in H. This map is an isomorphism when H is quasi-split. Note that
the image is H'(F,W) when H'(F,H) is trivial, and H*(F, W) is the group of continuous
homomorphisms p : I' — W, when I' acts trivially on W.

In our case of H = GSp(2), the Weyl group W is the dihedral group D4, generated by
the reflections s; = (12)(34) and s = (23). Its other elements are 1, (12)(34)(23) = (3421)
(which takes 1 to 2, 2 to 4, 4 to 3, 3 to 1), (23)(12)(34) = (2431), (23)(3421) = (42)(31),
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(3421)2 = (23)(41), (23)(23)(41) = (41). We list the F-tori T according to the subgroups
of W, the split torus corresponding to {1}, and conclude the following.

2. Lemma. We have that H'(F,T) is trivial except when p(I') is the subgroup of W of
the form ((14)(23)) or ((14)(23), (12)(34), (13)(24)), where H'(F,T) = Z/2.

In the proof we note that if T splits over the Galois extension E of F' then H(F, Ty) =
H'(Gal(E/F), T}y(E)), where T} (E) = {diag(a,b, \/b,\/a);a,b, A € E*}, and Gal(E/F)
acts via p. Thus H! is the quotient of the group C*! of cocycles: a, € Ty (E) with a; =1
and agr = ay0*(a,) for all 0,7 € Gal(E/F), by the group of coboundaries: co*(c™!),c €
T%(E). Here 0* = p(0) o0, thus 0*(a) = g, - 0a- g; ! if p(0) = Int(g,). When p(T') = {1},
the group H! is trivial since E = F. The other cases are: (1) p(I') = ((23)),[E : F] = 2;
(2) p(T) = ((12)(34)),[E : F] = 2; (3) p(T') = ((13)(24)),[E : F] = 2. These tori are not
elliptic — their quotient by the center of H is not compact. The elliptic tori are: '

(1) p(T) = ((14)(23)), [E s F] = 2:

(I1) p(I') = ((14)(23), (12)(34), (13)(24)), E is the composition of the different quadratic
extensions Fy, Es, E3 of F, and so Gal(E/F) = Z/2 x Z/2 is generated by o and 7 whose
fixed fields are E3 = E(®), Ey = BT By = E{),

(IT1) p(T) = {(14), (23)), again E = E1E3 and Gal(E/F) = Z/2 X Z/2 is generated by o and
7, with fixed fields E3 = E(°), By = E°7) and E; = E{™, and p(1) = (23), p(70) = (14).
(IV) p(T') contains an element of order 4. There are two cases here. If p(I') = W, then the
splitting field E is a Galois extension of F' with Galois group W = D4. The other case is
when p(T') is Z/4, say p(o) = (3421). The splitting field E is a cyclic extension of F' of
degree 4. ‘ ' O

A standard integration formula from the group to a Levi subgroup containing the torus,
reduces the study of orbital integrals of regular elements to that of the study in the case of
elliptic elements, and their centralizers, the elliptic tori. These are the cases (I - IV).

C. Explicit representatives.

It is important for us to describe a set of representatives for t € Ty and for their stably
conjugate but not conjugate elements.

Example. Case of SL(2). As a preliminary example, let us consider the case of an elliptic
torus T in G = SL(2)/F which splits over the quadratic extension £ = F (VD) of F. If
T* is the diagonal torus, then a representative of such T is T=h DlT hp,hp = ( 1 ‘/\/_B)
Note that A, = diag(||hp||~!, 1)hp, where ||hp|| = det hp, lies in SL(2, E). If o is the

generator of Gal(E/F), then o(hp) = hpe = whp,e = (3 _01 ), w = ((1) (1)) The elements of

T are t = hy'ahp(a € T*), and we have ot = hp'wo(a)whp, hence the action of o on T
induces the action o*(a) = Int(w)(o(a)) on T*. '

If t,¢; € G are stably conjugate then t; = g~'tg = gg~! -t - og, hence g, = go(g)™! =
hBlaahD lies in T (= Zg(t);ot = t and ot, = ¢; since ¢,t; € G). Now 1 = g,0(g,) =
Int(hp') (aswo(as)w) = ago(as,)~"t, thus a, = diag(R, R™') with R = oR € F*. Of
course the cocycle g, or a, € T*, can be modified by co*(c)~! = (v,771)(oy,07™?), hence
R ranges over F'* /Ng,pE*. The relation go(g)~' = hplashp = hBlaawa(hD) implies

hpg = agwo(hpg) = (54) = (2 DIY) = (ipo gpo) = (F )

z



196

where we wrote T for ox. To have g of determinant 1 we note that 1 = ||g|| = —R(Zt —
21)/2v/D has the solution z = 1 and ¢t = —v/D/R. Then

1, R+1 (R-1)VD
—=(PVO) B ) = 5Cak TR 2 € SL2 B).

g=9gRr =
g 2\/—
Moreover,

bD -1 10 bD , bD/R
t=(3"2) ti=97"tg= (4 2)(3 D)o o) = (")
make a complete set of reprecentatives for the conjugacy classes within the stable conjugacy

classoft € T C G.

We next similarly describe representatives for the elliptic elements in H = GSp(2, F'),
and for elements stably conjugate but not conjugate to these representatives.

cd 0~v460
c004

The tori Ty of H = GSp(2) of type (I) split over a quadratic extension E = F(v/D) of
F, whose Galois group is generated by o.

a00b
Notation. Write [(“ b),(:g)] for (Oaﬂ()).

1. Lemma. A torus Ty of type (I) is given by
Ty =k ' Tyhp = {t = [a,b] = Ry~ (a, b, ob, ca)hlp;

2D
a= (3 "")b=(3%") lal = Ibl},

where a = a1 + aaV'D,b = by + byVD, and hD = [k, h'p]. Moreover t; = Int(g~ ')t =
Int ([Z, (0 R)])t R € F — Ng/pE, is stably conjugate but not conjugate tc t in H, where
g=1[I,g], and g = gg is as described in the example of SL(2) above.

Analogous descriptions apply to tori of the other types.
D. Stable f-conjugacy.

Similarly, we describe the (F-rational) #-conjugacy classes within the stable (F-) 6-
conjugacy class of a strongly f-regular element ¢ in G. Fix a f-invariant F-torus T*; in fact
we take T* to be the diagonal subgroup. The stable f-conjugacy class of ¢ in G intersects
T* ([KS, Lemma 3.2.A]). Hence there is A € G and t* € T*, such that ¢ = h='t*0(h). The
centralizers are related by Zg(t0) = h™'Zg(t*6)h. Further Zg(t*#) = T*?, the centralizer
of Zg(t0) in G is an F-torus T which is 6; = Int(¢) o § invariant, and Zg(t§) = T?. The
f-conjugacy classes within the stable 6-conjugacy class of ¢ can be classified as follows.

(1) Suppose that t; = g~tf(g) and ¢ are stably f-conjugate in G. Then g, = go(g)~' €
Zg(th) = TP . The set D(F,0,t) = ker[H(F, T%) — H(F,G)] parametrizes, via (t1,t) —
{o — go}, the B-conjugacy classes within the stable f-conjugacy class of £. The Galois action
on T,o(t) = o(h~1t*8(h)) = h=' - ho(h)™! - o(t*) - (o (h)h~1)0(h) induces a Galois action
o* on T*, given by o*(t*) = ha(h)"*o(#*)0(o(h)h~1), and H'(F,T%) = H'(F, T*?).

(2) The norm map N : T* — T% factorizes via the projection T* — T*/V,V = (1-6)T*,
and the isomorphism U = Tj = T*/V5T}. Suppose that the norm Nt* of t* € T* is
defined over F. Then for each ¢ € I there is £ € T* such that o*(t*) = £t*0(¢£)" . Then

W7 9(h) =t =o(t) = oh™' - at* - 8(ah) = a(h) et 0( o (R)),
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hence
t* = hol - t* - 0(hol)™Y, he = ho(h)7},

and hot € Zg(t*f) = T*, so that h, € T*. Moreover, (1 — 0)(h,) = t*o(t*)~ . Hence
(hy,t*) lies in H'(F,T* =¥ T*), in a subset isomorphic to H'(F,T* ‘= V); this invari-
ant parametrizes the (strongly f-regular) #-conjugacy classes which have the same norm
(see [KS, Appendix A] (or Section G below) for a definition and properties of these hyper-
cohomology groups; the lines preceding Lemma 6.3.A, for the definition of obs(d); (6.2),
for the definition of inv’(4,d’); and the page prior to Theorem 5.1D, for the definition of
inv(8,0"): if t; = g~1tf(g) as in (1) above, then T; = Zg(Z¢(t0)°) is a maximal torus in
G. Denote its inverse image under the natural homomorphism 7 : Gs. — G by T{¢ (G, is
the simply connected covering F-group of the derived group of G), and write g = m(g1)z,
g1 in Gge, z in Z(G). Then o(gy)gy" lies in T3, (1 — 6;)m(0(g1)g7") = a(b)b~!, where
b=0(2)z"1 = (1—-6;)(z"') € Vi = (1 — 6;)(T:). Hence (¢ — o(g1)gy ", b) defines the ele-

gt o

ment inv(t, 1) of H(F, T:¢ (104

within the stable #-conjugacy class of t. The image in H*(F, T} 1= V:), under the map
[T$¢ — V,] = [T; — V4] (induced by = : Tj¢ — Ty), is denoted inv'(t, ;). It parametrizes
the 6-conjugacy classes within the stable 6-conjugacy class of ¢, as noted in (1) above).

V). It parametrizes the f-conjugacy classes under G,

Note that there is an exact sequence

HOF,T*) =TT =1 3 HO(F, V) =V > H\(F, T* 5’ V) - H\(F, T*) = H'(F,V).

Moreover, the exact sequence 1 — T*0 — T* 12 v 5 1 induces the exact sequence
HO(F, T*) 'S’ HO(F,V) » H'(F, T*%) » H'(F,T*) 5’ HY(F, V).

Hence, HY(F,T*) = H'(F,T* =’ V) and D(F,0,1) is ker[H'(F,T*®) — H'(F,G)] ~
ker[HY(F,T* =’ V) — HY(F,G)).
In our case the group H'(F,G) is trivial (G = GL(4) x GL(1)), and so is H'(F,T*).

Hence D(F,0,t) = H'(F,T*°) = H\(F,T* % V) = V/(1 — 9)T*. The 6-invariant F-tori
T determine homomorphisms p : I' = W(T*?,G?) = W(T*,G)?. We can describe a set
of representatives for the F-tori T in G, and the groups HY(F,T* —» V) = H L(F, T*)
which parametrize the §-conjugacy classes within the stable §-conjugacy classes of strongly
f-regular elements in G, which are represented by elements of T'. Since W(T*,G)? =
W (T%, H), our list of §-invariant tori T is obtained from the list of tori Ty, where T is
the centralizer of Tp.

A useful fact would be that we can choose h € G such that 6(h) = h. Then the stable
f-conjugacy classes of strongly f-regular elements are represented by ¢ = h=1t*0(h) =
h=1t*h,t* € T*, and we also exhibit a complete list of representatives for the f-conjugacy
classes within the stable f-conjugacy class of such a strongly #-regular element ¢.

Then we list the f-invariant F-tori in G up to F-isomorphism; they are parametrized
by the homomorphisms p : T — W = W(T*? G%) = W(T*, G)?. Note that G = Sp(2).
Further we compute H!(F,T*®) = H(F,T* =y V), we give an explicit realization of
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T = h~!'T*h (and h = 6(h)), and for ¢ € T, strongly f-regular, a set of representatives
in G for the f-conjugacy classes in the stable #-conjugacy class of ¢. Note that the only
significant difference from the non twisted case is that we work with G? = Sp(2) instead of
with H = GSp(2).

Let us clarify that ¢ € G is strongly f-regular means that ¢ = h~'¢*0(k),h € G, where
t* is such that Zg(t*0) is T*¢. Then Zg(t6) = h=1Zg(t*0)h is the torus T (N0 where
Tis Zg (Z(;(té))), an Int(t) o f-invariant maximal torus in G. If u = h~lu*h € T, where
u* € Tr8 | then hyo(u*)hs' = u* = 0(u*) = 8(hy)o(u*)0(hy)~! implies that h, = ha(h™1)
is a f-invariant element in the Weyl group W(T*, G) of T*, hence it can be represented
by an element of W = W(T*?,G*?), and the tori T in G so obtained define p: I' — W.
Hence we consider the centralizers of the tori in G*.

F. Endoscopic groups.

Our Theorem is the “fundamental lemma” for the lifting of representations from GSp(2)
to GL(4). It is compatible with a dual group situation, which we proceed to describe.
Let G be the F-group G x G, where G; = GL(4) and G,, = GL(1). Let G =Gy x

Gm = GL(4,C) x GL(1,C) be its connected dual group. Put w = ((1) (1)) and J = (_Ow o

and é(gl) =60(g91) = thl_l.]_l for g; € G1, where *g; is the transpose of g;. For g = (g1,1)
in G, write 8(g) = 0(g1,t) = (t6(g1),t). This is an automorphism of G of order 2. We often
attach a subscript 1 to indicate the GL(4)-component of an object in G = GL(4) x GL(1),
and sometimes abuse notations and ignore the GL(1)-component.

Denote by T' the diagonal subgroup in G (thus T = Ty x C*), and by T* the diagonal
subgroup of G. Let B and B be the upper triangular subgroups in G and G. Then the
group X«(T) = Hom(Gm,T) = {(a,b,¢,d;e)} is isomorphic to X*(T*) = Hom(T*, Gy,),
and X*(T) = {(x,y,2,t;u)} = X.(T*). The automorphism 6 induces an automorphisin 0
on G (fixing B), given on T* as follows.

(0(x,y, 2, t; u))(a,b,c,d;e) = (x,y,2,t;u) ({)((1,, b,c,d;e))
= (z,y, 2, t;u)(e/d,e/c,e/b,efa;e) = a~tb™ 7Y Ty TEE Y

= ("—tv -2z, Y,—~T, T + Y +z+1t+ ’lt)({l, b,C, d; (3).

Then for (g,t) € G,0(g,t) = (6(g),t|lg]|), where ||g|| denotes the determinant of g.

We are concerned with lifting of representations and transfer of orbital integrals between
G and its endoscopic groups, in fact its twisted (by 6) such groups. The twisted endoscopic
groups of (G, §) are determined by H=7Z G»(S‘é)" (superscript zero for “connected component
of the identity”), where this centralizer is

Zs(50) = {(z,1) € G;230(z) ™! = 13} C Zaro) (30(3)) x GL(1,C),

and by a Galois action p: ' = Gal(F/F) — ZG(€9) Here § is a semi-simple element in G
(which can and will be taken to be § = (51, 1)), which can and will be taken to be diagonal,
chosen up to f-conjugacy, namely T>s= g.%é(g‘l). Using a diagonal g we conclude that
§ = diag(1,1,¢,d). Taking g to be a representative in G of the reflections (23), (14), (12)(34)
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in the Weyl group of G (these elements are fixed by é), we conclude that the é—conjugacy
class of § does not change if ¢ is replaced by ¢!, d by d=1, and (c,d) by (d,c). Let us list
the possibilities. Recall ([KS, 2.1]) that an endoscoplc group H is called elliptic if (Z (H)T)0
is contained in the center Z(G) of G.
A list of the twisted endoscopic groups of (G’,é) is as follows.
1. §=1, Zé(é) = GSp(2,C) is connected, hence equal to H, the Galois action is trivial,
and the endoscopic group is H = GSp(2) over F. Since Z(H) = C* = Z(G), H is elliptic.
An endoscopic group C of H is determined by a semi-simple (diagonal, up to conjugacy)

element s in H. The only proper elliptic endoscopic group of H is determined by s =
e00e

diag(1,—1,—1,1), whose centralizer in HisCy= (3 : : 8) = {(a,b) € GL(2,C)?; det a =
o00e

det b}. Note that the connected component of Z(Cy) = (Z(H),s) is Z(H), so that Cy is
elliptic. Also, X,(To) = {(a,b,¢,d);a + d = b+ ¢} = X*(Ty) has dual X.(T§) = X*(To) =
{(x,y,2,t)/(u, —u, —u,u)}, hence Cy = GL(2) x GL(2)/GL(1), where GL(1) embeds via
w— (u,ut). ’ '
~ The dual group of Hg = Sp(2) is Hy = PGSp(2,C). Its proper elliptic endoscopic groups
arc obtained as follows. (i) The centralizer of s = diag(1,—1,—1,1) in Hy is generated by
the reflection diag(w, w) and its connected component Cy/Z = (GL(2,C) x GL(2,C))'/C*,
the prime indicates equal determinants. The corresponding endoscopic group is (GL(2) x
GL(2))/GL(1), unless there is a quadratic extension E/F whose galois group permutes
the two factors, in which case Resg,r GL(2)'/GL(1) is obtained (its group of F-points is
GL(2,E)'/F*, wherc the prime indicates here detormmant in F*. () The centralizer of
s; = diag(1,1,—1,—1) in Hy is generated by ( o) (where e = (O 1)) and its connected

component C? = {diag(z, A\ewe); + € PGL(2,C), /\ € C*}. The endoscopic group is elhptlc
only when there is a quadratic extension E/F such that Gal(E/F) acts via Int( ° 0) on
this connected component, thus by o(z,A) = (z,A7!) on (z,A) € PGL(2,C) x CX

then the endoscopic group iz SL(2) x U(1, E/F), where U(1, E/F) is the unitary group
with F-points E! = {z € E*; 2T = 1}.

2. 5= (1), Z5(30) = GO((2 W) C) is {(w,1) € Gs() o)ta(,) ) =t} or

(A B =(21) = (¥ 24, IIAB]), (diag(1,w,1), 1) = (((§ 5 ) t4]), (diag(1,w,1), 1))

has connected component C = GL(2,C)?/C*, with C* embedding via z — (z,271). Note
that Z(C) = C* is Z(G), hence C is elliptic. Now ‘

X*(TE) = X.(T¢o) = {(a, by e, d) /(u,u;u™ u™1)}

has dual X, (T%) = X*(To) = {(z,y;2,t);7 +y = z + t}, thus C = (GL(2) x GL(2))’,
where the prime means the subgroup of (A, B) with ||A]| = ||B||, when I' acts trivially. If
there is a quadratic field extension E/F and p(o) € diag(1,w,1)C for ¢ in Gal(E/F), then
o acts on C = Cg = Resg,p GL(2)" by permuting the two factors. In particular, Cg =
Cg(F) = GL(2,E)’, the prime indicating determinant in F'*. Note that tie centralizer of
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(e,€) = diag(1,—1,~1,1) in C is generated by the scalars and (e, €), hence C has no elliptic
endoscopic groups. '

o 001
3. § = diag(1,1,1,~1), Zg(30) = ((diag(a, B,b), | B]), (1, 1); ¢ = (o 1 o) , B € GL(2,C),
100

a,b € C*,ab = ||B||) has connected component Cy = (GL(2,C) x GL(1,C)?) (the prime
indicates (a, B,b) with ab = ||B||), with center Z(C,) = C*2, which will not be elliptic
unless the Galois action is non trivial, namely there is a quadratic extension E/F with
p(0) = 1, (o) = Gal(E/F). In this case (Z(C4)F)’ = C* is Z(G). We have X.(T}) =
“ {(a,b,c,b+c—a;b+c)} = X*(T%), with dual X*(Ty) = {(=,y, 2, t; w) }/{(w, v, v,u; —u —
v)}= {(z,y,2,t)}/{(u, —u, —u,u)} = X,(T}). We conclude that Cy = C¥ = (GL(2) x
Resg,r GL(1))/GL(1), GL(1) embeds as (z,z7 '), and C; = C4(F) = GL(Z, F)xE* |F* ~
GL(2,F) x E*.

4. § = (é (?I ), ¢ # il,Zé(S'é) = (((‘3 te(,)cte)’t“A“)) is connected but not elliptic.

5. § = diag(1,1,1,d),d # j:l,Zé(éé) = ((diag(a, 4, ]|Al|/a;||A]|)) is connected but not
elliptic.

6. § = diag(1,1,-1,d),d # :i:l,ZG(ﬁé) = ((diag(a, b,t/b,t/a),t), (diag(l,w,l), 1)) is not
elliptic.

7. § = diag(1,1,¢,d), ¢ # 1 # d?, ¢ # d,d™*, Z5(30) = ((diag(a,b,t/b,t/a),t)) is con-
nected but not elliptic.

The norm map is defined as follows. Put V = (1 — §)T* and U = T} = T*/V. Since
T* consists of (a,b,c,d;e) and (a,b,c,d;e) = (d7 1, ¢ 1,671 a™1; eabed), we have that V
consists of («, 3,0,a;1/af). The isomorphism U = T% ~ Ty, where T% is the diagonal
torus in H = GSp(2), defines a morphism

X, (T*) = X, (T*)/X.(V) = X*(T)/X*(V) = X*(U = T% = X*(Tr) 5 X.(T}),
the last arrow being defined by
(z,y,z,t,w) = (x+y+w,z+2z+wt+y+wit+z+wz+y+z+t+2w),

and a norm map N : T* — T}, given by
(r,y, 2, t;w) 111(;(1((1, B, 8, a;1/af) — (:nyw,:nzw,tyw,tzw;myzth) = (a,b,e/b,e/a;e),
which is surjective since (b,a/b,1,e/a;1) — (a,b,e/b,e/a;e).
To describe the norm for the twisted endoscopic group C (of (2) above), note that T =
Tw by ((a,d), (b,¢)) — (ab,ac, bd, cd). Hence X*(Ty) = X*(T¢) via (z,y, z,t) mod{(«a, B, 8, @)}
— ((z+y,2+1), (x+2z,y+1)), and the composition X,(T*) = X*(Tx) ~ X*(Tc) defines
the norm map

N : T* = Tg, (z,y, 2, tw) = ((zyw, 2tw); (z2w, ytw)) ( = ((,m’(’)“’ z?w),(mf)w y?w )))

Let us also describe the norm map for the twisted endoscopic group C4 of (3) above.
Since the map X*(T%) 5 X.(T%) is the identity, the norm is defined by

N : X, (T*) = X (T*)/X,(V) = X*(T)/X*(V) = X*(U = T? = T}) = X.(T%),

N(z,y,2,t) = (x,y, z,t) mod(u,u=1, u=1 u).
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G. Instability.

Recall that the set of #-conjugacy classes within the stable #-conjugacy class of a strongly
f-regular element ¢t in G is parametrized by the set D(F,0,t) = ker[H(F, T* = V) —
HY(F,G)] = ker[H'(F,T*%) — H(F,G)], which is a group in our case, as H'(F,G) is
trivial. There is an exact sequence

HYF,T*) =T* % HY(F,V) =V — D(F,0,t) - H'(F,T*) 5’ H'(F, V).

In our case of G = GL(4) x GL(1), we have H(F,T*) = {1} for all tori (or Galois actions,
namely subgroups of the symmetric group Sy on four letters), hence D(F, 6,t) = V/(1-6)T™*.

There is a dual five term exact sequence, useful when stabilizing the twisted trace for-
mula. Let ¢ : V — T be the homomorphism dual to T* %% V. Thus $: X (V) =X*(V) >
X*(T*) = X.(T) takes x = (z,9,2,t;w) to (¢(x))(a,b,c,d;e) = x(ad, be, be, ad; 1/abed) =
(ad)**+t=% (bc)¥*+2~, Namely, ¢ takes (z,y,z,t;w)in V = T/U = T /79 to (zt/w,yz/w,yz/w,
zt/w;1) in T. Recall that T = {(a,b,e/b,e/a;€)}.

To obtain the dual sequence recall the Langlands isomorphism H(Wp, T) =
Hom, (T, C*) (T = T(F); [KS, about a page after Lemma A.3.A}), and its hypercohomol-
ogy analogue ([KS, Lemma A.3.B]): H'(Wp, V4 T)) is isomorphic to the group K(F,8,T*)
of characters Homgy (H YF,T* 1= V), (CX). Since the Weil group W of F acts on T and
V via the Galois group T’ = Gal(F/F), one has HO(Wg,V) = VT A HOWg,T) =TT —
K(F,0,T*) = HI(WE,V % T) - HY(Wg,V) 2 HY(Wpg,T). This is the exact sequence
[KS, A.1.1], for ¢ : V — T, which is dual to the previous five terms exact sequence for
1-6:T"— V.

Definition. The stable 8-orbital integral ®%t at a strongly 6-regular element ¢ in T, where
T is any F-torus in G, is the sum of the #-orbital integrals on the #-conjugacy classes within
the stable #-conjugacy class of ¢.

The set of such #-conjugacy classes (for some t) is parametrized by the group H*(F, T* ey

V) = HY(F,T*%) computed in Section D (of the text). For each character x of this group
(into the group of roots of unity in C*), we can also make the:

Definition. The &-orbital integralis the linear combination of the #-orbital integrals weighted
by the values of & at the element of H(F, T* — V) parametrizing the #-conjugacy class.

These weighted (by &) combinations of the §-orbital integrals are to be compared with

stable orbital integrals on the #-endoscopic groups H of (G,#). The #-endoscopic group

H is determined from &, by [KS, Lemma 7.2.A], via the surjection H Y Wg,V 4 T) —

Hom,, (H(F, T* = V),C*) (see [KS, Lemma A.3.B]). Recall ([KS, A.1]) that:

Definition. The first (abelian) hypercohomology group H'(G, A EN B) is the quotient of
the group of 1-hypercocycles, by the subgroup of 1-hypercoboundaries. A 1-hypercocycle is
a pair (a,b) with a being a 1-cocycle of G in A, and b € B such that f(a) = 0b (0b is the
1-cocycle o — b~1a(b) of G in B). A 1-hypercoboundary is a pair (Ba, f(a)), a € A.
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Thus HY (W, V4 T') consists of elements represented by pairs (a,b),a € HY (W /Fs V),
where K/F is a galois extension over which T splits and V = T/U,U = (T é)o_ Here ¢ : V —
T is the map dual to 1 — 0 : T* — V, thus ¢(x,v, 2, t;w) = (xt/w,yz/w,yz/w,zt/w;1),
and b € T satisfies ¢(a) = db. The #-endoscopic group H has a dual group whose connected
component H is Zé(bé)o, the connected centralizer of b0 in G ( [KS, Lemma 7.2.A}).

We then compute the 1-hypercocycles representing the non trivial characters k on
HY(F,T* 1= V), according to our listing of tori.

In the comparison of the unstable (k-)f-orbital integral at a strongly #-regular element
t, and the stable orbital integral on the endoscopic group H, determined by k, a transfer

factor appears. It is a product of a sign and of a Jacobian factor Ag u, = Ag/Amn,,
denoted Ay in [KS, 4.5], which we also describe in the main cases.

H. Kazhdan’s decomposition.

A main ingredient in our proof of the matching is the (twisted analogue [F7] of ) Kazhdan’s
decomposition [K, p. 226], which we now recall. Let H be a connected reductive R-group,
where R is the ring of integers of F, and put H = H(F), Ky = H(R).

Definition ([K]). An element k € H is called absolutely semi simple if k* = 1 for some
positive integer a which is prime to the residual characteristic p of R. A k € H is called

topologically unipotent if k7" - las N = 00, ¢ = #(R/mR), ® generates the maximal ideal
in R.

1. Proposition ([K]). Any element k € Ky has a unique decomposition k = su = us,
where s is absolutely semi simple, u is topologically unipotent, and s,u lie in Kg. For any
ke Ky and z € H, if Int(x)k(= zkx™?') lies in Ky, then z is in KgZg(s), where Zg(s)
denotes the centralizer of s in H. _ .

In fact [K] proves this only for H = GL(n), but since s is defined as a limit of a sequence
of the form k9", both s and u lie in Kg.

The twisted analogue which we need is reproduced next (from [F7]). Let G be a reductive
connected R-group and # an automorphism of G = G(F) of order £ ((¢,p) = 1), whose
restriction to K = G(R) is an automorphism of K of order £. Denote by (K, ) the group
generated by K and 6.

Definition. The clement k8 of GO C (G, ) is called absolutely semi-simple if (k6)* = 1 for
some positive integer a indivisible by p.

2. Proposition ([F7]). Any kf € K6 has a unique decomposition k) = s6-u = u-sf with
absolutely semi simple s@ (called the absolutely semi simple part of kf) and topologically
unipotent u (named the topologically unipotent part of kf). Both s and u lic in K. In
particular, Zg(s0 - u) lies in Zg(sh). v O

3. Proposition ([F7]). Given k € K, put 8(h) = s6(h)s~t, where k6 = s - u. This
f is an automorphism of order £ on Zk ((3(9)"). Suppose that the first cohomology set

H! ((é),Z K((sf))")), of the group (#) generated by 6, with coefficients in the centralizer
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Zk ((s)%) in K, injects in Hl(((}), Zg((sﬁ)e)). Then any x € G such that Int(x)(k0) lies
in K0, must lic in K Zg(s0). : O

The supposition of this proposition can be verified for our group G = GL(4, F)xGL(1, F)
and our automorphism 6 in the same way it is verified in [F7] for GL(3, F'). Note also (see
[F7]) that if the elements k0 = sf - u and k' = s'0 - u’ of K6 are conjugate by G(F) (F is
a separable closure of ¥ ) then so are sf and s'6, and if s = s’ then u,u’ are conjugate in
ZG(f)(SH).

Our argument uses the function

1so(u) = |K/K N Zg(sO)|1k(s8 - u) = 1K(Int(:17)($9 -u))dz.

-L/KOZ(;(SG)

Then the orbital integral &, (k) = fG/Zc(kG) IK(Int(m)(k()))dm is equal - by Proposition
3-to= fz(-(sa)/zp(se-u) 1o (Int(z)u)dz = @1, (u), the orbital integral of the characteristic
function 1,9 of the compact subgroup Zk(sf) = K N Zg(sh) of Zg(sf) (multiplied by

|K/Zk(s0)| ) at the topologically unipotent clement u in Zg (s6). ,

Since (k)2 = s0(s) - u?, where in our case 6(g,t) = (6(g),tdetg),g € GL(4,F),t € F*,
0(g) = Jtg~1J L, we shall deal with various cases according to the values of s6(s) (s denotes
also the GL(4, F)-component of s). |

4. Lemma. Ifz = sA(s) has the eigenvalue X, then it has the eigenvalue A=t too.
J. Decomposition for Sp(2).

In computing the orbital integrals of 1x on H = GSp(2, F'), we use the following decom-
position.

1. Lemma. We have a disjoint decomposition H = GSp(2, F) = gOKunC'A = EOCAun‘K,
n> n>

1007 " /A
2 _ {010 0O — ab P L — —
where A € F — F?uy, = | 0100 ,CA—{(cd)EH,a—(AaMl),b—...},K_
000 1 .

GSp(2,R), and |A| =1 or = |7|.
There is an analogous decomposition for Sp(2, F).

2. Lemma. We have a disjoint decomposition Sp(2, F) = L;OC};UmK 1 where the super-
m

script 1 stands for the subgroup of elements with determinant one.

We nced an analogous result for A € F*2, Note that for A € F — F?, the sub-
group C4 of H is isomorphic to GL(2,E), E = F (V/A), where the prime indicates cle-

ments with determinant in F'*. The isomorphism is given by a — a = a; + asvVA. Put
a00b

Co = {[((: Z), (: ?)] = (8 : g g) € H}; it is isomorphic to the group GL(2,F @ F)' =
c00d .

{(9,9") = ((zZ),(aﬂ));detg =detg'}.

v &
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5. Lemma. We have a disjoint decomposition

1 0 “.—7”. O

_ . ~_ 01 0 T
H=GSp(2,F) = m%OKz(m)Co, z(m) = 00 1 o
00 0 1

Put H! = Sp(2,F), C = Con H' ~ SL(2,F) x SL(2,F), K1 = KN H'.

6. Lemma. H' = U C}z(mm)K*', where the union is disjoint.
m>0

Part II. Main comparison. A. Strategy.

Let us review our strategy in computing the #-orbital integrals of 1x. It is based on
the twisted Kazhdan decomposition. Given a semi-simple t6 € K x (), G = GL(4,F) x
GL(1,F), K = GL(4,R) x GL(1, R), it has the decomposition tf = u-s6 = s0 - u, where sf
is absolutely semi simple, and u is topologically unipotent. Then ®¢ (t0) = @127(::93) (u).
The associated stable f-orbital integral we wish to relate to the stable orbital integral

@ﬁ:(N t), where H is the endoscopic group GSp(2, F'), and Nt is the stable orbit of the

norm of . To compute the norm we write ¢t = h~'t*8(h), where h € G (= G(F)), and
t* € T*, where T* is the diagonal subgroup and T* = T*T. On T* the norm is defined
by T* — T*/(1 — 6)T* ~ T}, thus N(a,b,c,d;e) = (abe, ace, bde, cde; e?abed). A f-semi-
simple ¢ (t is semi simple in G x (6)) is called strongly 0-reqular if Zg(tf) is abelian, in
which case the centralizer Zg(Zg(t0)%) of Zg(t0)° in G is an F-torus T in G which is
invariant under Int(#) o 6, and Zg(th) = T™W"°0. The f-orbit of ¢ intersects T*, thus
there is h € G and t* € T* with t = h~1t*0(h), and Zg(t8) = h='Zg(t*0)h = h='T*°h.
Then T = Zg(h=1T**h) = h~1T*h, and Zg(t9) = T™°? consists of the r € T with
t0(x)t~! = x, thus z~1t0(z) = t.

An F-torus T in G is determined by h € G and the Galois action on T*. Namely, for
t=h~YheT=h"'T*h we have h=1t*h = t = ot = oh~lot*ch, and so at* = h; t*h,,
where Int(h;!) € Norm(T*,G) has the image w, in W = W(T*,G) = Norm(T*,G)
/ Cent(T*,G). If T* is a f-invariant F-torus, taking t* € T*% we conclude that Int(h;!) =
Int (8(hy)™"), thus w, € W9, and the torus determines a cocycle (w,) in H*(F,W?). We
denoted the homomorphism I' = W?, o+ w,, by p, and classified the tori according to the
image of p : Gal(F/F) — W, as types (1) - (3) and (I) - (IV). We explicitly realized T in
the form T = h~1T*h, with h = 8(h). Thus in each stable -conjugacy class of strongly 6-
regular elements we have a representative t = h~'t*h, and further we found representatives
for the f-conjugacy classes within its stable f-conjugacy class, of the form g 9,9 = gr
with g = 6(g).

A 6-semi-simple ¢ € G is called 8-elliptic if Zg(t0)°/Z(G)? is anisotropic. The associated
tori T = Zg (ZG(tG)O) are called f-elliptic. A complete set of representatives for the 6-
elliptic tori is given by the tori of type (I)-(IV). The computations of #-orbital integrals
of non #-elliptic strongly #-regular clements can be reduced - using a standard integration

formula - to the case of the #-elliptic elements, so we deal only with ¢ in tori T of types (I)
- (IV).
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B. Twisted orbital integrals of type (I).

Let u = 6(u) be a topologically unipotent clement in GL(4,R) x GL(1,R). Then
©F (uf) = q)lzfc(g) (u), where Zg(6) = H' = Sp(2, F) and Zg(0) = K' = KNnH'. We com-

Z 5 (8)
pute the value okf this integral at u in a torus of type (I). To consider also the integrals at sta-
bly #-conjugate but not #-conjugate elements, we look at a complete set of representatives,
parametrized by p1, p2. Here p; € {1,7} if E/F is unramified, and p; € {1,e} = R*/R*? if
E/F is ramified. Thus take s, in the torus T, = {s, = [¢/ (a1 + by VD), ¢p (az + by D)] €

Cl}, where qﬁf,’(a-&—b\/ﬁ) = (,;;p blzp). If E' = {z € E*; Ng/px = 1}, then T, is isomorphic

to E' x E'. By Lemma 1.J.6 we have

o' (5) = [ Ll spa)dg
JT\H!

= Z |K | / 1k (2(m) " h™'s,hz(m))dh.

m>0 T\C3/CeNz(m)K z(m)~!

The integrand in the last integral is nou zero precisely when h=1s,h lies in
- Cy . .
z(m)K'2(m)~ N C} = K. Using Lemma 1.J.7 we obtain

|K1'G’ / -1 1 1 -1
= —_— 1 ci(h sph)dh = [KO K ] 1K1‘n (h Spm h)dh,
;Z:o Kl |oy ATACY K’ | ,%0 " Jr,.\c

where now C} = SL(2, F) x SL(2, F), and p — pp, is a permutation of the set of p (trivial
e.g. when m is even). Using the double coset decomposition for SL(2, F ) of Lemima I.1.3:

= Z Z Ry T, NrKjr 'K : K,ln]/ 11 (K=Y~ 1s,, rk)dk.
Pm 1 m

mZOTEan ) KO

Here Ry =T, N K} =T, (R). Let j signify (j1,Jj2)-

The proof consists of computing the various terms which appear in the last sum, then
computing the analogous sum which is obtained in the non twisted case, then taking the
suitable linear combinations weighted by &, multiplying by the transfer factor, and com-
paring the resulting sums. This is done in the context of each of the elliptic tori, of types
(I)-(IV). In particular we obtain explicit formulas for all of the orbital integrals of the unit
clement 1x. All this is done in Part II of the text for a topologically unipotent element.
Part III deals with elements whose absolutely semi simple part is non trivial, where the
integral is reduced to one in a smaller group.
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