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ON ABSOLUTE CM-PERIODS
By HIROYUKI YOSHIDA

Introduction. In this paper, we shall study a new relation between the derivative of
Artin’s L-function at s = 0 and periods of abelian varieties with complex multiplication.

For an algebraic number field K, let Jx be the set of all isomorphisms of K into C
and Ik be the free abelian group generated by Jx. Assume that K is a CM-field and let
® be a CM-type of K. We can find an abelian variety A of type (K, ®) defined over Q.
For every o € ®, there is a holomorphic differential 1-form w,(# 0) on A such that w, is
multiplied by a® for the action of a € K N End(A) and that w, is rational over Q. Then
there exists a constant px (o, ®) € C* such that

(1) /wa ~ mpk(o,®) for every c€ Hi(A,Z).

[+

Here, for a, b € C, we write a ~ bif b # 0 and a/b € Q. We know that px(o,®) mod —Qx
does not depend on the choice of A and w,. Shimura showed ([Sh5|, [Sh6]) that px can be
extended (or factorized) to the bilinear form from Ix X Ix to C*/ Q”, which enjoys several
functorial properties (see §1). Thus we have the “CM-period” pk(o,7) € C*, uniquely
determined mod Q for every o, 7 € Ik.

Now let K be a CM field which is normal over Q and put G = Gal(K/Q). Let p € G

be the complex conjugation. As is well known, p belongs to the center of G. The central
theme of this paper is the following

Main Conjecture. Let ¢ be a representation of G and let x, be the character of 1. We
assume that ¥(p) = —id. and that xy is Q-valued. Let L(s,%) be the Artin L-function
attached to . Then

L'(0, , .
(2) p( ( ¢)) dnnv,b H PK(ld, O-)Xzb( )

L(0,9) iy
We note that L(0,1) € Q*. Let F' be the maximal real subfield of K and x be the Hecke
character which corresponds to the quadratic extension K/F. Let Lp(s,x) denote the
Hecke L-function attached to x. Then (2) implies (cf. Proposition 3.5)

(3) exp(%f%i%) ~ (7 ?pk (id., id.)) Kl
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In §2, we shall prove (2) when K is abelian over Q (Theorem 2.7). When K is an
imaginary quadratic field of discriminant —d, the Chowla-Selberg formula ([SC], §12) states

d—1
a
4 ~ (= wx(a)/4h
(4) w \/7?a|=|1 (d) ,

where w is a period of integral of a holomorphic differential form on an elliptic curve with
. complex multiplication by K, h is the class number of K, w is the number of roots of unity
contained in K and y is the Dirichlet character corresponding to the quadratic extension
K/Q. By (1), we have w ~ mpg(id.,id.). We also have (cf. (2.11) and (4.2))

Lq(0,x) = %, eXp(% y H I( )wx(a)/2h

Now (3) tells that

exp(—l—:—%—x—;) ~ mpg(id.,id.)%.

Therefore (3) gives a generalization of the Chowla-Selberg formula.

Gross [G] obtained an algebro-geometric proof of (4) based on the calculation of periods
of Fermat curves due to Rohrlich and on considerations of periods for families of abelian
varieties with complex multiplication by K. Our proof of (2) for an abelian number field K
uses Rohrlich’s calculation of periods and Shimura’s factorization theorem of CM-periods.
Taking sufficiently many CM-types of K and using Shimura’s theorem, we can give an
explicit formula for pg(id., o), 0 € G (Theorem 2.6). We note that Shimura predicted that
his theorem on CM-periods would give a generalization of the Chowla-Selberg formula for
abelian case (cf. [Sh5], p. 571). However, as far as the author knows, explicit relations
with the derivatives of L-functions were hitherto unnoticed.

In §3, we shall discuss functorial properties of our Main Conjecture. We shall also
formulate a stronger conjecture than (2) (Conjecture 3.2). In §4, we shall collect several
general facts on CM-fields and shall recall another important theorem of Shimura which
expresses critical values of Hecke’s L-function with a Grossencharacter of Ag—type by CM-
periods. After these preparations, in §5 we shall submit Main Conjecture to numerical
tests. We shall treat the case where Gal(K/Q) is the dihedral group of order 8, i.e., the
case which goes back to Hecke. We shall discuss three numerical examples in detail. These
examples will give us strong confidence in the conjecture.

It would be worth to point out three implications of our conjecture. First the conjecture
predicts certain arithmetic property at CM-points of non-holomorphic automorphic forms
which appear in a limit formula of Kronecker’s type (cf. Asai [As]). It would be interesting
to investigate the conjecture in this connection. Secondly our conjecture is in some sense
“complementary” to the Stark-Shintani conjecture ([St], [Shi4]). In fact, Stark’s conjec-
ture (in crude form) predicts, for Artin’s L-function L(s,), that L'(0,%) (or the leading
coefficient of the Taylor expansion of L(s,%) at s = 0) can be expressed using logarithms
of units of algebraic number fields when L(0,4) = 0. In our conjecture, L(0,%) # 0 and
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exp(L'(0,v)) is of highly transcendental nature. Thirdly the most general conjecture in
our present knowledge which predicts special values of motivic L-functions is Beilinson’s:
it gives (the transcendental part of) the leading coefficient of the Taylor expansion of the
L-function at integral points (cf. [RSS] and several articles in [JKS] on this topic). As
noted above, our conjecture gives the next coefficient to the leading one of the Taylor
expansion, which does not seem to be immediately predictable by Beilinson’s conjecture.
It would be very interesting to investigate whether such coefficients can be predicted in
the framework of the theory of motives.

Notation and Terminology. Throughout the paper, we fix an algebraic closure Q of Q
in C. By an algebraic number field, we understand an algebraic extension of Q of finite
degree contained in Q. We denote by p the complex conjugation. For an algebraic number
field K, Jx denotes the set of all isomorphisms of K into C and Ik denotes the free abelian
group generated by Jg. The ring of integers of K is denoted by Ox. We denote by K}
the idele group of K. For a € K, a > 0 means that a is totally positive. We abbreviate
p|K to p if no confusion is likely. For an extension L of K of finite degree, Resy/x denotes
the restriction homomorphism from Iy, to Ix; Infy/x denotes the homomorphism from Ix
to Iy, such that, for o € Jg, Infy g (o) is the sum of all elements of J, whose restrictions
to K coincide with 0. The norm map from L to K is denoted by Ny k. By a CM-field,
we understand a totally imaginary quadratic extension of a totally real algebraic number
field. For a CM-field K, ® € Ik is called a CM-type if ® + ®p is the sum of all elements
in Jg. If ® = >, 0;, we often identify ® with the set of isomorphisms {01,032, ,0n}
or with the representation ®%_,0; of K by n X n complex matrices. For a finite group
G, a subgroup H of G and a representation ¢ of H, the induced representation from % is
“denoted by Ind§y or Ind(¢; H — G). For my, ---, m, € Z, (my,--- ,m,) denotes the
greatest common divisor of my, - - -, m, if one of them is non-zero. For a, b € C, we write

a~bifb#0and a/be Q.

§1. CM-periods

In this section, we shall review basic properties of CM-periods which are essential for
succeeding sections.
Let K be a CM-field of degree 2n and let ® be a CM-type of K. We can find an abelian
variety A defined over Q such that A is of type (K, ®). By this word, we understand that
(i) dim A =n and K C End(4) ® Q.
(ii) The representation of K on the space of holomorphic differential 1-forms on A is equiv-
alent to ®.

By definition, for every o € @, there exists a non-zero holomorphic differential 1-form w,
rational over Q such that ‘

W, = 6w, for every a € K N End(A).
Here a, denotes the action of a on differential 1-forms. It can be shown that there exists

pi (o, ®) € C* such that

(1.1) /wa ~ mpg(o,®) for every c€ Hy(A,Z).
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pk (o, ®) mod Q™ does not depend on the choice of A and w,. The following factorization
theorem is proved by Shimura [Sh6], Theorem 1.1, [Sh7], Theorem 32.5. :

Theorem S1. For every CM-field K, there exists a map pk : Ix X Ix — C* with the
following properties.

(1) pr(o,®) is defined by (1.1) if ® is a CM-type of K.

(2) PK(Ul + 0277-) ~ pK(Gl7T)pK(02yT)7 pK(U) T + T2) ~ PK(UyTl‘)pK(O'a TZ) for every o,

01, 02, T, T1, T2 € IK ‘

(3) px(Ep,n) ~ px (&, mp) ~ pr(€,m) 7" for every &, n € Ik.

(4) px(& Resy/k(C)) ~ pr(Infy k(£),C) if§ € Ik, ( € I, and K C L, L is a CM-field.

(5) px(Resr k(¢),€) ~ pr((, Infr x(§)) if € € Ig, ( € I, and K C L, L is a CM-field.

(6) px(v€,vn) ~ px(€,m) if v is an isomorphism of K' onto K.

Remark 1.1. (1) px(o,7) mod Q™ is uniquely determined.
(2) We can take px(o,7) from R* for every o, 7 € Ix. This can be seen using Shimura
[Sh5], Proposition 1.6 and following the proof of Theorem 1.1 of [Sh6].
(3) If we consider periods of differential 1-forms of the second kind, we can interpret (3)
as a generalized Legendre’s relation.

§2. The case of abelian fields

In this section, we shall give a proof of the Main Conjecture in the case of abelian fields.
Let n > 3 be an integer. We set ¢, = €2™*/" and put K = Q({,). This notation will be
retained until the end of the proof of Theorem 2.5. For a € (Z/nZ)*, let o(a) € Gal(K/Q)

denote the automorphism given by ¢5(*) = ¢2.
We consider the Fermat curve

F,:z"+y" =1.
The genus of F,, is (n — 1)(n — 2)/2. For a triplet of integers r, s, t such that
(2.1) 0<rs,t<n, r+s+t=0 modn,

we consider a differential form
. r—1,8—n
nr,s,t - Yy d:L'

on F,. Then 7, s+, 7+ s+t = n make a basis of the space of differential forms of the first
kind on F,,. Rohrlich showed that (cf. the Theorem of the appendix of [G])

(2.2) /Wr,s,t ~ B(Z; i) for every v € Hy(Fy,Z),
y n’'n

where B denotes the beta function. For a € Z, let ((a)) denote the integer such that

0 < ({(a)) < n, ({a)) =a mod n.
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For a € Z/nZ, by abuse of notation, we set ((a)) = ((@)) taking @ € Z such that a
mod n = a. For integers r, s, t satisfying (2.1), we set

H,s1 = {a € (Z/nZ)* | ((ar)) + ((as)) + ((at)) = n}.

Then we have |H,. ;4| = ¢(n)/2. Assume that (7,s,t,n) = 1. Then there exists an abelian
variety A, ,: defined over Q which is a factor of the Jacobian variety J, of F,, such that
dim A, ,; = ¢(n)/2 and that Z[(,,} C End(A, ). The differential forms N((ar)),({as)),{{at)}s
a € H, ;; correspond to the basis of Q-rational holomorphic differential 1-forms on A, ; ;.
Hence the CM-type of K determined by A, ; is

QT,S,t = {U(a) I ac H’I‘,S,t}‘
Now by (2.2) and Theorem S1, (1), (2), we obtain

wpk(0(a), @ree) ~ 7 [ pr(o(a),0(w))
(23) u€®, 51
_ sl (e,

’
n n

for every a € H, ;.

We are going to write (2.3) in more convenient form for calculation. For 1 < a < n-—2, set
r=1,s8s=a,t=n—(a+1). For z € R, let (z) denote the fractional part of z, i.e., 0 <
(z) <1,z —(z) € Z and let [z] = ¢ — (z) denote the integer part of z. We can show easily

that, for u € (Z/nZ)*, (%) + (-Z—) < 1if and only if ((au)) + ({(u)) + ({(n — (a + 1)u)) = n.
Here we set (%) = (%) taking @ € Z so that 4 mod n = u. Put

t

T.={te (2/n2)* | (Z) + (5)<1),  ®a={o(t)|teT).

We have
Hl,a,n—(a+1) - Ta7 Ql,a,n—(a-i-l) =P,

Hence (2.3) can be written as’

(2.4) I px(e(1),0(t)) ~ 72 B(

teT,

)-

S|e
S|~

For t € (Z/nZ)*, put
' { 1 if teT,,
€at = .
-1 if t¢T,.

Since px(a(1),0(—t)) ~ px(c(1),0(t))~! by Theorem S1, (3), we obtain
[(n—1)/2]

(2.5) H pK(U(l), U(t))eat ~ L F;%E?)
t=1,(t,n)=1 n

1When n is an odd prime, (2.4) follows immediately from a formula of Weil [W2], p. 815.
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by (2.4). We note that (2.5) holds for every a, 1 <a <n — 2.
To relate CM-periods to derivatives of Dirichlet’s L-functions at s = 0, we first consider
Hurwitz-Lerch’s zeta function. For 0 < a <1, set

((s,a) = Z(a +m)~?, R(s) > 1.

Then ((s, a) can be meromorphically continued to the whole s-plane, holomorphic except
for a simple pole at s = 1. We have

(2.6) ¢(0,a) = -;- —a

(2.7) ¢'(0,a) =logI'(a) — —;—Iog(27r).

(cf. Whittaker-Watson [WW], p. 271.) Forc€ Z,1 < c < n -1, we set

o0

¢q(s,c) = Z m”°.

m=1,m=c mod n

Then we have c
Cq(s,e) =n"°((s, :n—)

By (2.6) and (2.7), we get

Sio

DN | =

(2.8) CQ(O’C) =

(2.9) (q(0,¢) = log I‘(—;—) - -;—log 27 —logn - (q(0,¢).

Let 5 be a Dirichlet character of conductor n which is not necessarily primitive. Since
L(s,m) = Yozy n(c)(q(s, c), we obtain

(2.10) L(0,n) = ——71; > n(e)e,
(211) L(0m) = 3 n(e)ogT(S) ~ logn - (0, 7)

if 5 is not trivial.?

2We followed Shintani [Shi5] to derive these formulas.
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Now let 7 be a primitive Dirichlet character of conductor f. We assume that f divides
n. Let n. be the Dirichlet character of conductor n obtained from 7. Let

oo

L(s,p) = Y mu(m)m™*

m=1

be the L-function attached to 7.. Since

_ n(m) if (m,n)=1,
"*(m)_{o if (myn)>1,

we have

(2.12) L(s,m.) = [ (1 = n(p)p™*) x L(s,n).

n
pl¥

It is well known that L(0,7n) # 0 if n is odd and primitive.

Let G denote the set of all primitive Dirichlet characters whose conductors divide n.
Let G_ (resp. @+) denote the subset of G consisting of all odd (resp. even) Dirichlet
characters in G.

Lemma 2.1. Forl1 <a<n-2andte€ (Z/nZ)*, we have

)= 1) — 2%y 1) 4 (Lot

t
n n n

€qt = —(2<

Proof. Put pg; = (%).}.(ﬁ) _<(a + 1)t

0< <%>’<%t_>,<(a+1)t
i

Pat = 0. If (=) + (%) > 1, then p4¢ > 0; hence pgy = 1. This proves our Lemma.
n

). It suffices to show €43 = 1 —2p4;. Since pgys € Z,

t 1)
) <1, we have p,s = 0 or 1. If <E>+<a ) <1, then p,s < 1; hence
n

Lemma 2.2. Letn € G_ and let f be the conductor of 5. For1 <a <n -1, put

b
=2 (mb=1  1<b<m-1.
n m

Then we have

[(n—1)/2] at

() - (@)

t=1,(t,n)=1
—En®) [y (1= n@)LO,)  if f|m,
0 if f{m.
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Proof. Let S denote the sum in question. Since 7 is odd, we have

= at, 1 X at nHl bt
s= Y (G-mw= Y Emo= Y o).
t=1,(t,n)=1 t=1,(t,n)=1 t=1,(t,n)=1
Put ((bt)),, = m(&), n = md. Then we have
1 n—1 1 d—1m-—1
S:—n; Z ((bt)mn*t)—mzz ((bu))mne(mk +u).
t:l’(t,n):l k=0 u=1

We have n,(mk +u) = 0 if (u,m) > 1. Assume (u,m) = 1. Take v’ € (Z/nZ)* so that
' = u mod m. Then we have

d—1

Y m(mk+u) = > 7s(v) = > M (u)7a (w1 0)

vE(Z/nZ)* ,v=u mod m vE(Z/nZ)X wv=u' mod m

= nu(u') > M« (v)-

vE(Z/nZ)* ,v=1 mod m

Set Yy, = {v € (Z/nZ)* | v=1 mod m}. Then 2, is trivial on Y,, if and only if f divides
m. If f|m, then n.(u') = n(u). Therefore we obtain

Sy [ W
=0 0 if fim. '

We have shown that S = 0if f{m. Assume f | m. Then we have

R e TP ) u,w(n).; 5 (b r(e
§=— _gm)ﬂ«b o )™ = my > en®)n(v)

v=1,(v,m)=1

=:f((;))-n(b)_l~% i n(v)v.

v=1,(v,m)=1

By (2.10) and (2.12), we have

m—1

% n(v)v = - [Ia- n(p))L(b, 7).

v=1,(v,m)=1 Pl

This completes the proof.
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Lemma 2.3. For 1 < a < n — 2, regard €,; as a function of t, 1 <t < [(n — 1)/2],
(t,n) = 1. Then the dimension of the vector space V spanned by €,; over C is equal to
¢(n)/2, where p(n) = |(Z/nZ)*|. In other words, the rank of n — 2 x (¢(n)/2)-matrix
(€at) is ¢(n)/2.

Proof. For 1 <a<n-—1, we set

fal) = z(%) ~1,  1<t<|[mn-1)/2, (tn)=1.

We see easily that
fa+fn—a:0, 13&3”—1.

By Lemma 2.1, we have
fatz—fl(t)_fa(t)+fa+1(t)a I<a<n-2

Hence we have

V92f1 _f27f1+f2—f3af1+f3—f47"' af1+.fn—2"'fn—-1-

Adding successive terms, we get

V32fi—f,3fi = fa,4f1 — fa,- - s(n = 1) fi — fazs.

Since f,—1 = —f1, we get V 3 f;. Therefore we have V' > f1, f2, f3,- -+, fa—1. It suffices
to show that dim(fi, f2,- -+ , fan—1)c = ¢(n)/2.
Now we enlarge the domain of definition of f,: we set

fa(t)=2<%t>—1, 1<t<n-1, (t,n)=1

and we regard f, as a function on (Z/nZ)*. Since f,(n —t) = —f4(t), fo is an odd
function. Therefore it suffices to show that the space of odd functions on (Z/nZ)* is
spanned by f,, 1 < a <n — 1. For this purpose, set

W ={g| g is an odd function on (Z/nZ)* such that

Z g(t)fa(t)=0 for every f,,1<a<n-1}
t€(Z/nZ)x

It is sufficient to show that W = {0}. Since 3¢ z/,2)x 9(t) = 0if g is odd, we have

W ={g| g is an odd function on (Z/nZ)* such that

t
Z g(t)(a—) =0 for every a,1<a<n-1}.
te(Z/nZ)x n
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If g€ W, c € (Z/nZ)*, we see easily that g(ct) € W. Therefore (Z/nZ)* acts on W.
Assume W # {0}. Then we have a representation of (Z/nZ)* on W which splits into a
direct sum of one dimensional representations. Let ¢ be a one dimensional constituent
and let ¢ € W be a non-zero function which transforms according to . Since

g(ct) = ¥(c)g(t), ¢t €(Z/nZ),

g is a constant multiple of 1. Hence we may assume that 1 € W. Since 1 must be odd,
we have 1) = 7, with some n € G_. Let f be the conductor of  and put a = n/f. We
have 1 < a <mn, a/n=1/f. By Lemma 2.2, we have

(nonyszl 20(n)
Y Lm)=2 > (A=) -1 = 0 Lo £o.
teE(Z/nZ)x t=1,(t,n)=1 n L4

This is a contradiction and completes the proof.

For 9 € é, let M, be the field generated over Q by n(m), m € Z. We see easily that
M, = Q(n«(m) | m € Z). Let J, be the set of all isomorphisms of M, into C. Then
{n° | o € J,} is the set of all conjugates of 7 over Q.

Lemma 2.4. Letn € G_ and f be the conductor of 7. For every a € M,, we have

f—1 n—1

C a’ —ne (¢ C Tn (e
I I F(f)z:, IT,(1=n"(p))n" (¢) ., I l F(;)Z,a 77 ( ),
c=1 c=1,(¢c,n)=1

where o extends over J,, and p runs over all prime divisors of n/f.

Proof. Take any a € M,,. By (2.11), we have

n—1
ol o — a® L4 (84 a’n°(c
I Iexp(a L'(0,72)) =n >, a’L(0,17) I I F(;)Z, nZ(e),
c=1

g

where o extends over J,,. Since

> aL(0,79) = Y (aL(0,m4))° € Q,

o€Jy o€lJ,
we obtain
. n—1
(213) IT exp(a72(0,79)) ~ J[ T(5)Tren =77,
‘ g€Jy c=1

By (2.11), we similarly obtain

F-1
(2.14) H exp(b”L'(0,77)) ~ H F(%)E”G’n ba"(c) for every be M,.
oeld, c=1
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By (2.12), we have

(2.15) T exp(a®L'(0,79)) ~ [ exp(e® [J(1 =77 (»))L'(0,7%)).

cEJ, : o€Jy, pl%
Now the assertion follows immediately from (2.13) ~ (2.15), taking b = a le%(l - n(p))
in (2.14).

Theorem 2.5. We have

n—1 .
2.1 1). o(t)) ~ 7 %1¢/2 1 £yntte) /(L(0,m)e(n))
(2.16) pr(o(1),0(t)) ~m Ig H1 (=)
neEG_ =

for1 <t <[(n—1)/2], (t,n) = 1. Here § denotes Kronecker’s delta, i.e., 611 = 1, 61 = 0
ift 1.

Proof. Set
: n—1
! — g 01/2 ~ € yn(te) /(L(0,m)¢(n))
pi(o(1),0(t)) == H [ :
neG_ c=1
We shall first show that p/,(0(1), 0(t)) satisfies (2.5), i.e.,
[(n—1)/2] a (1
r(2)r(L
@) I1 rhiooo)e ~ ks
t=1,(t,n)=1 n

for1<a<mn-—2. Takeanya € Z,1<a<n-—1and put

b
S22 (ym)=1  1<b<m-—L
n m

¥

Forn e @, let f, denote the conductor of . By (2.9), if n # 1, we have

n—1 fn—1
L'(0,1) = Y- m(e)logT(2) ~logn - L(0,1) = 3 n(e)logl'(5-) ~1o fy - L(0,m).
c=1 c=1 n

Hence we have

n—1 fn—1
C 14 14 C 4 14
T(=)Zo 17 ()/(LO")e(n)) (=2, 1°()/(L(0,n")p(n)) if
[1r¢) [T 0 it £l

c=1 c=1 n

where o extends over J,. Therefore we have

n-—1
P (o), o(t) ~7=/2 ] Hp(%)n(tc)/(L(o,n)so(n))
n€G_, fytm =1

fn—1
c
% (= )(te)/(L(0m)p(n))
I Ir

n€G_ f,lm =1
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By Lemma 2.2, we obtain

[(n=1)/2]
[I Pkle),o@)/m

t=1,(t,n)=1

f'r[_l ‘ ‘
 (1=2a/n)/2 (L =) n(e) IT, (1=n(p)) /#(m)
i P 3
M I |

Wea—’fn |m e=1

where p extends over all prime divisors of m/f,. By L"einma 24, forn e @-_, we have

f-1 » om-—-1 :
C 4 —-1,0 o (4 4 —1_0
(=)~ O 07 (e) [T, (1=n"(P))/e(m) ' T(=)~7" (&) 0 (c)/o(m)
[T I 1 IO re ,

o€J, c=1 f o€Jy, c=1,(¢c,m)=1

where f is the conductor of  and f | m is assumed; p extends over all prime divisors of
m/ f. Therefore we obtain |

[(n=1)/2] | -
[I  phlo(),o@) /=t ~atizemfz T p(o) Ea o nlalem,
t=1,(t,n)=1 ‘ e=1,(c;m)=1 S

where 7 extends over Dirichlet characters in G_ such that fn | m. Since

p(m)/2 if c=b modm,

Z n(d) " 'n(c) =1 —¢p(m)/2 i c¢=-b modm,
€G- fylm 0 otherwise,
we have
[(n—1)/2] ) .
L Pl ot e o sl T

b a
~ (1=2a/n)/2 1/211 N1 l—a/nr -\ 1
UL = el ()

By Lemma 2.1, we have

[(n—-1)/2] : 1 . .
[I  Prle@),o(@)e ~a /" T()r/ T r()mt = (— =)™
t;l.(t,n):l i
LPETE)
RGN
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Thus we have established (2.17). By (2.5), we get

[(n=1)/2] [(n—1)/2]
(2.18) II px(c@),o@)=~ [ #kle(1)o@)=, 1<a<n-2
t=1,(t,n)=1 t=1,(t,n)=1
By Lemma 2.4, for every ty, 1 < t9 < [(n — 1)/2], (to,n) = 1, there exist integers u,,
1 < a < n—2 and a positive integer m such that Z:___.lz €atllq = My, Taking u,-th power
of (2.18) and making a product over a, we obtain p(o(1),0(to))™ ~ px(a(1),a(te))™.
This completes the proof.

Let K be an algebraic number field which is abehan over Q. Then K is a CM-field if K
is totally imaginary. Set G = Gal(K/Q) and let G be the set of all irreducible characters
of G. Let G4 (resp. G- ) be the subset of G consisting of characters 7 such that 7(p) = 1
(resp. n(p) = —1) When K = Q((,), this notation is consistent with the previous one if
we identify n € G with the corresponding primitive Dirichlet character.

Theorem 2.6. Let K be a totally imaginary algebraic number field which is abehan over
Q. Then we have

. _ L'(0,n)
2.19 id, o) ~ w2 ex n(9) —=), oc€eqd
neG...
where
1 if o=1,
plo)y= -1 if o=p,

0 if o#1,p.

Proof. If K = Q((y), the assertion follows from (2.11), Theorem 2.5 and Theorem S1, (3).
Now let K be a totally imaginary subfield of Q((,). We set

L=Q(), G=Ga(L/Q), H =Gal(L/K).
By Theorem S1, (5), we have
pi(id, o) ~ H pr(id, 70)
TEH
where & € G denotes an element such that &K = o. Since (2.19) holds for pz,, we obtain

d —u(ro)/2 77(”'5) Ll(0777)
(o)~ 1] = ge" L T,

4 !
—— u(ro)/2 ZTGH ’I](TJ) L (0?77)
=7 LreH exp : :
1] === T
neG_
We see easily that > g u(70) = p(0). It is clear that 3 ., n(75) = 0 if n|H is non-
trivial; if n|H is trivial, then 1 can be identified with an element of G_ and we have
> ren N(77) = |H|n(o). Hence the assertion follows.
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Theorem 2.7. Let the assumption be the same as in Theorem 2.6. Let i) be a virtual

character of G which is a Z-linear combination of characters in G_. We assume that P is
Q-valued and v # 0. Then we have

(2.20) exp(g(((()) ¢))) pdim ¥ H px(id, c‘r)'/’(”_l)
o€G

Proof. Tt suffices to prove the theorem assuming ¢ = ). . ; w” withw € G_. By Theorem
2.6, we obtain

-t L'(o -1
[T p(id, o)™ ~ a=/2432 TT T exp n(a) (0,1) o)

cEG aEG cG_ ] L(O}’?)
_ g dimy ex R L'(0,7)
i p([K:Q](an( o) 20

By the orthogonality relations for characters, we have

_ G| if n=w” forsome T€J,,
S nnie ) ={ o) .

Juper 0, otherwise.

Hence we get

I1 »xad, g)WeT) o gmdimy 11 exp(M)
g€G ' T€Jy ( )

Since

T€Joy

the assertion follows.

Corollary 2.8. Let K be an abelian CM-field and F be the maximal real subfield of K.
Let x be the Hecke character of F which corresponds to the quadratic extension K /F.
Let Lp(s,x) denote the Hecke L-function attached to x. Then we have

exp(L'%(0,%)) ~ (Wl/sz(jd’ id))[K:Q]LF(OaX)_

For a proof in more general context, see Proposition 3.5 in the next section.

§3. Conjectures

We expect that essential parts of the results in §2 will generalize to an arbitrary CM-
field. In this section, we shall give a precise formulation of conjectures.



102

Let K be a CM-field. We assume that K is normal over Q and set G = Gal(K/Q). Let
p € G be the complex conjugation. It is well known that p belongs to the center of G. Let
1 be a representation of G. We call ¥ odd (resp. even) if ¥(p) = —id (resp. ¥(p) = id).
Let G be the set of all equivalence classes of irreducible representations of G. Let G_
(resp. @+) be the subset of G which consists of all equivalence classes of irreducible odd
(resp. even) representations. We have G=G,UG_ (disjoint union). If n € G_, then
L(1,7) # 0 and the Gamma factor to go with L(s,n) is ['((s+1)/2)4™ 7. Hence L(0,5) # 0
forne G_.

Conjecture 3.1. Let i be a virtual representation of G which is a Z-linear combination

of representations in G_. We assume that the character xy of 1 is Q-valued and that
¥ # 0. Then we have

L'(0,9)

(3.1) exp( ——= 00, %)

) ﬂ,.dimz/) H pK(I-d,O')X'I'(U—l).
gEG

This Conjecture generalizes Theorem 2.7. We note that x4 (o) = xy(c™'). Conjecture
3.1 expresses exp(L’(0,)) in terms of px. It seems impossible to generalize Theorem 2.6,
i.e., the expression of px in terms of exp(L’(0,7)). This can be explained as follows. It
may be conjectured that px(id, 0;), 1 <4 < [K : Q]/2 are algebraically independent over

Qif Z[K ‘Ql/2 5 is a CM-type of K (cf. [Sh6], p. 319). If G is not abelian, we can easily
show that |G_| < @ — 3. Hence the expression of px in terms of exp(L’(0,)), ¥ € G_
- would be impossible.

We can see that Conjecture 3.1 is compatible with field extensions. In fact, let L be an
extension of K. We assume that L is a CM-field normal over Q. Put

G =Gal(L/Q), H=Gal(L/K).

We assume ConJecture 3.1 for L and shall show (3.1) for K. Regarding v as a virtual
character of G we have

L'(0,%) dim ¢ i1 =Xy (371)
exp(m) ~ T H@pL(ld, o)X
oE
dim ¥ H H pr(id, Tﬁ)m((rﬁ)‘l)) ~ pdim 2 H ( H pr(id, Tﬁ))x¢(u'1),
u€EG reH u€EG vreH

where 7 € G is an extension of u € G. Now (3.1) for K follows from Theorem S1, (5).
It may be the case that (3.1) remains true without assuming x. is Q-valued, if we could

define px more precisely so that [, cqpx(id, a)xw("_l) is well defined. A conjecture of
the same strength can be formulated as follows.

Conjecture 3.2. Let ¢ be a conjugacy class in G. Then

() /2 CIXn(C) L'(0,)
(3.2) Ie[cpK (id, o) ~ 7~/ H exp( K : Q] L(O,n))
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where
1 if ¢={1},
pe)=4q -1 if c={p},
0 if c#{1},{p}-

This conjecture generalizes Theorem 2.6 and stronger than Conjecture 3.1 as shown
below. We note that 2|€;_} is equal to the number of conjugacy classes ¢ of G such that
¢ # cp. For a conjugacy class ¢ of G, the order of g € c is called the order of c; for a € Z,
the conjugacy class of ¢g* will be denoted by c®. :

Proposition 3.3. The following two assertions are equivalent.
(1) For every conjugacy class ¢ of G, we have \

n

(33) H H pK(jd, a') ~ H 7[-—11(0“)/2'2 H eXp(lc IXT)(C‘I) ) L/(O,ﬂ)),

K: L(0,
a:l,(a,n):l oE€c? a:l,(a,n):l 776 3 [ Q] ( n)

where n is the order of c.
(2) Conjecture 3.1 holds.

Proof. For w € @ let M, be the field generated over Q by the values of x, and put
Jo = Jum,. We divide G into a disjoint union of orbits under the action of Gal(Q /Q):
w; and ws belongs to the same orbit if and only if xu; = Xw, for some 7 € Gal(Q/Q).
Each orbit is contained in G_|_ or G_. From each orbit we choose a representation w and
put ¥ = Pres,w”, Jy = Jo,. Then the character of ¢ is Q-valued. Let R be the set
of equivalence classes of representations obtained in this manner. Let R_ (resp. Ry) be
the subset of R whch consists of equivalence classes of odd (resp. even) representations.
Clearly we see that every Q-valued virtual character of G is a Z-linear combination of
characters of representations in R.

For a conjugacy class c, let n(c) denote the order of ¢. Let w € G and set ¢ = Breg,w’.
Since ZZ(=61),(a,n(c))=1 Xw(c®) is Q-valued, we have

n(c) n(c)

WY w@=Y Y xe(e)

a=1,(a,n(c))=1 T€J., a=1,(a,n(c))=1
n(c)
=Y (e = p(n(@)xa(o).

a=1,(a,n(c))=1

Therefore we obtain

n(c)
(3.4) S (e = 22D, o)

a=1,(a,n(c))=1 l ¢'|
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0 T
By this formula and noting L(O Z 70, :;T) w € G_, we see that (3.3) is

equivalent to
n(c)

e C|<P (9) xu(c) L'(0,%)
(3.5) H H px(id, o) ~ 7 7H()/2 H exp . ),
a=1,(a,n(c))=10€c* YER_ : Q] |J1/JI L(0, y)

Now assume (1). We have

n(c)

M[oxGaope =T I Il pxtid,oyte™

o€G ¢ a=1,(a,n(c))=10€c*
~ = (D) =X (P))/2 e 1) Xn(e) - 1y L(0,)
HQ Q) Tl T
r=im T ex e o1y ZO)
"1 emly UIUEEJGX"( oo™ Fign

A subset of the form U ( ) 1 (ayn(c))= _;¢* of G is called an “Abteilung” in the old terminology

which goes back to Frobemus ([F]). The product [], extends over Abteilungen choos-
ing one conjugacy class ¢ from each Abteilung. By the orthogonality relations, we have
Yoecg Xn(0)xyp(07!) is equal to |G||Jy| if ¥ = 7 and 0 if ¢ is not equivalent to 7. Thus
we obtain (2).

Next we assume (2). Set

n(c) .
= 1 = _ ) c°
P= I1 1 rxGd,0),  e=Uel] (@ nien=r”

a=1,(a,n(c))=10€c®
By the orthogonality relation, we have

n(c)

Y Y ot Mdel={, e

e.
wed a=1,(a,n(c))=1 otherwis

Using (3.4), we have

3 xa(@)xw(e)lelip(n(e))/1 741G = { ; if o€,

otherwise.
PER

Hence we obtain

P =[] [ pxl(id, o) (@xe(e Dlcle(n@)/I4IG1,
YERGCEG
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Using Theorem S1, (3) and the assumption, we have

_ L'(0, ) -1
P~ dim ¢ xv(c )IC|<P(n(C))/|J¢I|G|
¢g_( exp( 7oy 70, %) )

Considering regular representations of G and G/ (p), we have

IGl/2  if o=1,
Y dimyp-xy(@)/lJyl =14 -IGl/2  if o=p,
YER_ 0 if o#1,p.

Hence we obtain (2). This completes the proof.

Conjecture 3.4. Let K be a CM-field (not necessarily normal over Q) and F be its
maximal real subfield. Let x be the Hecke character of F}. which corresponds to the
quadratic extension K/F and Lg(s,x) be the Hecke L-function attached to x. Then

L% (0, %) .
3.6) : exp(ZE2 2y o pIK:QL/2 l I 0,0).

We note that if K is normal over Q, (3.6) can be written as

L (0, x)

exp( Tr(0.%)

) ~ (wl/sz(id, id))&Ql,

by Theorem Sl (6). Thus Conjecture 3.4 generalizes Corollary 2.8.

Proposition 3.5. Let L be a CM-field norma] over Q The following two assertmns are
equivalent.
(1) Conjecture 3.1 holds for all odd representations of GaJ(L /Q) with Q-valued characters
(2) Conjecture 3.4 holds for all CM-subfields of L. . :

Proof. Put G = Gal(L/Q). Let K be a CM-subfield of L and set H = Gal(L/K) H=
Gal(L/F). Let x be the non-trivial character of Gal(K/F) = H/H and lift x to the
character y of H. Put P = Inde We shall show

(3.7) H pk (0, 0') H pL(ld a)x«p(o)
oedk cEG
For g € G, set
ni(g) =z € Glzgz™ € H}Y|, n_(9)=|{z €G|zgz™" € Hp}|.

By the formula of induced characters, we have

Xu(9) = (n+(9) - n_(9))/|H|.
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We choose a subset S of G so that G = S U Sp is a disjoint union. By Theorem S1, (3),

we have _
[] prld, o)) ~ ] pr(id, 0)2(+ (== ())/1H],
o€G cES

By Theorem S1, (5), (6), we get
I px(o,0) ~ [] rx(9lK, gl K)*/ 1!

o€Jk geG
~ 1T II »z(s hg)l/‘H' ~ [T II pz(id, g7 rg)*/1H1.
gEG heH gEG heH

For o € S, we have
{9eGheH|ghg=0} =ni(s), |{g9€G,heH|g 'hg=0p}|=n_(0).
Hence, by Theorem S1, (3), we obtain
H pK(a', 0') ~ H pL(id, 0-)("+(‘7)_n—(0))/|H|_
o€Jk o€S
We have proved (3.7).

Now assume (1). Identify the Hecke character x with the non-trivial character of
Gal(K/F) as above. Since Lp(s x) = L(s,v), we have

( X)) adim ¥ H pL(id,O')x“’(a).
oc€EG
By (3.7), we obtain (2).

Next assume (2). Let ¢ be a virtual representation of G as in Conjecture 3.1. By a
theorem of Artin (cf. [Ar], [T], p. 45), there exist a positive integer n, subgroups H; of G
and integers m; (1 < 4 < r) such that

r
nxXy = Z m; Indgi 1m,,

=1
where Iy, denotes the trivial character of H;. If p € H;, then Indgil H; is an even

representation. Hence we may assume that p ¢ H; for every i. Put ﬁ, = H; U H;p.
We have

(A
nx,/, = Z m; Ind%ﬁ(lg1 &) Xﬁi ),
=1
where x 5. denotes the non-trivial character of IAL which is trivial on H;. Since Ind%_ 1g.
is even, we have

NXyp = Z m; Ind%xﬁi.
=1
By (3.7) and the assumption, (3.1) holds for all representations Indgi X, Therefore (3.1)
holds for xy. This completes the proof.

For a totally real algebraic number field F', a CM-field K such that [K : F] = 2 is called
a CM-eztension of F.
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Proposition 3.6. Let F' be a totally real algebraic number field. Let K; and K, be
CM-extensions of F' and K, be the composite field of K; and K,. If Conjecture 3.4 holds
for K1 and K., then it holds also for K.

Proof. We may assume K; # K,. Let F be the maximal real subfield of Ky. Let xo, x1
and 2 be the Hecke characters which correspond to the quadratic extensions Ko/ Fy, K1 /F
and K, /F respectively. Let o and 3 be the generators of Gal(K,/K;) and Gal(Ky/K>)
respectively. Considering an induced representation, we find easily that

LFo (37 XO) = LF(S) Xl)LF(37 X2)’

Hence, by the assumption and Theorem S1, (5), we obtain

LIFO(OaXO) L%’((),Xl) LIF(07X2>
ex —_——} = eX ex
M)~ ™0, x0)) “* (0, x2)
Nﬂ-[Kl:Q]/z H pKl(a,U) W[KZ:Q]/2 H pK2(07a)
O'EJKI O'GJKz
~ 7l QPR TT piy(0,0)pKo(0,00)pK, (0, 0)p Ky (0, B0)) /2.
O'GJKO

We have 8 = ap and fo = apo = aogp for 0 € Jk,. Now the assertion follows from
Theorem S1, (3).

§4. Preparations on CM-fields

In the next section, we shall render Conjecture 3.1 to numerical tests. For this purpose,
we collect several general facts on CM-fields in this section.

For an algebraic number field L, let Dy, hy, Er, Wy, and Ry, denote the discriminant,
the class number, the group of units, the group of roots of unity in L and the regulator
of L respectively. We put wy, = |Wp|. Let (1(s) denote the Dedekind zeta function of L.
The analytic class number formula gives

QritT2 T2 hr Ry,
leDL|1/2

(4.1) lim (s — 1)((s) =

Here r; (resp. r9) denotes the number of real (resp. complex) archimedean places of L.

Let K be a CM-field and F' be the maximal real subfield of K. Put n = [F : Q]. Let x
denote the Hecke character which corresponds to the quadratic extension K/F. By (4.1)
and by the functional equations for {r(s) and (x(s), we obtain

2Rk hx
4.2 L = - —
(42) P03 = i 2
By the definition of the regulator, we have
RK 2n—1

(4.3) RF - [EK : WKEF].
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Hence we get

on _}_Lﬁ_ Qn—l hy
[EK WKEF] hF [EKiEF} hF

(4.4) LF(O,X) =

Let 9/ denote the relative different of K over F. The next Lemma is well known. We
include its proof for the sake of completeness.

Lemma 4.1. [Ex : WgEr] =1 or 2. If 0g/F does not divide (2), then Ex = Wk EF. If
[Ex : W EFp| =2, then K = F(\/—¢€y) with a totally positive unit ¢y € EF.

Proof. For € € Eg, we have |¢?7/¢?| = |€?P[e°| = 1 for every ¢ € Jg. Hence we have
€’ /e € Wk by Kronecker’s theorem. Define a mapping 9 from Ex /Wgk Er into Wk / W2
by

Y(e mod WgEFr)=¢’/e mod W, ec Fg.

Then it can immediately be verified that v is well defined. and is a homomorphism. If
€”/e = (%, ( € Wk, then (Ce)? = (e, i.e. € € WgEp. This shows that ¢ is injective.
Therefore [Ex : WxEp| = 1 or 2. Assume [Eg : WgEFp| = 2. Then 9 is surjective. Hence
there exists an € € Ex such that ¢”/e = —1. Put o = —€®>. Then ¢y = Nk (€ is a totally
positive unit of Ep. We have K = F(e) = F(y/—¢€o). Since the different of € over F is 2,
vk, r must divide (2). This completes the proof.

Let I(K) denote the ideal group and let ® be a CM-type of K. Let ¢ be a Grossencharac-
ter of conductor f of I(K') such that

¥((@) = [[(@?/le’* if a=1 mod*j,

o€EP

where t,, 0 € ® are non-negative 1ntegers Let Lx(s, ) denote the L-function attached
to 1. We quote a fundamental theorem of Shimura for the use in the next section ([Sh2],
Theorem 2 combined W1th [Sh6], Theorem 1.1; or see [Sh7], Theorem 32.12; cf. also [Sh4],

§5).

Theorem S2. For every integer m such that m —t, € 2Z and —t, < m < t, for every
o € ®, we have

K(m/27 ¢) ~ We/sz(Z to -0, (b)a
ced
where e = m[F : Q]+ > 4 to

To compute Lg(m/2,1), we apply Shimura’s method [Sh2], which we are going to
explain briefly.
Let k€ Z, k>0,r=(r,re, ) €E2Z", 7; >0for 1 <i<n. Set{r}=>",r,
1=(1,1,---,1) € Z". For ¢ = (z1,%2, - ,Zn) € C", a = (ay,a2, -+ ,0,) € Z", put
a

z® = [[i—, zf*. (z* is defined similarly also for x € R%}, a € C".) Let §) denote the
complex upper half plane. For z € " and s € C, define an Eisenstein series Ey, ,.(z,s) by

cz+d.”
cz+d

(4.5)  Eps(z,8) = (z—2) 7" (2mi) "t 3"

(c,d)/~

) (cz+d)~ }”1|cz+d|_s1
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where 37 ;) /., means that (¢, d) runs over Op®OF\{(0, 0)} under the equivalence relation
(C,d) ~ (Cl,dl) <= de € Ep,c; = €c,dy = ed.

Then FEj ,(2,s) converges absolutely when ®(s) + %k > 2 and can be continued meromor-
phically to the whole s-plane. Furthermore Ej ,(z,s) is holomorphic at s = 0. We put

(4.6) Er.r(2) = Er+(2,0).
Then we have the transformation formula

(4.7) Epr(72) = Epr(2)(cz + d)*"(cz + d)F? for every v = (2 Z) € SL(2,90F).

Let K be a CM-extension of F. Let A be a fractional ideal of K; we assume that A =
Orw @ O with w € K. Let ® be a CM-type of K such that (w?) > 0 for every
o € ®. Regard w as a point of H" by w — (w?)ses. If R(s) is sufficiently large, then by
straightforward calculation, we get

B r(w, s) =[Ex : Ep](2ni) "~ T (28(w?)i) ()
ocd

x Z H | UI)2r(0)+kN(a) k/2— 3/2

(a)CAoED

(4.8)

where (a) extends over all principal ideals contained in 2 and r(o) denotes r; if w’ cor-
responds to the j-th component in $™. By analytic continuation, we can use Ej T(w) to
evaluate the right hand side at s = 0.
1t 0

(o Then we he
o 2iy; 9z;): Then we have

For t € C, define a differential operator D;; by D;; =

(4.9) Dj gyar; B o(2) = (k +15)Er 0 (2),

where r* =r+(0,0,---,0,1,0,--- ,0) € Z™ (added the vector whose j-th component is 1,
other component 0).

If the class number of F' is 1 and » = (0,0,---,0), we have (cf. Siegel [Sil], (16) ~
(18)), excluding the case F = Q and k = 2,

(410)  Epo(2) = (2mi)~ ’“”{CF(’“)+(((A2M)1);)”|DF|”2"° S oka(p)ermiseay,

>0

where 0 denotes the different of F' over Q, S(vz) = Z?:l I/(j)Zj, v(9) being the j-th
conjugate of v € F,

(4.11) O’k_l(lj) = Z Sgn(N(ak)’)N((a)a)k‘l

= (@) v
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We can use (4.8) ~ (4.11) to compute numerical values of L(m/2, ) if the conductor of 1
is (1) and if the class number of F' in the narrow sense is 1.3

§5. Numerical examples

In this section, we shall examine Conjecture 3.1 numerically for some simple non-abelian
CM-fields. The following example is discussed in [ST], p. 74.

Let F = Q(\/E), 0 < d € Q be a real quadratic field. Let z 4 yWde F,z,y € Q

be a totally positive element and set £ = {/z +yvVd 3, & = y/z — y/d i, K = Q(¢).
Then [K : F] = 2 and K is a CM-field. We assume that K is not normal over Q. This
assumption implies Ex = Ep (cf. [Sh3], Proposition A.7, (iii)). In fact, if Ex # EF, we
have K = F(y/=€,) with a totally positive unit €y of F' by Lemma 4.1. Since € = ¢’

for the generator u of Gal(F/Q), we have K = F(/—€f). This shows that K is normal
over Q. Let L be the normal closure of K over Q. Then L is a CM-field and we have
L=Q(¢¢), [L: Q] =8. Define o, 7 € Gal(L/Q) by

g: (6')6,) - (517 —€)a T (5,61) - (glag)
Then Gal(L/Q) is generated by ¢ and 7 which are subject to the relations

ot =1*=1, T0 = 0°7, o? = p.

Thus Gal(L/Q) is the dihedral group of order 8. Define a CM-type ® of K by & =
{id, o|K}. Then the reflex of (K, ®) is (K',®'), where K’ = Q({ + ¢'), @' = {id, o7|K'}.
Put & = z? — y2d. Since (£ +¢')? = —2(z + V/d'), we have K’ = Q(1/2(z + vd' 7) and
F' := Q(+v/d') is the maximal real subfield of K’. Let Fy be the maximal real subfield of
L. We have Fy = Q(vd,Vd'). We note that

(51)  Vi'=-vd, V& =T, Vi =-vd, VI =Vd.
Put G = Gal(L/Q). We have
G/{p) = Gal(Fy/Q) 2 Z/2Z & Z/2Z.

Hence §+ consists of four one dimensional representations. We see easily that G_ = {n},
where 7 is the unique irreducible two dimensional representation of G. Let x be the non-
trivial character of Gal(K/F) and regard x as a character of Gal(L/F). Then we find
immediately that

n = Ind(x; Gal(L/F) — Gal(L/Q)).

3Here we restricted ourselves to a simple case mostly sufficient for the use in §5. To deal with the
general case, we must employ Eisenstein series with congruence conditions. For details, see [Sh2].
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Hence we have

(5.2) L(s,n) = Lr(s,x),

where Lp(s,x) denotes the Hecke L-function attached to x regarded as the Hecke character
of F corresponding to the quadratic extension K /F. The character x, of n is given by
Xn(g) =2, =2 or 0 according as g =1, g = p or g # 1, p. Hence Conjecture 3.1 for L(s,n)
is equivalent to '

L,(Ov 77) 2 -1 :1\4
5. ——)~ d,id
( 3) exp( L(O,’I])) @ pL(l )1 )
in view of Theorem S1, (3). By (5.2), (5.3) is equivalent to
Lr(0,x) 2, (34 ;
5.4 exp(=E22) ~ id, id)*.
On the other hand, in view of Theorem S1, Conjecture 3.4 is equivalent to
!
(5.5) exp(Z2OX) 2y i, id)pc(, o).

LF(07 X)

Here we abbreviated o|K to o. Similar notation will be used hereafter since no confusion
is likely. Using Theorem S1, we see that (5.4) is equivalent to (5.5), i.e., Conjecture 3.1
for L(s,n) and Conjecture 3.4 for Lr(s, x) are equivalent. We note the following relations
due to Shimura [Sh3], Proposition A.7. :

(5.6) hg/hrp = hg/ [hF, Npo(D(K/F))D(F/Q) = Npo(D(K'/F'"))D(F'/Q).

For given F' and x, exp(L'%(0,x)/L #(0,%)) can be calculated by Shintani’s formulas
([Shil], [Shi2]).* To compute CM-periods, we apply Theorem S2. For non-negative integers

a and b, let )\gl’,)) and )\f}) be Grossencharacters of conductor f of I(K) such that

af a’f

A0 (@) = <m>“<|;(,—|>b, =1 mod X},
)‘22,1);“0‘)) = (l%i')a(|5:p')b, a=1 mod *f.

Similarly let p,g’g) and ﬂgl), be Gréssencharacters of conductor §' of I(K') such that
(1) af 4 TP — X ¢!
por((@) = (=) (=" a=1 mod*f,
° laf” a7
(2) af o, %7 - X ¢f
=0=) b= =1 d *f.
:u’a,,b((a)) (lai) (|C¥0Tp|) y (87 mo f

4Shintani gave an arithmetic formula for Lr(0,x) in [Shil]. In [Shi2], he gave a closed formula for
L’5(0,%) in terms of a double gamma function. Shintani’s formulas for partial zeta functions (cf. (16),
(17) of [Shi4]) have striking similarity to (2.8) and (2.9). For the evaluation of double gamma functions,
we can efficiently use the asymptotic expansion given in [Shi2], p. 179.
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We note that Lg(1, A(zb) # 0, Lg/(1, ,u ) # 0 for every ¢ and a, b. By Theorem S2, we
have

Li(1L,A) ~ 7 (2-id +2- 0, id+ o),

Lr(1,2{) ~ m°px(4-id+2- 0, id + 0),

( ) (

Lk(1, /\(22%) ~mt*pr(2-id+2 - op, id + ap),
( (

Lic(1,7)) ~ m°px (2

-id+4 -0, id+ o).

By Theorem S1, we get
Lr(1, ) Lr(1,A59) ~ 7*px(id, id)*px (0, 0)*.
By (5.5), Conjecture 3.1 for L(s,7n) is equivalent to
/
(5.7) 7L (1, M) Lk (1, AR exp(—M) is algebraic.
) | 3 LF(O, X)
We see easily that (5.7) is also equivalent to
' ' 2L'%(0
(5.7) 7 * Ly (1, u(l))LK:(l ,u(2))exp( ——F——(’—Xz) is algebraic.
LF(Oa X)

We shall derive another relation. By Theorems S1 and S2, we get
Lr(1,2{)) | L (1, 457))

~ mpk(id, id + o)?, o~ mpx (oTp, id + oTp)’.

(5.8)
Lx(1,283) Ly (1, 15%)

By Theorem S1, we obtain
pk(id,id + o) ~ pr(id,id)pr(id, o7)pr(id, o)pr(id, 7),
px/(07p,id + o7p) ~ pr(o7p,id)pr(o7p, T)pL(0TP, 0TP)PL(0TP, TOTP)
N.pL(id) UT)—lpL(ida U)_lpL(idv 1d)pL(1d7 T)~17
pk(id,id + o)pg (o7p,id + o1p) ~ pr(id,id).

Hence we have

LK(l >‘4 2) LK'(1 ﬂ(z))
LK(1,>\§,§) Ly (1, 1)

(5.9) ~ w?pr(id,id)*.

Therefore Conjecture 3.1 for L(s, n) is also equivalent to

LK(1,A‘1)) Lx(1, u(z) L0, x

(5.10) - exp(— ————==
Lre(1,0Y) Lo (1, ul?) Lrp(0,x)

) is algebraic.
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For a real quadratic field k, we denote the archimedean places of k by co; and coy. We
choose co; as the place corresponding to the identity embedding of k£ into R.

Example 1. We take F = Q(+/5), K = Q(\/ 13 -; V5 i). Then we have F’' = Q(+1/41),

K' = Q(V/13 +2v41 i). We have hp = hp = 1. We have (41) = (13+ \/_)(13 2\/_)

134+ /5 1, (1345 . 1-4/5
By = i+

2 2 2 2
Or. Hence we see that p ramifies in K and all the other prime ideals of F' are unramified in
K. Furthermore we have O g = Orz ® Or. We can also see easily that K is the maximal

ray class field of conductor poo; 00, of F. In F', we have (5) = (13 + 2+/41)(13 — 2v/41).

Put p’ = (13 +2v41), 2’ = 1(+/13 + 2//41 i + 1). Similarly to the above, we see that p’ is
the only prime ideal which ramifies in K', O = Op 2’ ® Op and that K’ is the maximal
ray class field of conductor p’'oo; 005 of F'.

We can compute Lr(0,x) and L'%(0,x) by the method of Shintani. We obtain

F.qutp:(

). Then we see that z is integral over

(5.11) Lr(0,x) =2,

(5.12) L'z(0,%x) = —0.2655803934800076609917165 - - -

Since Ex = Ef, Ex» = Ep+, we have hxg = hg' = 1 by (4.4), (5.6) and (5.11).
For every non-negative even integers a and b, there exist (unique) Grossencharacters
}\gll)), )\(2) (resp. usg, uflzl),) of I(K) (resp. I(K")) of conductor (1). By (4.10), we have®

\/g Ex?
(5.13) Ezpzo(z) = m{l + 120 Z (71(1/)62 S(Uz)}, F= Q(\/5—),
(VB)~H >0

! \/ﬁ wiS(vz |
(5.14) Efy(z) = TWTEALRE: S oy, P = Q(val).
(VA1)~1|v>0

By (4.8), we have

: s (13445,
Lk (1, )\gg) = (27rz)4E2F:0(w), Lk(1, )\Sg = (2m)® ——2£ zEf:{l,O}(w),
(5.15)

LA = ri | BV pr ),

SWe write Ej ,.(z) for F as Ef (z) to indicate the dependence on F.
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where

wz(%(\/l?’“;‘/giﬁ;‘/g), ;( L Qﬁz+1+2‘/g))ef)2.

Li(1,A9) = 1.13172003415883621168 - -- , L (1,A{)) = 1.06744092000442833016 - - -,
Li(1,A8)) = 1.40377042189535030964 - -

We get

Next evaluating Eisenstein series at a CM-point

(%( /13;\/5”1—2\/‘) 1++5 1( 13;\/5i+1+2\/5).1—2\/5)€ﬁz,

we obtain

Li(1,AY)) = 1.05594274348607867398 - -, L (1,A\3) = 1.48897355341553581717 - -- ,
Li(1,A0)) = 1.36329307657845702302 - - -

In this way, we obtain

z(1) = 0.9850429415895403350813407 - - - ,

where ,
Lr(1,203) Lx(1,p450) 1

z(1) = Lx(l, /\(1)) Lyx(1, M(Z)) exp(L’z(0, x)/2)

the quantity in (5.10). It would be very hard to identify z(1) with an algebraic number
by just looking the numerical value. However, regarding exp(L#(0,x)/2) as “absolute
period”, we let Gal(L/Q) act formally on Grossencharacters and will make conjugates of
z(1). For o € Gal(L/Q), CM-types {id,o|K} and {id,o7p|K’'} of K and K' change to

{0|K,0?|K} = {0plK,id}",  {o|K’,orpolK'} = {o7|K",id}".

Hence, by the action of o, )\glg, Ag, ugzg, ugzi are transformed to )\gzg, A(zzi, pglg, uf:%

respectively. Here we note that Lx(1, a‘)b) = LK(I,)\E:),)) and Lg(1, ;L( )) LK(l,ua’b).
Put

Lr(1,28) Lie(1, ) 1
Lx(1, Agg) Lio(1,18)) exp(Lp(0,)/2)

z(2) =

We have
z(2) = 9.8665652926870184801416328 - - -
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We can regard z(2) as a “conjugate” of z(1) under o. Similarly for 7 € Gal(L/Q), we get

o(3) = ZEL ) e, 1
Le(1,A)) Li(1,ud) ep(Lr(0,%)/2)
z(3) = 2.3274972423646135767363864 - - -

For o1 € Gal(L/Q), we get®

2(4) = Lx(1,08) Li (1, pf) 1
LK(l,A(Z)) Li(1,u3) exp(Lr(0,%)/2)’
2(4) = 1.6125611900254942747073081 - - - .

Now we compute the polynomial

= [[(T - 2°-3%- 41 =(j))

7=1
using these numerical values of z(j). We obtain

20 15

F(T) =T* — 43665.00- - 045 - - - T + 489989565.00---012--- T
12 8

o p—N—_
—2032811110800.00---089---1"+ 2770077684038400.00---016--
Therefore it is very plausible that
f(T) =T* - 43665T° + 48998956572 — 20328111108007 + 2770077684038400.

The roots of this polynomial are

43665 12669 3765 1425
T V5 + 2441 + —=1/205

and its conjugates. Comparing with numerical values, we obtain identifications:

43665 12669 376 1425
23.32.41 (1) = V5 — 5\/—-!- 205,

4 4 4

43665 12 142

43665 12669 3765 1425
23.32.41 2(3) = — t V5 — 1 \/4_—7—\/205,

43665 12 765 1425
2°-3% 4l a(d) = —— - i69\/5+ 3’——5—— 41— ——V/205.

6By Theorems S1 and S2, we can verify z(1) ~ 2(2) ~ 2(3) ~ z(4).
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The numerical values of z(j) coincide with these algebraic values up to the 23-rd decimal
place. By (5.1), we also have the compatibility with

(1) =2(2), z(1)"==2(3), (1) ==z(4).
Theorem S2 tells that
72 L1, A\9) L (1, A5 o 7 Lie(1, A0) Li (1,A5))
LK<1 A3 ’ Lx(1,2$))3

A’ ZLK/(l /1,4 Z)LK’(l /1,(‘1)) B’ ZLK/(]_ /J,(z))LK/(l #(2)
LK'(l #(1)) LKI(]. u(z))3

are algebraic. For the sake of completeness, we computed these values numerically and
found that

V5 —585 + 3654/41 B VB 585 + 365+/41

A = 26 - 3( 2 )) 26 3( 2 )
A = VL (693 + 334v/5), B = Vil (—693 + 334V/5).

24.3 2¢.3

(The coincidence is up to the 22-nd decimal place.)

We carried out the second calculation with higher precision” and found that the coinci-
dence of z(j) with algebraic values was improved to the 64-th decimal place.

We presented above a roundabout way to study (5.4) numerically, since this example
shows intricate relations among various quantities which appear in examples in this section.
Now we shall show more direct way. Set

Q = 7 L (1, \) Lk (1, 25%) exp(~ L (0, ),
R=n"*Lk(1, y(l))LK,(l ,u,(z))exp( L'z(0,%)),

the quantities in (5.7) and (5.7'). For Q and R, Gal(L/Q) “acts trivially”. Hence we can
guess that @ and R are rational numbers. In fact we find

2 24

==, R=Z-.
=5 412

Numerical coincidence is to the 67-th decimal place.

Example 2. We take F = Q(v/17), K = Q(v/9 + 24/17 7). Then we have F' = Q(1/13),
K'=Q(y/ 2132@ i). We have hp = hp = 1. We have

1
O =0Or " 5 9+2V/17i+1)® OF

TFor these calculations, we employed “UBASIC * created by Y. Kida and a desk computer PC9821-Ap2.
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and that K is the maximal ray class field of conductor poo; 0oz of F.. Here p = (94 24/17).
We also have

9+ 13 4 -1+ +13

1
DK/ —DF"E( ) 1 5 ) DFI

and that K’ is the maximal ray class field of conductor p’co; 002 of F’, where p = (—"'—‘C)
We have

Lr(0,x) = 2, #(0,x) = —0.4238901837952971056559698 - - -
Hence hxy = hg' = 1. Let Q and R be defined in the completely same manner as in
Example 1. We find
02 Rl
ER T C13%

The coincidence is up to the 35-th decimal place.

Example 3. We take F = Q(+v/5), K = Q(+/7 + 2v/5 ). Then we have F' = Q(+/29),
K' = Q(y/ ™2 i). We have hp = hps = 1. In F, we have (29) = (7 + 2V/5)(7 - 2v/5).

Put p = (7+2+/5) and let M be the maximal ray class field of conductor (4)poo; 00, of F.
We have [M : F] =16 and K C M. We find

Lr(0,x) =4,  L%(0,x) = —11.95434037167457903017 - - -
F

Hence hg = hg' = 2. We have

DKZDF-‘\/7+2\/gi@DF.

The prime ideal (2) of F' ramifies in K. Put (2) = B2 in K. We can easily verify that 3,
is not a principal ideal and that

Po=Or (Y7T+2V5i+1)@20p.

Similarly (2) ramifies in K’. Let 5 be the prime factor of (2) in K’. Then 35 is not
principal.

For every non-nega,tive even integers a and b, there exist two Grossencharacters )\gl’l),,
)\22’2) (resp. ;szll)), [Lflzt), of I (K ) (resp. I(K')) of conductor (1). They are determined by
)\Eib(‘Bz) =1 or —1 (resp. ,ua b(ﬂ32) =1or —1).

First let Q and R be the quantities of (5.7) and (5.7’) determined by Agfg(&pz) =
)‘22,)("13 )=1, N(l)(mz) “2 2(‘/13') = 1. Then we find

2013 203511

@=—F - 292
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Similarly define @ and R by choosing )\ (‘132) = }\(2)( PBs) = (1)(‘,‘3') ugzg(‘l}’z) =
—1. Then we find

24 24.11
= R = .
Q= 29
The numerical coincidence is up to the 30-th decimal place.®
To clarify the relation with the Stark-Shintani conjecture, let us examine this example
more closely. Let C denote the ideal class group of conductor (4)poo;oo;. We have
C2Z/AZDZ/2ZZ/2Z = Gal(M/F). Let a, B, v be the classes of ideals (89), (59),

(106 + v/5) in C respectively. Then o* = 82 =42 =1 and C = (a) @ (8) ® (7). Let D be
the character group of C. Define w, ¥, n € D by

wla)=v-1, w@)=w®=1 ) =9(H) =1 3(8)=-1,
na)=n(8) =1, n(y)=-

For p € D, let f(u) denote the conductor of u. We have

f(w) =poos, f(¥) = (4)oor, f(n) = (4)o01002.

The Hecke character x, regarded as a character of C, is equal to w?7.

For c € C, let (r(s,c) = ) ,c. N(a)™° be the partial zeta function of the class c. Let
Dy, D, and D, be the subgroups of D consisting of all characters whose conductors divide
(4)p, (4)poo; and (4)poo, respectively. Let C; be the annihilator of D; for i =0, 1, 2. We
have

CO = {17:377 azﬂ: a27}) Cl = {15&27}7 Cz = {l,ﬂ’)’}

From the functional equation, we see easily that

> w(e)Cr(0,¢) = > p(e)¢r(0,¢) =0

ceC ceC

for every u € Dy. Hence we obtain

Z ¢#(0,cco) =0 for every c € C.
co€Cy

If we admit the Stark-Shintani conjecture, exp(2(¢%(0,¢) + ¢&(0,ca?9))), ¢ € C is a
unit of the maximal ray class field of conductor (4)poo,. In fact, following the pro-
cedure described in [St], III, our numerical computation suggests overwhelmingly that

exp(2(¢x(0,¢) + (&(0,¢B7))) + exp(—2(¢x(0,¢) + (&(0,cB7))) is a root of the polynomial

N 1143 + 513+/5

X* - (31 4+13v5)X*® 5

— (3711 + 1661v/5) X + (7649 + 3420v/5)

8In general, Q and R are not rational numbers. For example, let K = Q(v/3 + V2 i) and B be the
unique prime divisor of (2) in K. We have hg = 2. We find Q = 2% or Q = V2 according as the

22.3
assignment that both of )\(2%%(‘132) and )\(22%(‘}32) are 1 or —1.
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for every ¢ € C. Similarly it is very plausible that exp(2(¢%(0,¢) + ¢(0, ca®y)))
+ exp(—2(¢%(0, ¢) + ¢k(0, ca’y))) is a root of the polynomial

X4 (476+212v/5) X +(18584+8312v/5) X 2 — (168576 4+ 75392v/5) X +(441344+197376V/5)

for every c € C.

Put z(c) = exp(¢%(0,¢)), ¢ € C. Admitting the Stark-Shintani conjecture, we have
I, cc. z(cc;) ~ 1 for every 1 = 0, 1, 2 and every ¢ € C. Hence we see easily that every
z(c) can be written as a monomial of z(1), z(), z(a?®) and z(a®) up to algebraic numbers.
We have F(i) C M and Conjecture 3.1 holds for F(i) by Theorem 2.7. Let Mo be the
maximal CM-subfield of M. We have Gal(M/Mo) = {1, aZ,H} [Mo : F| = 8. From abelian
L-functions attached to the characters 7, w?7n, wy and wy for Mo /F, we can obtain

four Artin L-functions for MO /Q with odd representations, where MO denotes the normal
closure of My over Q. If we trust Conjecture 3.2, all of 2(1), z(a), z(a?) and z(c®) can be
expressed by CM-periods.

§6. Absolute CM-periods

6.1. The numerical examples presented in §5 suggest the possibility to make conjectures
in §3 in more precise forms, i.e., to formulate them in covariant forms under the action of
Aut(C). In this section, we shall discuss this problem in certain simple cases.

Let K be a CM-field and F be its maximal real subfield. Let x be the Hecke character of
F¥ which corresponds to the quadratic extension K/F and let Lr(s, x) be the L-function
attached to x. We put

0,%)
P =ex F (
Let A1, A2, -+, A be Grossencharacters of 1 (K ) of conductor f. We assume that there

exists a CM- type &, and non-negative integers t( Y oe ®; for every ¢ such that

M((@) = [ @/le)™’  if a=1 mod*j.
ocED; ' . ‘
Assume that there exists an integer m which satisfies
m—tg")€2Z and —tff)<m§t£f)
for every 7 and every o € ®;. By Theorem S2, we have
L(m/2,):) ~ 72 prc (Y 1) - 0,8;), ei=m[F: Q]+ Y I
o€®; v c€P;

Let L be the normal closure of K. For every i, we take ®? € I, so that Resp, k(®}) = ®;
and put n; = InfL/K(Zae@ 0) By Theorem S1, (4), (6), we have

k(32 190, @) ~ pi(ms, 89) ~ pr(id, 807,
oced;
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where @?n{l = Z,yeq,g’a@h 46—, Take a CM-type S of L. We can write
;o= Zlff) o +mld) . ap.
g€S

By Theorem S1, (3), we have

(6.1) HpK Z t) .o ®;) pL(id,Zna.a), Ny :zn:(l«(f) 0N

=1 oc€d; gE€S =1
Conjecture 3.4 states v
(6.2) v - Pl T pk(o,0).
oEJk

Regard x as the non-trivial character of Gal(K/F) and lift x to the character X of
Gal(L/F). Put ¥ = Ind(X;Gal(L/F) — Gal(L/Q)) By Theorem S1, (3) and (3.7),
(6.2) is equivalent to

(6.3) P ~ «l®: Q2 TT pi(id, 2xy(0) - o).
. ’ o€S
We assume that there ex1$ts e € 2717 such that
(6.4) Z Ne -0 =¢ Z 2X¢(a) o.
ocES oES

Put

(6.5) A=Y e-e 100G

=1

By Theorem S2, Conjecture 3.4 is equivalent to
(6.6) [1z(m/2,x) ~=4P
i=1

Now we can state a precise version of Conjecture 3.4.
Conjecture 6.1. Let h; be the order of the ideal class group modulo f of K. Then we
have
{(H'i:l L(m/z’ Ai))wf”}()' — (Hi:l L(m/27 i )whf
w4 Pe wAPe

for every o € Aut(C). Here w is a certain positive integer depending on F.

6.2. We shall prove Conjecture 6.1 for imaginary quadratic fields in more precise form.
The proof will be completed in §6.4. In this section, we shall treat the simplest case.
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Let K be an imaginary quadratic field with discriminat —d. Let x be the Dirichlet
character which corresponds to the quadratic extension K/Q. Let h be the class number
of K and w be the number of roots of unity contained in K. By (2.11) and (4:2), we have

(6.7) P = exp( L,((O X)) y H T( )wx(a)/zh

Let A be a Gossencharacter of conductor §f of K which satisfies
aP
(@)= (20, a=1 mod
o
For an integer m such that m — k € 2Z and —k < m < k, Conjecture 6.1 states

{(L(m/2a A))lzhf}a — (L(m/27 )‘a))Ith
am/2 Pk/2 am/2 pk/2

for every o € Aut(C). (We take w = 12.)
We assume that k is an even integer greater than 2. Let

Eix(z) = 2mi)™ > (cz+d)7*
(c.d)/~

be the Eisenstein series of weight k with respect to SL(2,Z). Here > (c,d)/~ has the same
meaning as in §4. Let a = Zw; @ Zw; be a fractional ideal of K. If S(w; /wg) > 0, we have

wy w N —
En(=2) = = - 2mi)rwy® 3 (S )kN(a) k2
wp” 2 |al
(a)Ca
by a direct computation. Let ¢;, ¢z, -+, cp be the ideal classes of K. For every i, we

choose a fractional ideal a; in the class c; so that a; = Zw ; ® Zw, ;, S(w1,i/w2,i) > 0. We

have
> Ma)N(a)™ = N(a;)*Ma:)™ Y M(a))N

! a:integral (a)Ca;

GGC,-

We further assume that the conductor of A is (1). Then, by (6.9), we get

S A@N@)T = N(@)2A() N (5) 7 i) e By (),

—-1 . 2,3
a€c; " ,azintegral

Therefore we obtain

h
(6.10) L(§> A) = % (2mi)* Y )\(ai)—lN(ai)k/zwz‘,fEk(glﬁ).

i1 2,2
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Let Sx(SL(2,Z)) be the space of holomorphic modular cusp forms of weight k£ with respect
to SL(2,Z). Let f € Sk(SL(2,Z)). For a lattice L in C, we choose w;, wz so that
L = Zw; ® Zw,, (w; /wz) > 0 and put

F(L) = F(= )z,

wa
We can easily verify that this is well defined and that
flal) =a*f(L), ae€C™.
Let

00
7](2) — g2miz/24 H(l _ eZﬂ"l:’n,Z)
n=1

be the familiar n-function. Put f = 7?* € Sg(SL(2,Z)). Then the exact Chowla-Selberg
formula gives (cf. Weil [W1], p. 92)

h
(6.11) H N(a;)2|f(a)]? = (2m)~12h P12k,

Now we further assume that k = 24h. By (6.10) and (6.11), we obtain

__L_(}ZM _ g ) E?:l A(ai)ﬁlN(“i)lzhw{j‘*hEmh(wl,i/wz,i)

(2m)12h P12k o H?:l N(a;)'2|f(a)]? .
We put

h -1 NL2R (.
(6.12) g= By, Q= 2z Mo N(@) Po(ar)
ITiz; N(ai)t? f(ai)?
Then we have
L(12h,)\) 12 2 i f(ai)
o Lo 2o 11
=1 ?

We are going to determine the action of Aut(C) on @ using Proposition 6.36 of Shimura
[Sh1]. Let G = GL(2) regarded as an algebraic group defined over Q. Set

Gq+ = {9 € Gq | det g > 0},  Gay ={g€Gal(detg)e >0}

Let Ok be the ring of integers of K. We choose w so that Ox = Zw & Z, S(w) > 0. We
put

W4 _ a; bz w L a; bz
614 ()= (20 () == d)
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Then we have a; € Gq+, N(a;) = det ;. We define an algebra homomorphism ¢ of K
into M(2,Q) by

(6.15) g(a) (‘i’) — (“;") | ac K.

Clearly we have ¢(K*) C Gq+, ¢(Or) C M(2,Z). We extend q to the homomorphism

from K, to G4+ and denote it by the same letter q. Let o = (z 3) € GL(2,R),

det a > 0. For z € §), we put j(a,2) = cz +d. For a function h on §) and an integer k, we
put (h|[a]x)(2) = (det a)*/?h(a(2))j(a, 2)~*. We put

fi = fllaiiz, gi = gl[ai]24n-

Then we have
N(a;)°f(a;) = flw),  N(a)*"f(a;) = fiw).

Hence we obtain

Sina Ma) T gi(w)
ITis fi(w)?

We may and shall assume that a; are integral ideals. Let N be the least common multiple
of N(a;), 1 <1i < h. Let Cy be the maximal ray class field modulo N of K. The we have

(6.17) % fg("u(;)"z)h € Cn

(6.16) | Q=

by [Sh1], Prop. 6.36. (Note that f(z) does not vanish on §).) Let o = (CNB/K) where b

is a fractional ideal of K such that (b, N) = 1. We can determine the images of quantities
in (6.17) in the following way. Let

b~! = Zw] ® Zw), S(wy /ws) > 0.

e (1)=(24)

Choose s € K so that sOx = b, g(s), =1forallp| N, and put t = g(s7)¢ € G4y. We
can find v; € SL(2,Z) so that Z2a;t = Z%a;7;. Put m; = ¢!, Then we have

fi(w)
f(w)
Therefore we obtain ‘ 7
o) e s | T Si()”
M, w2 TN, )2~ Fniw))?

Take £ € Gq+ so that

o i), 9@) v gmw)
) _(f('rh(w))), (f(w)Zh) _(f(nz(w))Zh), 1_<_ Sh

(6.18)  (
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By definition, we have
Fi(w)) = F(E7H(w))i(vi € Hw))Y,
gi(ni(w)) = (det ai)mhg(o‘i"?i(w))j(ai,‘Wi(w))_%ha
Fi(mi(w)) = (det 0:)° f (aimi(w))s (e, mi(w)) ™
j(aiy mi(w))i (i, € Hw)) = j(aimi,w)i (€71 w) ™
Take a; € Kjf so that a; = a;O k. Then we have
Z2oin; = Zloy€ ! = Z2aiq(3_1) = qu(ais"l).

Hence we see that a;; (T) gives a basis of the ideal a;b~!. Then we have

Flami(w))i(eim, w) 2 = fa;b™),  g(aini(w))j(oum,w) 2" = g(a;b71).
Therefore we obtain

N(a;)?"g(a;) o = N(a;)*?"g(a;671) L<i<h
[Ty N(a)2f(a)?” [l N(a)2f(aib-1)2’ = 7

Since 0| K = id, we see easily that (6.20) holds without assuming that g; are integral ideals.
Since the right hand side is invariant when we replace b by (a)b, a € K*, we see that

N(a;)?"g(a;)
I, V()2 (a;)?

(6.20) (

H
and that (6.20) holds for ¢ = (#) for any fractional ideal b. Here H denotes the
Hilbert class field of K. By (6.16), we obtain

g = iz Man(0:) 7 N (@) g(asb ™)
(6.21) ITiey N(a:)'2 f(asb=1)?
o € Aut(C) such that o|H = (

H/K
—).

Going back to the previous situation, we assume that a; are integral ideals and let 0 =
Cn/K
( N/ ). By (6.18), we get

(H@— f,(w) ) = Hz— fi(ni(w))
fw)* [Ty f(mi(w))

_ [Ty N(@)® floami(@))iesy (@)™ | Tlicy V(@) f(asb™)
FEH @) T i et @) FEH @) W)
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Therefore we obtain

iy fi()yo _ Iicy N(@:)°f(asb™)
(6:22) P A ) CR
h
Similarly to the above, we see that (M)“ € H and that (6.22) holds for o =
fw)*
(H/ ) for any fractional ideal b. We have pop = i) Hence, by (6.22), we get
(6 23) (Hi:l fz(W) )a’ Hz_ N(a )Gf(a’l(bp) 1)
. ——h
f(w) QR

Since f(—2) = f(z) and (b?)™! = Z(—}) @ Z@y, we have f((b?)~1) = f(b~1). We see
easily that f(w) € R. Hence, by (6.22) and (6.23), we have
h -
(6.24) M 1@y, ey fe7)
it F(00)" Tlimy F(ai(62)71)
Combining (6.13), (6.21) and (6.24), we obtain
L2k 1o ion, 2 Ry N (@) N @) Pg(ab ™) ITicy f(aib7)
iz w I N e T f@) )
Put o} = a;b7%, af = a;(b?)™", 1 <i < h. The the right hand side of (6.25) is equal to
gizn, 2 N7(0) 7S, M (@) N () (e | Tl F(eD)
w [Ty N(ap) 21 (a)P o)
By (6.13), we obtain

(6.25) (=5 ==

L(12h, ) 12h, A° . T, 7(ad)
(szhplzfz)a = —mmpin 7r(12hp12h)) ¢=2x7(b)™" x IILIIT:%—EC"—TI_‘))“

We have d, = a/b’b~!. For every i, we can find j(i) so that a}/b?b~" = a7, (ps), pi € K.
Then i — j(i) gives a permutation on h letters. We have

iy 7D _ 17 12

Mo e - LA
Let b" = (u), p € K*. Then we have (b*b™1)"* = (i/p) and 1o, 57 = (3/p)'2. Then
we obtain
(6.27) ¢=X(b)" (B/w)'?, B =(w).

We have

= X7 (u) M (/)" = (B/ |12 (B ) =
Thus we have shown the following Proposition.
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Proposition 6.2. Let A be a Gréssencharacter of K of conductor (1) which satisfies
o \aan
M(@) = (20 ae K*.
o
H/K
b

L(12h, ), L(12h,X%) . .
('7r12hP12h.) =(- (W) with ¢"=1.

Then, for ¢ € Aut(C) such that o|H = ), we have

We have ¢ = A7(b)~(f/p)*? if b" = (n).

6.3. Proposition 6.2 solves Conjecture 6.1 for imaginary quadratic fields only for a very
special case. Though general case can be shown in similar way, we shall derive it from
considerations on motives. Since Blasius [B] showed that critical values of L-functions
attached to Grossencharacters of Ap-type behave according to Deligne’s conjecture, there
is no harm to deal the problem in this way.

Let K be a CM-field and E be an algebraic number field. Let M be a motive over K with
coefficients in E. We assume that M is of rank 1, i.e., Hpr(M) is a free E ®q K-module
of rank 1. Let

I* : Hij(Rk/q(M)) ®q C = H g(Ri/q(M)) ®q C

be the canonical isomorphism as F ®q C-modules. We assume that Hp r(M) is not a free
E ®q K-module. We know (cf. [Y], §2.3) that Hf,o(M) & pH (M) is a free E ®@q K-
module. For every 7 € J%, we have

I (Hep(M)® Hyr (M)t ®q C 2 (Hf (M) ® pH p(M)) ®k,- C

as E ®q C-modules. Fix a basis of Hj;n(M) ® pHY r(M) as a free E ®q K-module of
rank 1. The covariantly defined 7-period ¢} (M) is defined as the determinant of I} with
respect to this basis and a basis of (H, (M) ® H,, p(M))* as an E-module. We shall
show

(6.28) ¢t(RgjqM)) = (10 DY?) [ ¢f(M)  mod EX,
TE€JY

where F' is the maximal real subfield of K and Dp is the discriminant of F. Put V =
HBR(M). We may identify V as a direct factor of E ®q K. Let E ®q K = A; © As,
A; 2V as E ®q K-modules. Let €; and €; be the idempotents corresponding to A; and
A,. Let v be a generator of £ ®q K. Let wy, ws, ---, w, be a basis of F over Q, where
n = [F : Q. Then ‘

(1Quw)ev, (1Qw)ev, - ,(l®wy)ev
give a basis of V as an E-module. In (V & pV) ®k,r C, we have (1 ® w;)v = v @ w]. Since
det(w] )1 <icn ress. = D, we obtain (6.28).
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Now let N be a motive over K with coefficients in . We assume that N is of rank 1.
We shall determine ¢t (Rg/q(M ® N)). We pose an assumption

(6.29) F~(M®N)=F(M)®N.
For 7 € Jk, let
I, :H.p(M)®q C =2 Hpr(M)®k,+ C, Jr:H.B(N)®qC = Hpr(N)®k,C

be the canonical isomorphisms as £ ®q C-modules. Let t and u be generators of H, B(M)
and H, p(N) as E-modules respectively. Let v; and vy be generators of Hpr(M ) and
pHpr(M) as free E ®q K-modules respectively. We may put

(6.30) L(t) = Proy,  Lo(Fs,t) = Pos

where P,, P, € E ®q C and P; is obtained by letting the complex conjugation act on
the second argument of E ®q C. Since we take a basis vy, we may identify Hpg(M) with
E ®q K. Let € be the idempotent of E ®q K such that

F~(M) = (E ®q K)esv1.

Then we have
pF#(M)‘——‘-(E@Q K)Cl’vz, 61:1—62.

Hence we get

(6.31)  (Prv1, Prvg) = cF (M) (€1v1 + €202) mod‘(E ®qQ C)eav1 + (E ®q C)eyvs.
Let w be a generator of Hpr(N) as a free E ®q K-module. We have

(6.32) Jr(u) = ¢rw, Jor(Foo,u) = Grw

with ¢,, - € E ®q C, and

(6.33) 03 = 6:(N).

Now we have

(I ® I )(t ®u), ((IpT ® JPT)(Fooft ® Foo,u) |
= ¢f (M)gr(e101 ® w) + ¢ (M)Fr(e202 ® w)
mod (E ®q C)(e2v1 @ w) + (E ®q C)(e1v2 @ w).

Let €; » be the image of ¢; in F ®q C = (E®q K ®K;T C). By the above formula and
(6.29), we get .

(6.34) ¢H(M ® N) = et (M)(grésr + Grearr).
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Using (6.28), we obtain

(6.35) ct(Rr/qM @ N)) = ( [ (¢re1.r + Grear))ct (Ri/q(M)).
TE€EJY

Let us consider ¢t (Rg/q(M®')). Assume that
(6.36) F~(M®Y) = egHpp(M®).
Then we find easily that

(Prvy)® = cf (M)'e v® mod (E ®q C)exv®',

(P,v)® = ¢ (M)'eyv® mod (E ®q C)e;vd'.

Hence we obtain
(6.37) cF(M®) = (M),
(6.38) ct(Ri/q(M®)) = ¢t (Rk/q(M))'(1 ® D*) =Y.
We also have

(M) — e2)e1v1 = Pry mod (E ®q C)evy,

¢ (M)(e1 — €)eav; = —Prvg mod (E ®q C)eyvs.
Assume
(6.39) F~(M) = FT(M).
Then we obtain
(6.40) c; (M) = cH(M)(er,r - €2,0),
(6.41) ¢ (Brjq() = T[ (1 - car)e (Racjq(M)).

TEJY

6.4. Let K be an imaginary quadratic field. Let A be a Grossencharacter of conductor § of

K which satisfies )
a—)k, a=1 mod *f.

A(@)) =

We put Ao(a) = A(a)N(a)*/2 for an integral ideal a of K. Then )¢ is a Grdssencharacter
of conductor § of K such that

o]

Xo((@) = (a)F, a=1 mod *f.
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We have L(s,A) = L(s + g,)\o). Let E be the algebraic number field generated by the

values of )\g. There exists a motive of rank 1 M(Ag) over K with coefficients in E such
that L(s, M(Xo)) = (L(s,A3))sess- By Deligne’s conjecture proved by Blasius [B] in this
case, we have »

(6.42) L(m, M(Xo)) = ¢" (Ri/q(M(Xo) ® T(m))) mod E*

for m € Z, 1 < m < k where T(m) denotes the Tate motive. In the notation of (6.32),
(6.33), we have ¢, = 1 ® (2my/—1)™ for every 7 taking N = T(m). If m is even, we have

(6.43a) c*(Rkjq(M () ® T(m))) = ¢t (Rx/q(M(X0)))(1 ® (2rv-1)"),
by (6.28) and (6.34). If m is odd, we have
(6.43b) ¢t (R /q(M(X) ® T(m))) = ¢ (Ri/q(M(X0)))(1 ® 27v-1)™),

by (6.28), (6.35) and (6.41).
We are going to determine idempotents €; and €;. First we note that E ») K Hence

1
E®q K = A1 @ Az, where A;, i = 1, 2 are fields. We see that 5(1 ®1+= \/ d® v—d)
give the idempotents in £ ®q K. We have

E®q K = BX]/(X* +d) = B[X]/(X — V=) ® BX]/(X + V=) 2 E® F.

We may assume that A, = E[X]/(X — v—d), A, = E[X]/(X + v/—d). The projection
from E[X]/(X? + d) to A; is obtained by sending X to v/—d. The structure function ¢ of
A; is given by p(g) = 1 if g|K =1id, ¢(g) = 0 if g| K = p, We also see easily that

A = %(1 ®1- ;]j'l-\/—_d@a V—d)(E ®q K).

Let F™(M()o)) be the Hodge filtration of Hpr(M(Xg)). We have F™(M (X)) = {0} if
m > k. For 1 < m <k, let 1,, be the structure function of F(M()\o)). Then we have

e(g)=1 if glK=p, (g)=0 if g|K=
Hence we have F™(M (X)) = Az for 1 <m < k. Put

1 1 1 1
:-2—(1®1——Jv—d®v—d), 622—2—(1®1+Ev—d®\/—d)

For o € Aut(C), we understand that A’ is defined by A?(a) = (Ao(a))? N(a)¥/2. We put

L(m/2, X - L(m/2,X°
/ k)—m)/Z) = (A 0,m) l (k—)—m)/Z’
,n-m/ZPk/z\/E( Wm/ZPk/Zﬂ

when L(m/2,\) # 0. We note that L(m/2, ) # 0 is equivalent to L(m/2,?) # 0 if m/2
is critical, by (6.42) for example.

(6.44)  (

o € Aut(C)
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Lemma 6.3. Assume L(m/2,)\) # 0. Then form’ € Z, m' = k mod 2, —k < m' <k,
we have

L(m'[2,X) - L(m'[2,X7)
W(m,—m)/z\/g(ml—m)/ZL(m/2, )\) W(m/_m)/zﬂ(m’_m)/ZL(m/z’ )\a)
for 0 € Aut(C) such that o|K = id.

Proof. Assume m = m' mod 4. By (6.43a, b), we have

ct(Ri/q(M(Xo)) ® T((k +m')/2))
cH(Rg/Q(M (X)) ® T((k +m)/2))

=1@ (2ry/—1)"~™/2  mod EX.

By (6.42), the assertion follows. Next assume 4 { m —m’. Then we have

c* (Ri/q(M (X)) ® T((k +m')/2))
ctH(Ri/Q(M(X)) @ T((k +m)/2))

= —%(\/——d@) Vi) (1 ® 2rV/=1)"™ ™2 = (V=d @ x™ ~™/2y/d)  mod E*.

= (e1,r —€2,7)(1® (2my/—1)(m —m™)/2)

The o-component of (v—d ® Vd)(1® (™' =m)/2) in E ®q C = (C)yesy does not depend
on ¢ if o|K = id. Hence the assertions follows from (6.42). This completes the proof.

Corollary 6.4. If L(m/2,)) # 0, then (6.44) holds for m' with {(X,a,m") = {(A,0,m)
for 0 € Aut(C) such that o|K = id.

Lemma 6.5. Assume L(m/2,)) # 0. Let x be a character of the ideal class group modulo
' of K. Then we have

(L(m/2, A®X) ) = (o) L(m/2,2° ® x°)
L(m/2,\) - L(m/2,)°)

for o € Aut(C) such that o|K = id. Here we identify x as the character of Gal(Q/K) and
put x’(0) = x7(a|Q)-
Proof. There exists a finite abelian extension L of K such that x factors through

Gal(K/K) — Gal(L/K). Enlarging E if necessary, we may assume that x takes values
in E. Let M(x) be the motive over K with coefficients in E attached to x. We have

H,p(M(x))=EB, Hpr(M(x))=(E®qQ) ¥/,

Here Gal(Q/K) acts on F by x and acts on Q as the Galois group. We have

(E ®q Q)% Q/K) = (E ®q L)%L/K). Put G = Gal(L/K). We can find an w € L so
that - . x(#) ® p(w) # 0 and that this element gives a generator of Hpr(M(x)) as a
free E ®q K-module of rank 1. Taking N = M(x), ¢, defined in §6.3 is given by

qr = Zx(u)®m(w) € F®qC, T € Jk.
neG
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Here we use the same letter 7 for its extension to Aut(C); ¢ mod E* does not depend
on this extension.
By (6.34), we have

et (M(X) ® T(m) ® M(x)) = ¢f (M(Xo) @ T(m))
% {3 X ® () x 5181 - 2v=d© Vi)

neG

+ Y x(w) ® pu(w) X %(1 ®1+ %\/"_d‘g’ Vdi)},

pneG

for 7 = id. For o € Jg, 0|K = id, the g-component of ¢ré, - is

() - ) x 51— VAT X VI = xX7(0) T X7 (Won(w).

HEG ; nEG

We see that the o-component of g €z, is 0. Hence the assertion follows. (We should take
the inverse of x?(0).)

Corollary 6.6. If L(m/2,\) # 0, then (6.44) holds for A @ x with C()\ ® x,0,m) =
x% ()" ¢(X, 0,m) for o € Aut(C) such that o|K =

Lemma 6.7. Assume L(m/2,)) # 0. Let | be a positive integer. Then we have

L(lm/2,\Y),,  L(Im/2,(X")")
(L(m/2,)\)l) T L(m/2,x0)

for ¢ € Aut(C) such that g|K =

Proof. We have (M(X\)®T(m))® = M(A))®T(m). Now the assertion follows from (6.38)
and (6.42).

Corollary 6.8. If L(m/2,)) ;é 0 then (6.44) holds for X! W1th C()\l ‘0‘ lm) (A,a,’m)l |
for o € Aut(C) such that o|K =
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