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Picard modular surfaces

Bernhard Runge

1. Introduction

In this paper we give an overview on recent results in [R5] and [R6] where we studied moduli
spaces of principally polarized abelian varieties with complex multiplication. In [R5] we studied
the special case of complex multiplication by a (polarization preserving) automorphism given
by an element M of finite order in the modular group I; = S (29, 7).

Then H(M) = {r € Hy ;M < 7 >= 7} is a connected complex submanifold of the Siegel
upper half space H,. Let I'ys be the centralizer of M in the modular group I'y. We call M the Pi-
card type, because such varieties occur in the papers [P1],[P2],[P3] by Picard. Then I'p\H(M ) is
the associated Picard moduli variety of Picard type M. Moreover, we study the Satake compact-
ification, i.e. the closure A(M) of I'ns\H(M) in the Satake compactification Ay, = Proj(A(Iy))
of I';\H,. Similar to modular forms we define modular forms of Picard type M. The ring A(M)
of modular forms of Picard type M defines A(M) = Proj(A(M)) algebraically. For g > 3 the
union of Picard varieties I'ns\[H(M) for the finitely many such M cover the singular locus of
I'p\H,.

If M satisfies an equation M2 4+aM +1 = 0 (a = 0,1), the group Iy is a unitary group (of some
signature (p,q) with p + ¢ = g) usually denoted by U(p,q; R) C I'y, where R = Z[i] for a = 0
or R = Z[p] (p a third root of unity) for a = 1. The ring R = Z[p] is called ring of Eisenstein
numbers. However, as explained below, the (conjugacy class of the) element M contains more
precise information than only the signature (p, q) of the associated hermitian form.

In the elliptic case the modulus 7 = exp(27i/6) of the elliptic curve E; = C/(Z+Zr) with j =0
is just A(M) = {7} where M = M, = ((1) :i
(1,0), and I'ps = U(1,0;Z[p]). Generalizing this example, any M € I'y with M)+ M+1=0
defines an isomorphism I'ns = U(p,q; Z[p]). The case (p,q) = (2,1) was studied by Picard. As a
complex manifold HI(M) is SU(p, ¢; C)/SU(p;C) x SU(g; C). This is a pg-dimensional manifold.
For (p,q) = (p,1) the Picard variety A(M) is just a compactification of a p-dimensional ball
quotient. We refer to [Sa], [Sh1,2], [Ho1,2] for the general theory.

) . This M defines a hermitian form of signature

An important special case with M? + 1 = 0 is the case of hermitian modular forms. These were
studied by Braun [B], Freitag [F1], Matsumoto ([Mal],[Ma2]), and others ([MSY1],[MSY2}). We
give an example of non-conjugate M; with M? + 1 = 0 and non-isomorphic rings of modular
forms A(M;), to show that the notion “modular form for U(g, ¢; Z[:])” depends on the embedding
of U(g,g;Z[i]) in Iyg.
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A more general approch is given in [R6]. There we constructed an algebraic model for Shimura
varieties with a given algebra I = End(A,) ® Q of endomorphisms. It turns out that there is a
canonical modular embedding induced by the rational representation for all Shimura varieties of
PEL-type. This approach in the case of abelian 3-folds leeds to CM-surfaces usually called Picard
modular surfaces. The group of automorphisms preserving the polarization is just G = L N I',.
It is usually not true that G generates L as an algebra. However, the case considered by Picard
is such a special case. ‘

Finally we compute the ring of Picard modular forms in the case considered by Picard, thus
finishing the computation of v. Geemen [G]. This computation implies, that the field of modular
function is rational in this case. Rationality was proved by Shimura [Sh2]. Shiga [S] had computed
this field by a different method. The ring of modular forms of a certain Nebentypus was studied
by Holzapfel [Hol].

2. Notations and first results

Throughout the paper we will use the same notation as in [R1],[R2]. For general facts we refer
to [I], [Kr]. So let

Hy, = { 7 € Matyy,(C)| 7 symmetric , Im(r) > 0},
Iy = 5p(29,2),
Iy(n) = Ker ( I, Sp ( 20,7/n)).

Let I" be a subgroup of finite index of I'y. Denote by A(I') = €&D,[I,k] the ring of modular
forms for I". Let Ag(I") = Proj(A(I")) be the corresponding Satake compactification; it contains
I'\H, as an open dense subset. The open part I'\H, is the coarse moduli space for principally
polarized abelian varieties with level-I" structure.

The thetas (of second kind) are given by (we use Mumford’s notation f;)

f(ry=0[ ] @r) =3 expomi ( [‘”* % D

TE€ZI

for a € Z9. The functions f,(7) only depend on a mod 2 hence a is regarded as element in [F3.

The group Sp(2¢,R) acts on H, by

o< 7>=(Ar+ B)(Ct+ D)} for o = (g g) € 5p(2¢g,R) and T € H,.

This action induces for any k € Z a (right) group action on the algebra of holomorphic functions
{f :Hy — C} by
flko(1) = det(CT + DY *f(o < 7 >).

A holomorphic function f on Hy is a modular form of weight k, or in short f € [I'y, k], iff flxo = f
for all o € I'y. In genus g = 1 one has to add a condition for the cusps.

It is well known that the group I'y is generated by J = and os =

0 1 1 5
1 0 01where

S runs over all symmetric g X g-matrix and 1 € Gl(g,Z) ([F2]). If we allow for a moment
half-integral weight, the modular group I'y acts on the thetas by
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fa“l/ZUS = ¢Sl fa
fa|1/2J = Z (Tg)a,b fb

b €F -

where T, € GI(29,C) is the matrix

1+4)? .
T, = (T) (-p<*> )a,bE g

The equation for J is independent of the choice of the square root /det(—7) on the 2-ring, i.e.
on the ring C[fo(7))2) = {f € Clfa(7)] with 2|deg(f)}. The correct square root is 4/det(r/1)
which is here replaced by €94/det(—7) with € = 17*-21 a primitive 8" root of unity, see [F2]. We
use the equation only for mixed products, hence it is well defined.
Take Ds = diag( 5% for a € F§) and let

Hy, =< Ty, Ds for symmetric § € My(Z) >

be the finite subgroup of GI (29,C) generated by the elements T and all Ds. If we map J to
T, and o5 to Ds we get the theta representation (of index 1, [R3]).

Ptheta : Fg — H_q / (ﬂ:l)
The kernel, denoted by I'y(2,4), is described in [R1].

We recall from [R1] that the ring of modular forms of even weight is given by
A(Iy)z) = EDITo: k] = (CLfa(r)) ™)™
2|k

Here N denotes the normalization (in its field of fractions). Moreover, A(I1) = C[f.(r)]*
A(I)@2y = C[f(7))H2 and A(I3) = C[fa()]H2. We use binary numbers to index the thetas, i.e.

(in genus g = 2) fo = fo fi= f1 fo= fo and f3 = f1.

The Siegel $-operator may ‘be defined as follows. Siegel modular forms in even weight are always
rational functions in the theta constants of second kind. On them, the $-operator is given by

@(fg) = f, and @(ff;) = 0.
(Here a is considered as element in F§ and | as an element in Fitt)
The important new ingredient for Picard modular forms is to consider a fixed Picard type, i.e.
an element M € Iy of finite order. The element M is conjugate in $p(2g,C) to an element
(({ g) with U = diag((1,...,(y), where (; are roots of unity. Hence (C1y--v1CgrCayeresCo)
are just the eigenvalues of M. The characteristic polynomial of M is a product of cyclotomic
polynomials. The dimension of H(M) is given by ([F2], p. 197)

dim(B(M)) = #{(5, )i < j and G:G; = 1).

Definition. A holomorphic function f on Hj is a Picard modular form of weight k and Picard
type M, or in short f € [I'n, k), iff flxo = f for all o € I'pr.
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(If M € I one has to add a cusp condition, but this case is not interesting for our purpose.
The varieties A(M) are just points for M # 1.) Denote by A(M) = &,[I'm,k] the ring of
Picard modular forms of Picard type M and by A(M) = Proj(A(M)) the corresponding
Satake compactification.

Strictly speaking it is very easy to compute the ring of Picard modular forms. Choose some

T € H(M), put M = (A B

cC D and let M = (ma,b)a’bGng be an image of M in H,. Then

1
falipM(7) = b%;g Map fo(T) = ‘m

produces relations for the restricted functions fo(7) on H(M). Because H(M) is connected, the
square oot 1/det(CT + D) may be chosen independent of 7. The induced relations on the 2-
ring are independent of the choice of the square root. Let G(M) = {0 € Hy;0M = Mo} be the
centralizer of M in H,. The group G(M) only depends on M. The element 7 is always contained
in G(M), therefore we always get Picard modular forms of even weight. The following theorem
is a consequence of the corresponding result for the group I';(2,4).

fo(M < T>)

Theorem 1. The ring of Picard modular forms of even weight is given by

A(M)) = PIIn, k] = (Cla(m)CPD)N.
2|k

The problem is to find all relations and to compute the normalization. However, for small
g normalization is often not necessary, hence there remains only the problem of finding all
relations.

We consider now the special case, that M satisfies an equation M2 + aM +1 = 0 with a = 0 or
a = 1. Hence M is an element of order 3 or 4. Let w be a root of the equation w? +aw+1 = 0. We
may choose w =i = +/—1 for a = 0 and w = p = exp(27i/3) for @ = 1. In both cases Z[w] is the
ring of integers in the quadratic number field Q(w), and it is a principal ideal domain. One defines
an ZJw]-module structure on Z?9 by wz = Mz. This induces an isomorphism Z?9 & Z[w]9. The
associated Z-bilinear form
Z|w)® X Zw])? — Z{w]
which is defined by
<z,y>=‘zJMy-wtaJy for z,y € Z*9

turns out to be a hermitian form (< Mz,y >=w < z,y > and < y,z > =< z,y > are easy to
check). This leads to the (well known) equality

U(M;Z[w])) = {0 € Gl(g,Z[w]); < oz,0y >=< z,y >} = I'ny = {0 € I'j;0M = Mo}.

For any concrete M one easily computes the signature (p,q) with p 4+ ¢ = g of (the R-linear
extension of) this hermitian form and denotes U(M;Z{w]) = U(p, ¢; Z[w]). For (p,q) = (p,1) a
hermitian form in a suitable basis is given by |21]? + ...+ |2p|? — |2p+1|*. A subspace of CP*! on
which the form is negativ definite, is spanned by a unique (21,...,2p,,1) with ¥ |2|? < 1. Hence
the variety HI(M) is isomorphic to the p-dimensional ball in PP and U(M;Z[w]) is an arithmetic
subgroup of U(p, q; C).
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3. Hermitian modular forms

An important special case (of Picard modular forms) are the hermitian modular forms, which
belong to the Picard type

0 1€
~1 0

where 1 € GL(g,Z). Usually one considers the hermitian upper half space
HH, = {X +:Y € Maty(C);Y > 0},

where X = *X and Y = tY are the ”hermitian real and imaginary part”. One gets a sequence
of inclusions
Hg C ]HUHIg C Hzg.

The first inclusion is the natural one. The second inclusion is given by
2-7=5(_ 0 Gd)
These inclusions are equivariant under the inclusions of groups
Iy C Ty(Z]i]) C Ty,
where I'j(Z[7]) is the hermitian modular group
Ty(Z[i]) = {0 € Matyy(Z[i]);'5Jo = J}.
Again the first inclusion is the natural one. The second inclusion is given by

A —-a B -p

<A+z’a B+iﬂ)H a A B B
C+vy D+H+1b C -v D -=$¢
¥y C 6 D

One checks easily that the image is just Iy C Iy, using the known generators of I'y(Z[4]) (see
[F1]). The automorphism group Aut(HH,) is given by :

Aut(HH,) = Ty(Z[i])*V™ = Ty(Z[i])x< T >,

where T : Z — tZ acts as transpose. This corrésponds to the element 7' = diag(1,-1,1,-1) €
Iy, and T,(Z[i))*¥™ = (I(M),T) = {g € Ig;gM = +Mg}. As explained above, the hermitian
modular group I'y(Z[:]) is usually denoted by U(g,g;Z[:]), however, the Picard type M is not
explicit in this notation, therefore we avoid that.

Because of det(Z) = det(Z)? is it usual to change the weight convention and call a holomorphic
function f on Hy, a hermitian modular form of weight 2k, or in short f € [[(Z[i]),2k] iff
flxo = f for all & € I'ns. Hence the restriction of a modular form f € [I34,k] on HH, is a
hermitian modular form of weight 2k. Further restriction to H, leads to (f)* € [I'y,2k].

As an easy example we compute the ring of hermitian modular forms in genus g = 1, i.e. we
consider the Picard type
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0 1 .
-1 0
M = 0 1 EF2=Sp(4,Z).
-1 0

For a description of H; we refer to [R2]. The element M is just the permutation
1
M = € H,,
1

the centralizer G of M in H, is a group of order 768 (using the decomposition of Bruhat type
in Hy). The relations (given by M) are only

fi=h.
On C[fo, f1, f3] the centralizer G acts as a group G generated by (pseudo) reflections of order

T e

The ring of invariants is easily computed as

Clfo, f1, f3]¢ = C[Py, Ps, Py2]
with Ppy = f12 4+ f}2 _pafl?

12 0 3 1

— 6617 (fo + f3) - 33fo f3(fa + f3)

+ 2647 (f3 + f5) + 66075 f1 fa

+ 79213 fL F3(f3 + 211 + £3)
Py= f8 41288 + f8 + 285 f2 4 7072 f2 + 2872 8
Py=f3+8fi + f3 +63f3

For dimension reasons we need one more relation. The equation M < T >= 7 implies

T = (g 2)7 hence as a point set H; = HH;, diagonally embedded in Hj;. The equation

for decomposable points
' fifa=fofs

is the one more relation we need. By ([R1], theorem 2.8.) @[I3(2,4) ,k] = C[fo(7)](2)[O] with
@ =1Tl.,en m Om- The restriction of © on HH),; vanishes due to

1,1
92 [1 1] (r)= Q(fgf} —féfg) =2(fofs — fif2) = 0.
Hence the final result is (well known, compare with [B] or [K])

Theorem 2. The ring of hermitian modular forms in genus 1 is

EPII1(Zli]), 2k = Clgs, d12] = @11, 4k],
k

k
with
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bs = f3 + f3 + 1412 f2,
b2 = fo F3(f8 — )"

Proof. We have Py = P?, 108¢12 = P4 Py — Py3 on HHj. O
In genus 2 the ring was computed by Freitag [F1].

Theorem 3. The ring of hermitian modular forms in genus 2 is

@[Fz(z[i]),2k] = C[¢4, Bs,O10, P12, 12, P16),
P

where ¢; € [I(2,4),i/2] are polynomials in fo(T) of degree 1 and ©19 is the restriction of the
product

610 = I1 [b b] (1) € [I'4(4,8),5).

a,b€F3,<a,b>=0

Moreover, there is a relation x = ©3, Ps, where P; and x are polynomials in the ¢; and deg(P;;) =
12. The field of modular functions for I'y(Z[t]) is rational.

It was observed by van Geemen ([G],10.7.), that the theta map Th defined by the f, factors as

follows Th o2
A(I3,(2,4)) =P

U u
A(LG(Z]i]) N T5,(2,4)) L p2* T 420
where P2 7"+2°7~1) is defined by the (229) = 2971(29 — 1) linear relations produced by M
fe(r)=fs(r) for a,b € F§.

Moreover, the image of A(I3(Z[i]) N I}(2,4)) in P® is a complete intersection of five quadrics
([G],10.11.).

It is often useful to consider the diagram

0— I3e(2) - Iy — SP(49’]F2) = 0
U U U :

0 — Iy (Z[i},1+1%) — Iy(Z[3)) — Sp(29,Fy) — 0
U U |

00— I4(2) — I —  5p(29,F2) — 0

~ In the middle exact sequence the group I'y(Z[:],1 + 7) is defined as the kernel of the natural
map [,(Z[i]) — Sp(2¢9,F;) induced by Z[i]/(1 + i) = Fy. Matsumoto computed the ring of
hermitian modular forms for I2(Z[i],1 + ¢) for a certain multiplier system ([Mal]). Using this
diagram, one may compute the ring of hermitian modular forms (for a certain multiplier system)
for I3(Z[i]) by taking the invariants under Sp(4,F;) = S¢ .
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4. An example

As a second example we compute the ring of Picard modular forms with Picard type

1 0

0 -1

M = €F2=Sp(4,Z).

-1 0
0 1

Again the hermitian form associated to M has signature (1,1). The element M can be shown
to be

11 1 1

— 1 1 -1 1 -1

M = (—§> 1 1 -1 -1 € H2.
1 -1 -1 1

The centralizer G is a group of order 128 (using the decomposition of Bruhat type in Hj). The
relations (given by M) are

fs=—fo,fa = =2fo - f1.
On C[fo, f1] the centralizer G acts as a group G generated by (pseudo) reflections of order 32.

o=((5 9 75)6) (s 2535))-

The ring of invariants is easily seen to be

Clfo, f1]¢ = C[Py, P3)
with
Py =455 + f2 + 9813 f1
+ 12013 f1 + 8fo f{
+196/5 ff +28f5 f1
+168£5 f7 + 5615 f7
Py=3fy— fi —4f3fi —4fof; -6 1.
Hence the final result is
@Iirm, k) = C[Py, Ps].
k

Therefore we have an example of non-conjugate M; with M? + 1 = 0 and non-isomorphic rings
of modular forms A(M;) with signature (1,1). Hence the notion "modular form for U(1, 1; Z[4])”
depends on the embedding of U(1,1;Z[¢]) in I3. This phenomenon may be explained as an
example of different automorphy factors for the domain H;. A geometric explanation will be
given in the next section.

5. Picard modular forms and moduli spaces of abelian varieties,
We recall some standard facts in an explicit form. For proofs we refer to [M]. For any 7 in H

we have the lattice A, = Z9 + 7Z7 in C? and the abelian variety A, = C9/A,. Moreover we
have the action of A, on C9 x C with the automorphy factor

er(z,A) = exp —2mi (%T[a]—l- <a,z >)
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for \=71a+ 8 € A, via

Mz,t) = (z+ Ta+ B,e-(2,M)t).
The cocycle {e,(, )} € H'(Ar,04,) defines an ample symmetric line bundle L, = C9 x C/A,
over A,. One has H%(A,,L,;) = C0 where § = 0[3] (7,2) is the Riemann theta function. More
generally the addition of a 2-torsion point ¢, : 2 = 2+ Hrat+p) = z+1 [‘ﬂ”] gives an isomorphism
of A, with HY(A,,t% L,) = CO[;] (t,z). The space H,/ Ty is a coarse moduli space for the pairs
(A, L;) which are called principally polarized abelian varieties of dimension g (ppav for short).

If we write an arbitrary cocycle as

e(z, ) = exp 2mi(f(z,A))

and set
E(\p) = f(z4 A p)+ f(2,A) = f(z+ 1, A) = f(z, 1)

we get the (alternating) Riemann form
| E:A x A, — Z,
of L = {e(z,\)} € Pic(A.). The map e( , ) — E is just the Chern class map
Pic(A,) — NS(A,) C H¥(AnZ).
The principal polarization is mapped to the standard alternating form
E:(\p) =< 21,2 > — < 22,91 > for A =721 + 29 and p = Tyl + 9.
One extends the Riemann form to an R-bilinear form on C?9 x C9 — R. This form satisfies
E(i)ip) = E(, 1)
and defines the (hermitian) Riemann form
H(A p) = E(i\, p) +1E(A, p).
One easily compvutes (for A = 721 + z3)
H.(M\ ) = E-(i\ ) =< () HR(1)21 + 22), (R(T)T1 + 22) > + < (7)1, 21 >,
hence H.( , ) is positive definite.
An endomorphism ¢ € End(A,) is given by
¢=A+7C with¢r =B+ 71D
where A, B,C, D € M4(Z) and one easily checks that

End(A;) > ¢ — My = (_AC _DB ) € Mats,(Z)

is an Z-algebra embedding. On M aty4(Z) we have the Rosati anti-involution, defined by

(A B\ o _ ioier,. (D —'B

This map satisfies
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A:J =M and (Mmz) = ]\72]@.?1,
hence is an anti-involution. The endomorphism $ is defined by
M}? = M.

For g = 1 the endomorphisms ¢ may be defined as the unique isogeny with ¢¢ = ¢ = deg(®).
Moreover, it is easily verified, that

E($,)=E(,¢)and Hi($, )= H(,9),
hence a is adjoint to ¢ with respect to E, and H,. We denote by
Aut(A;,L;) = {o € Sp(29,Z);0 < T >=1T}
the finite group of isomorphisms preserving the Riemann form(s). Because of

Cr+ D) '=A-0<7>Cforo= (é, g) € Sp(2¢9,R)

the action of the endomorphism ring is in accordance with the action of Sp(2¢,R) on H, x C9
by ‘ '
o(1,2) = (0 <7 >,%(CT + D) 12).

Instead of E, we may consider the classes NE,, i.e. we call two Riemann forms equivalent iff
niEy = nyEy. Let N= {n € Z;n > 0} and
GSp(29,Z) = {0 € Matyy(Z);* MIM = nprJ, n € N}.
The semi-group of isogenies preserving the class NE, (a homogeneous polarization) is given by
End(A;,[L;]) = {0 € GSp(29,Z);0 < T >=T}.
For ¢ > 1 an endomorphism need not preserve a homogeneous polarization. We have
deg() = det(My)

for the degree of an endomorphism. Moreover, the positivity of the Riemann form implies, that
- 1
Tr(¢¢) = (§> Tr(MzMy) = Tr(A'D - C'B)

is positive for ¢ # 0. The positivity of the Rosati involution is essential for the study of the
algebra of complex multiplications End®(4,) = End(A,) ®z Q of A,. This is a semi-simple
algebra and was classified by Albert (see [M],p. 201). The Neron-Severi group N5(A,) (the image
of Pic(A;)in H%(A,,Z), which can be characterized as the group of alternating Riemann forms
E with E(iA,ip) = E(A,p)) is a free abelian group of finite rank. One can embed NS(A,) C
End(A;) as follows: Write

E(M\u) = E(\op)

for some o € My4(Z). Then
E.(\,5p) = E-(o)\p) = —E(p,0)) = —E(p,A) = E(A,u) = E- (A, ou)

implies, that E +— o actually lands in End(A,)%°%%%. This induces the equality
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N5°(A,) = N5(A,) ®z Q = End®(A,)Foset,

which is a formally real Jordan algebra over Q of dimension b(7) (called the base number). The
endomorphism ring End(A,) acts on NS(A4,) via

$*E(\, 1) = E(d), ¢p) = E-(¢), 0p) = E (), dodp).

Hence, considered in End(A,)f°*?% the action is given by ¢*(o) = $o¢, in particular n*(o) =
n’o for n € Z. We collect the above information by

Proposition 4. The space I'ny\H(M) is a coarse moduli space for principally polarized abelian
varieties (A;, L) with a polarization preserving automorphism M € I'y. For any T € H(M) the
algebra Z[ M| is contained in End(A,).

The proposition explains, why the conjugacy class of the element M is intrinsically defined.
Hence the embedding ]HI(M ) — H is not just an arbitrary modular embedding, but is defined
by the moduli problem. .

If the characteristic polynomial of M is irreducible, I'yy\H(M) is zero- dimensional and L =
Q[M] is a number field of degree 2g, which is totally imaginary over the totally rea.l number
field LBesatt of degree g.

6. algebraic families of pricipally polarized abelian varieties

For our purpose it turns out to be convenient to consider an algebraic model of the Siegel uppef
half space. A period matrix 7 induces by

()

¢, R29 — C9

an isomorphism

and
M; =¢; liqu
defines the corresponding complex structure on R?9. As a matrix we have

-1
H, 57=ptiqm M, = PL 1+P0 p) (a ﬁ)
g2 T P+“1’—>v (_ql ¢ 1p v 6

-1

Proof. We have i = 7¢”! — pg~!, hence

i(z —1y) = (pg'py + qy — pq~'z) — (¢ 'py — ¢ ')

a

The matrices M, are elements in Sp(2g,R) and satisfy M, = ~M, = M, . Instead of M, we
furthermore define S, = —M.J and get an isomorphism of complex manifolds

H, = {5 € Sp(2¢,R); S, symmetric and positive definite }
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In terms of matrices the bijection is given by

. +P‘1_1P P‘I—l
H,o2r=p+ig— S, = (q il _
g prq T q lp q

The proof is easy and therefore omitted. We call this the real (or algebraic) model of the Siegel

upper half space. The Rosati anti-involution restricts to an involution on Hy (in the standard
model 7 — —771).

The group Sp(2¢,R) acts on H, by

_ -1 _ (A B
o< 1>= (At + B)(CT + D) fora_(c D

> € Sp(2¢,R) and T € H.

This corresponds to the action
oce M, = oMot

on matrices of type M, and
008, =080

on the real model. Remark that
ceM,=08Jo ! =05,0'J = (008,)J,

hence the actions are equivariant. We will freely use 7, M, or S, to denote an element of the
Siegel upper half space in the standard model or the real model. For our purpose the algebraic
model is more appropriate.

—pa—1 -1
One easily checks that for M, = ( _I;q 1 1 -t]{)(ilp p) = (: ?) and for an element M =

(_AC, _DB) € Maty4(Z) we have

M € End(A;) <= (A+7C)r=B+1D
= MM, =MM
<= Aa— By=aA-pC
~Ca+Dy=v4A-6C
AB - B§=—-aB+ D
-CB+Dé=—-yB+46D

This leads to the following definitions for an algebra L C M;4(Q)

H(L) = {r € Hy;IM, = Ml foralll € L}
I'(L)y={o € I'y;oL = Lo}

Moreover we consider the diagram

F(LNH(L) < I,\H,
N N
A(L) e Ay

where A(L) denotes the closure of I'(L)\H(L) in the Satake compactification A,. We call A(L)
the Shimura variety of type L. We remark that H(M ) is HI(L) for L = Q(M) in the new notation.
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It is proved in [R6] that the map L — I'(L)\H(L) is an equivalence of categories of admissible
algebras with Rosati-equivariant embeddings in M3,(Q) and irreducible varieties parametrizing
principally polarized abelian varieties with L C End°(A;).

The 2-dimensional varieties A(K) C A3 for an admissible imaginary quadratic number field K
are called CM — surfaces or Picard modular surfaces. Using the embedding Q C K C Mg (Q)
a generator w of K over Q may be considered as an element in Ms(Q) or Mg(R). We define
wz = Mz for z € RS, which induces an isomorphism R® & R[w]®. Then < z,y >= ‘z(JM -wJ)y
defines a hermitian form on RS. A

Proof. Let M 24+aM +b5=0 with a,b € Q be the minimal polynomial of M over QQ, hence
—a=M+ M, b= MM which implies JM + *MJ = —aJ. Hence

MM —wJ)=(=JM —aJ)M — w(-IM — aJ) = w(JM —wJ)

and
HIM ~w])=-"MJ+w] =JM -&J
0
Then
H(K)=H;NU(3,<,>)and ['(K)=I3nU(3,<,>)

are independent of the choice of w.
Proof. The element w is totally complex, hence

to(JM —wJ)o =M —wJ
is equivalent to

toJMo =JM and ‘oJo=J
which is equivalent to

o symplectic and Mo =oM
hence the result. ‘ |

The CM-variety A(K) (the closure of I'(K)\H(K') in A3) are algebraic surfaces iff the her-
mitian form defined by K is indefinite. These surfaces are called Picard modular surfaces. In the
next chapter we compute one example. '

7. “Picard modular forms”

In this final part we consider the case first studied by Picard in [Pil,2] and follow [R5]. As a
general reference we refer to [Hol,2]. A Picard curve is defined by the equation

C(z,y) = {L =1t -1t -2)(t-y)}

or its projective closure in P2. For z # y,z # 0,1,y # 0,1 we get a non-hyperelliptic nonsingular
curve of genus g = 3. We recall the notation p = exp(27i/3) and Z[p] for the ring of Eisenstein
numbers with quotient field K = Q(p). The group < p > acts on the Picard curve in an
obvious manner sending (z,t) to (pz,t). This implies that the Jacobian Jac(C(z,y)) has complex
multiplication by K. It was observed by Picard ([Pi2]), that the period matrix of the Jacobian
Jac(C(z,y)) = A, may be written as
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u2+2g2v 2’LL pu’—p-v
1-p p —p
T= plu —p? U
pul—p?v u?=2y

B I (e
We define the matrix Mpicara (With M3, o+ Mpicara + 1 = 0, Mpjcara € I'3) by

(-—10—1 000\
0 -1 0 0 -1 0

1 0 0 0 0 0

MPica,rd =
0 0 0 0 0 -1

0 1 0 0 0 O

\000 1 0 -1/

Then one checks immediately, that 7 € H(Mp;.qrq¢)- The condition for 7 € Hj translates into
the ball condition in [Ho2]. We recall, that as complex manifold H{Mp;cqrq) is isomorphic to a
2-dimensional ball. The above computation solves generically the relative Schottky problem for
Picard curves, i.e.

Proposition 5. The space I'n\H(M) for M = Mpicara contains the coarse moduli space for
Picard curves as a dense subset. For simple T € ﬁ(M ) the algebra of complex multiplication
End®(A,) is a number field of degree 2 or 6, hence isomorphic to K = Q(p) = Q(M) or a cubic
extension of K. The subfield NS°(A,) is isomorphic to Q or a real cubic extension of Q and
End®(A,;) = K(NS°(A,)).

Proof. We have dim(I'y\H(M)) = 2, hence a generic point 7 € I'y\H(M) comes from an

uniquely determined Picard curve with Jae(C(z,y)) = A,. The second statement follows easily

from the classification of End®(A,) in [M]. O
Let Mgeemen,o € I's be

(010010 (00 0 | =1 0 o)
101|100 60 0 | 0 -1 0
101|001}, 00 -1 0 0 1
g = 7MGeemen: )
0001010 10 0 | -1 0 0
001|001 01 0 | 0 -10
\1 00| 100 \o 0 -1 | 0 o o/

then
-1
OMpicard0™" = MgGeemen = M.

Picard moduli varieties (and the ring of Picard modular forms) only depend up to isomorphy
on the conjugacy class of M. From now on we consider the fixed Picard type M.
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0 -1

We recall that My = (1 1

) defines a hermitian form of signature (1,0). Similarly M_ =

-1 1
2 _ .
(M+) - -1 0

M, & M, ® M_ in [G]. The group

defines a hermitian form of signature (0,1). The matrix Mgeemen is just

Iy = U(M;Z[p))

is called Picard modular group and denoted by U(2,1;Z[p]) in [Ho2]. Let as before G = G(M )=
{0 € H3;oM = Mo} be the centralizer of M in Hj.

We have
(0 -1} _ (1 -1
M+‘(1 —1)“] (0 1)
hence .
_— 142 1 1 1 0Y)_ (143 1
w= () () G 5)=(5) () em
Therefore

(1+i> i -1 -1 —i | 4 =1 -1 —i

\o1 - - 1 |1 i i -1

The relations produced by M are
fo= —;-(1+i+\/§+z\/§)f1 + %(1+i+\/§+i\/§)f2 —(24+V3)ifs
fa= -;-(1+z'+\/§+i«/§)f3
fi= 51 =i+ VB= B2 - (L+VA)a
fo=3(—i+ V3= VDA - (14 VB,
fr=—ifi—ifa+ -;—(—3 +3i-vV3-iV3)fs
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Proposition 6. One has an ezact diagram
00— .N3 - H3 - Sp (6,1[“2) — 0

U U U
.0—-><i>———>G(M)———>U(3,]F4) -0

Proof. It was observed by van Geemen ([G],6. 4) that (in our notation) ptheta(FM N I;(2))
is central, hence the cyclic group generated by ¢. The isomorphism Fy{p] = 4 induces an
isomorphism F§ 2 [F,[p]>. The associated F,-bilinear form

Fa[o]® X Fa[p]* — Fa[p]

which is defined by
<z, y>="'zJMy—p'zJy for z,y € IFg
is a hermitian form and induces the map on the right. o
It follows that G = G(M) is a group of order 2592 = 44#(U(3,F4)).

Corollary 7. We have
A(FM N F3(2)) = C[f],fQ,fg](4) and .A(FM N F3(2)) o~ p2,

Proof. This follows from theorem [R1]2.8. and proposition 6. The Picard type M produces 5
linear relations between the restricted theta constants. There cannot be any further relation for
dimension reasons. On the other hand, C[fy, f2, f3] is already normal, hence the result.

The second statement follows from the first. It was proved by van Geemen ([G],8.5.) using
the description of the Satake compactification in [HW]. The difficult point is to show that the
theta map Th is an embedding. a

The next steps follow the general procedure as explained in [R1,2]. The group G acts (effectively)
on C[f1, f2, f3] and is generated as a subgroup of GI(3,C) by

i 010 -1 0 0
G=< i 01 0 0}, -1 1 0},
( ) (0 0 1) (%(3+¢§)(1+z’) 0 1)
) ~1+i/3. 0 0
5 i(1 4+ /3) —1434 1+i),
2+V3)(1=19) —14+i —-1-1i
1 0 —24 213 0
Z(—H\/ﬁ—i—-i\/ﬁ 14+v3—i+iV3 —1+\/§—i—i\/§)>
“1-3V3—-i—ivV3 —1+vV3-i—-1/3 —-3-V3+i+iV/3

The Poincaré-series for the action of G on the polynomial ring C[f1, f2, f3] is given by

Bc(N) = Y dimc C[fy, fa, f3]°() x X!
>0
#G’ Z det(l — Ao)

3 1 + A%
- (1 —_ )\12)2(1 — )\36)
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Now let us consider the subgroup G’ of G which is generated by the last four generators of
G in the list above. Then it turns out that G’ is a group generated by pseudo-reflections and
G =< G',i >. We recall that an element o of finite order in GI(3,C) is a pseudo-reflection iff
precisely one eigenvalue of ¢ is not equal to one. In the list of Shephard and Todd [ST] the
group G’ is the symmetry group of the regular complex polytope 3(24)3(18)2 and the image in
PGI(3,C) is the Hessian group of order 216 which leaves invariant the configuration of inflections
of a cubic curve. : :

The Poincaré-series for the action of G’ on the polynomial ring C[f1, f2, f3] is given by

B(N) = 3 dime Cfs, f, f51° (1) x N

1>0

1 1
el a;, det(1 - Ao) |
1
T (T = X6)(1 = AL2)(1 — AT8)

In the summation for G' occur 48 characteristic polynomials, in the summation for G occur 96
polynomials.

Hence the ring of invariants for G’ is given by ([St], thm. 4.1.)

Clfr, f2, £31¢ = ClPs, Pra, Pis]

and is just the ring of Picard modular forms for some Nebentypus x : I'ng/ N I35(2,4) — {£1}
with x(—1) = —1. The final result for G is

Theorem 8. The ring of Picard modular forms of Picard type M
A(I'n) = C[PZ, Pyy, Ps Prs, Piy)

is generated by 4 polynomials. There is a relation of degree 48 between the generators. The field
of modular functions of Picard type M is rational.

With some linear algebra one may compute the polynomials Ps, P12, P1s:
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