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§0. Introduction.
et @ be an exterior domain in R3 with compact smooth boundary
d0. The motion of a compressible viscous and heat-conductive fluid

is described by the following system

Py * (v-V)p + prdivy = 0 in [0,») X Q,
. _ M, mu’ . _ VP(p,0) . -
vy ot (v*V)y = o Av + 5 v{divy) b in [0,©) X Q,
(0.1) Gt + (v-v)8 + XY cdivv = BTEAG + e in [0,») X Q,
V'aQ=VIm=O' 6I8Q=e|®=e on [0,‘”) er,
(p,v,0)(0,x) = (pO,VO,GO)(x) in Q,
where p is the density, v = (vl,vz,vs) the velocity, 8 the absolute

temperature, P = P(p,0) the pressure, u and u’ the viscosity
coefficients, k the coefficient of the heat conduction, ¢ the heat
capacity at constant volume and Y is the dissipation function:
' 2 s 2
Y 2(8kv3+8jvk) + U (akvj) .
In this lecture we consider the following linearized equations

for the system (0.1), i.e.,

pt + ydivy = fl in [0,») X @,
Ve T XAV - BV(divy) + YVp + VO = f2 in [0,») X Q,
(0.2) Gt - kA + odivy = f3 in [0,») X Q,

Y|8Q=V|m= 0, 9!8Q=9!w= 0] on [O,m) XSQ,
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(p,v,0)(0,x) = (po,vo.eo)(X) in Q,
where o, ¥, Kk, w are positive numbers and B is a nonnegative number.
Our main results are the following. Let 1 < q < «», m be an
integer and Wg(Q) = {WI;(Q)}3 be the usal Sobolev space. Set

X0(Q) = (T

m+1 am m 0
; EW DWW (AW (D)}, X () = X7(Q),
u; u q (Q) q( ) q( )} q( ) q( )
where Tm means the transposed mu. Define the 5 x 5 matrix operator #

by the relation:

0 rvdiv 0
(0.3) | A= |yvy -oA-Bvdiv oev],
0 odiv -KA

with the domain:
2(4) = {(Tu; w = {p,v,0} € wé(Q)xWi(Q)xwi(Q),

= 0, = 0 on 30}.

"lag laq
Let P be the projection from 2(4) into {T{v,e}; {v,0} € Wi(ﬂ)xWi(Q),
vIaQ = 0, QlaQ =0 oh 3Q} and p(-4) be the resolvent set of the
operator -4. Then

Theorem A. Let 1 < g < » and m be an integer > 0. Then -4 is a

closed lineaf operator in Xq(Q) and
(0.4) p(-4) > X = {x € C; CRex + (Im)? > o},
where C is a cons%ant depending only on «, 8, Y, k and w. Moreover,
the following properties are valid: There exist positive constants x

0
and § < i such that

2
-1 -1
EX T (X+4) f"X?(Q) + [IP(x+4) f"2+m,q,Q < C(Ao,é,m)ﬂfﬂxg(g)
for any x - X0 € 26 = {1 € C; largax]l € n - &} and any f € XE(Q).
Theorem A means that -A generates an analytic semigroup e—t& on

Xq(Q). Then setting

(0.5) Xq p(®) = {u € X (@); u(x) = 0 for x e RS \ By},
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we have

Theorem B. (local energy decay) Let 1 < q < =« and let b0 be a

fixed number such that Bb o) R3 N\ Q. Suppose that b > bO and Qb = 0N
0
Bb' Then for'w € C;(Qb) such that I @(x)dx = 1 and u = T{p,v,e} €
2,
Xq b(Q), we have the following representation
(0.6) ey = T (b0, )u + Ty(b,0,t)u
where ej (j = 1,2, ---,5) are unit row vectors, N u I p(x)dx and
-t
T.(b,p,t)u = e {u - (N5 mu)-pe.},
1 Qb 1
Fz(b,w,t)m = (NQ m){¢°e1—f e “|velds}.
b 0 0

Moreover, the following estimates are valid: for M = 0 integer, u €

Xq,b(Q) and t > 0

M M
(0.7) uatvl(b,w,t)unxq(gb) + 1Y (buoutauly 4 o
< C(q,b,¢,M)t‘3/2‘MumuX ()
q
M+l M+1
(0.8) 18T, (b, . t) NERI X Tz(b,w,t)ﬂz’q’Qb
< C(q,b.¢,M)t‘3/2'Muqu Q)
q

System (0.2) was given by Matsumura and Nisida [12] and Ponce

[17]. They seek solutions for the system (0.1) in a neighborhood of a

constant state (p,v,0) = (50,0,50) where BO’ 6, are positive
constants under the following assumptions:

(1) p, u’ are constants p > 0 and 2“ + u’ 2 0.
(2) ¢, k are positive constants.
(3) P is a known function of p, 8, smooth in a neighborhood of
9P 3P
(pO,B ) where 5p’ 90 > 0.

Note that the assumption (1) is stronger than ours because they
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also study the Neumann boundary condition.

In equations (0.1), put &« = &, g = “:“’, Y = {ap(po,a )}1/2 K
| Po o
= —E— and put o = %_.Q%( 6 ){9 /C}l/z. Then using the notation
©Po Po |
(p,v,8) for the vector (i {Sp( O,Eb)}l/ {E—}l/ze) and separating
-~ Po , 0

the linear part of the equations (0.1) becomes the equations (0.2);
The existence theorems of unique solution local in time for the
system (C.1) are obtained by Nash [15], Itaya [7,8] for the’initial
value problem, and by Tani [20] for the initial boundary value
problem. On the other hand the existénce theorem{of global sélution
in time for the system (0.1).are obtained by Matsumura and Nishida
[12,13], Ponce [17] for the initial problem, and by Matsumura and

Nishida [14] for the initial boundary value problem in L.,-framework

2
for sufficiently small initial data. In addition Matumura and Nishida
[14] show that this solution approaches the stationary state as t -
o, and aiso Deckelnick [3,4] gives explicit estimates for the decay
rate. Concerning the linearized equations (0.2), Matsumura and
Nishida [12] give the spectral analysis and energy estimates of
solutions in Lz—sense and Ponce [17] the Lp~Lq estimates for
solutions in R3,'respectively.

In this note, we shall continue to study linearlized equations
(0.2) in order to obtain the Lq¥theory for the system (0.1). We shall
show that the operator defined on this system generates analytic
semigroup although the system (0.2) is hyperbolic-parabolic type. In

particular, the resolvent set of this operator contains a parabolic

region. We shall also show the local energy decay of solutions for
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the system (0.2). The local energy decay plays an important role in
obtaining the solutions of nonlinear problems, in particular, Lp—Lq
estimates of solutions. For instance, Iwashita [9] for Navier-Stokes
equations, Kobayashi and Shibata [11] for Oseen equations, Iwashita
and Shibata [10] and Shibata [19] for elastic and wave equations,
they prove the existence of solutions for nonlinear problems by using
this methods.
§1. Stationary problem in a bounded domain

In this section we conéider the stationary problem in a bounded

domain D in R3 with smooth boundary aD;

(1.1a) xp + yedivy = fl in D,
(1.1b) AV - oAV - Bv(divy) + y-Vp + -V = f2 in D,
(1.1c) 28 - xAQ + o-divyv = f3 in D,
(1.14d) vl8D =0 on 3D,
(1.1le) elaD =0 on a9D.

here A is a complex parameter. Our goal of this section is to show
the following theorem concerning a unique existence of solutions to

(1.1). Let 1 < q < », m be an integer and let

m _ T m . = = Y
YD) = (Tf,, 0, f5) € XD(D); fol(x>dx 0}, Yo (D) = X2(D),

where Xﬂ(D) is the same symbol as in (0.7). Set AD be the maximal
restriction to closed subspace Yq(D). Applying this notation to

(1.1), we have (A+AD)M = f in Yq(D) where u = T{p,v,e} and f =

T

{fl,f Then

9 f3}.

Theorem 1.1. Let 1 < q < », m be a nonnegative integer. Then AD

is a closed linear operator in Yq(D) and

p(—AD) o> {0} U X’
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where 2’ = {x € C; 6(Y2+m2)Re1 + oz(ImA)2 > 0}. Moreover, the
following properties are valid: There exists a number 0 < & < % such
that

-1 -1
X (a+dp) f”Yg(D) + P (x+4p) f"m+2,q.D < C(q,m,3,D) Ifllym

D

m
5 U {0} and any f € Yq(Q).

To prove this theorem we shall use the following properties.

First proposition is concerned the existence theorem of solutions
to the Stokes equations.

Proposition 1.2. ([2]) Let 1 < g < =, 0 < § < g, m be an integer

> 0. Then for every f € WE(D) and every g € W$+1(D) with I g(x)dx = 0
D
there exists a unique u € W2+2(D) which together with some p €

W2+1(D) satisfying

= f, divu = g in D,

u =0 on 38D.

Here p is unique up to an additive constant.

Furthermore, the
following estimate is valid:

(RI g

m,q,D

m+2,q,D + lopl < C{"f"m,q
C(D,q,g) is a constant.

D+HgM
where C =

9’

m+1,q,D

The next proposition is well-known as a general Poincare’s
inequality.

Proposition 1.3, (cf., eg.

[3]) Let 1 £ q < ». There exists a
constant C > 0 such that the inequality

hul o < C{Hvuuq,D+|IDu(x)Xm}.

holds for any u € Wé(D). Furthermore, if q # 1, D is bounded and if u

€ Wé(D) with u = 0 on 3D, then we have

Hqu’D < CHVqu,D.



176

The following proposition is concerned the existence theorem of
solutions to the elastic equations.

Proposition 1.3, Let 1 < q < », m be an integer 2 0. Let o be a
positive number, n be a complex number such that o + n # 0. Then

there exist positive numbers AO and 0 < 8§ < % satisfying the

following conditions: For every x - x, € X every f € Wﬁ(D) there

0
exists a unique u € W2+2(D) such that

6 ’

AU - aAu - nvdivu = f in D, ulaD = 0 on 9D.
Furthermore the following estimates is valid:
IllHuHm,q,D + "u”m+2,q,D < CHme’q’D,

where C = C(D,q,m,é,ko,a,n) is a constant.

Remark 1.4. In Theorem 1.1 when f £ dx # 0, taking ¢ € c;(D)
D
such that f p(x)dx = 1 and define the operators Nj = Wj(w,D) (j = 1,
D

2,3) from Xq(D) into itself by the notations:

Nlﬁ = f - (NDﬁ)~e1
0
_ _ T
(1.2) sz = (NDﬁ)[gw] for f = {fl'fz’fg} € Xq(D),

N3f = (NDf)w-el
where NDf is the same symbol as in Theorem B. Then we can write

(x+&)_l as follows:

1

(1.3) (ed)™h = (rag Tt

1 -1 1
N, + $(a+hp) N, + N,

which implies that -A is a closed linear operator in Xq(D), p(-4) o

2’ and the following properties are valid:

lxl"(x+ﬁ)—lfnxm(D) « 1P (a+d) L
q

m+2,q,D

e }

1
< C(&,m,D){NTI + 1"q,D

Xq(D) x|

for any A € 26 and any € XQ(D). Also note that this estimate holds
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even if D is an exterior domain because usual ellptic estimates hold.
§2. On the stationary problem in R3 |

In this section, we shall show the basic estimations of
solutions to the following stationary linearized equations in R3 with
a complex parameter A

xXp + y-divv = f

1
(2.1) AV - xAv - Bv(divv) + y-vp +'m-V9 = f2 in R3,
X8 - kAB + o+divv = f3.
By taking Fourier transform on (2.1) we obtain
[x-I+Bc2)1e = £,
where I is the identity, #(f) = ? stand for the Fourier transforms

of f, w = T(p,v,e), f = T(fl,fz,fs), Here @(&) is 5 X 5 symmetric

matrix as follows:

0 iv%k 0
Ae) = |ive, 5. . clE124BE .2, iof,
j °jk ik J
: ' . 2
0 Lmﬁk Kl§|
where ( = /-1 and 5jk = 0 when k # j and = 1 when k = j. Then we have
(2.2a) [x-I+2(2)171 = {detlr-T+R(5)1) L E(ns2),
(2.2b) det[x-1+2(8)] = (+al212)2F(x;121),
where
(2.2¢) F(X;1E1) = x5+ (arB+i) 1212024 [ (a+B) k1812412402 121 20sv2k 1214,
and A(x;E) = (5ij(x;5)) is the 5 x 5 matrix and the components are
a, = ealg1 202 (b 12120 [2e (e Bk 1212] - 1212y
S 2.2, .2
\ N s . 2.2 2 .
(2.2d) 8y 5 7851 7 - rQealEl )T EI g (§ = 2.3.4),
. . . 2.2 o
dg ;=85 5= - denaralElH% (= 2,3,4),
Ao = (ral 21252024 (ar8) 121204921212y,

55
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ayy - (1+a|£|2){1(1+alﬁlz)(A+KI€I2)6ij

A N N I e S P ST bR
(i,j = 2,8,4).

From the spectral analysis of ﬁ(g) given by Matsumura and Nishida
[12] (cf. Ponce [17]) we have

Lemma 2.1. Let {Aj(ﬁ)}jil be the roots of det[x-1+ﬁ(%)] = 0,
where 14(§) = 15(5) = - al&lz. Then it follows that:
(i) Aj(i) depends on |&| only, AJ(O) = 0 and ReAj(i) < 0 for any I|£&|
>0, j=1,-++,5.
(ii) Aj(i) = Ak(ﬁ), j=#kand j, k =1, 2, 3, 4 for all || except at
most four points of &€l > 0.
(iii) There exist positive constants ry such that Aj(i) has a Taylor
series expansion for |£] < r; as follows: x,(§) = E;TET is a complex

1

number, 13(&) is a real number and

2 2 2
(8) = P Rgn RO RIe K . e
2(y"+07)
2 2 2 2 2 2 2
¥k . 2, Yo x " {(y"+0”) (a+B)-y7K} . 4
Yo+ (v"+u™)

Similarly, there exist positive constants r, > ry such that Aj(g) has

a Laurent series expansion for |&| > r, as follows: If o + B # x,

then Aj(i) are real numbers and

2 2 2
- Je2 . Yok o (et () L
A (8) = (B CLIED™ + ey @) :
2 »mz
xz(i) = xk({1EI)T - e SRREEREEREE ,
2
)\S(g) = - al.*.{? O A ) Ly

If ¢« + B = k, then Al(i) = Az(&) is a complex number, 13(5) is a real

number and

K(TEDZ & JR(EIEL) # +ovnnns :

S
—
~~
o0
A
I
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(iv) There exists a positive constants BO, Bl’ Bz and rl such that

- BOIE_I2 < ReAj(ﬁ) < - Bllﬁl2 for |&] < ry and Rexj(g) < - 62 for |&]|
> ry, j =1, 2, T, 5.
3 T 5
Now we set for f € Xq(R ), £ = {fj}j=1
(2.3) Ry (O F(x) = 71 {Ia-1+(8) 171 () ) (x)
5 5'
= {lZlR (A)fi(x)}j=1

where R; (1) = ?‘1{[1-1+ﬁ(g)]‘1§ij(x;g)?}. When f = T{fl,fz,fs} where

f

(f2 f3,f4) we shall»use the representation as follows:

, -
(2.4) Ry () (x) = "Ry (D), Ry COT(X) Ry g(F(x)},

0,p .
Then we shall have the following estimates of Ro(l)f which is the

core of our argument.

Theorem 2.2. Let 1 < q < », b be a positive number and Xq b(R3)

be the same symbol as in (0.5). Then for any f € Xq b(R3) any 1 € {1
€ C; Rex 20, 0 < |l £ 1}

H( ) R O +

X (Bb) "(dl) PR () 1

2,q,B,

< Cmax{1, a1 2 Ky, R3) >
q

where k are integers =2 0 and C = C(q,b,k) is a constant.
Finally in this section, we shall investigate the continuity as:
X =» 0 for the operator RO(A) and the properties for RO(O).

Lemma 2.4. Let 1 < q < » and b be a positive number and let [ €

3 T 1 3
Xq,b(R ). Then RO(O)E € wq,loc(R )x‘Wq 1o c(R )qu loc(R ) and
(2.5) lim R™S IRy (0)f1%x = 0.

Row R<|x|<2R
Moreover,
T
(2.8) IR, ()T - R (o)t 2 3, - 0
0 Wq 1OC(R )qu loc (R )qu loc(R )



180

as x » 0 and Rex > 0.
§3. Proof of Theorem A.

First note that by Lemma 2.1 (iii)

det[l+A?£)] # 0 for x € £ '’= {x € C; C Eex + (Imx) 2, 0}
where C lis a constant depending only on «, 8, ¥, ¥, and o. Combining
this with Theorem 1.1 we take the constant C in the parabolic region
zZ={x € C; ClReA + (Im,\)2 > 0} so that X c £’ n X’’. In view of
Remark 1.4, we only show (0.5). Now we shall construct parametrix to
(1.1) in Q. Let 9Q c BR , b be a fixed constant b > RO + 3 and let Q

0
. T 1 2 2
b Given 2 € X and g € Xq(Qb), let "w € Wq(Qb)qu(Qb)x“q(Qb)

b
= Q NB

be solutions to the problem:

(x+4)w

g in Qb’

Pw 0 on aQb.

The existence of such w is guaranteed by Remark 1.4. In terms of w,

let us define the operator L(x) by relations:

(3.1) W

L(x)g

{Lp(x)g,LV(x)g,Le(A)g}.
Here and hereafter, for [ € Xq(Q), we put ﬁo(x) = f(x) for x € Q and
= 0 for x € R3 N Q, ﬂbf stands for the restriction of f to Qb. By

Remark 1.4 and (3.1) we have

(3.2) NLCx)ym £ + IPL(x)m _fI
b Xq(Qb) b 2,q,Qb

< C(q,b,x)Ifll for any f € X (Q).
Xq(Q) q

Let RO(A), R () ’RO v(A) and RO 6(A) be the same symbol as in

0,p
(2.3) and (2.4). Since det[1+@(£)] # 0 whenever & € R3 and x € 2, by

Theorem 7.9.5 of [B8], we see that

(3.3) IR Folx (v * PRI Tolly g g3
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< C(qg,x)Ifl for any [ € Xq(Q)‘,

Xq(Q)
Let ¢ € Cm(R3) such that ¢(x) = 0 for Ix| < b - 2 and =1 for x| 2 b
- 1. We introduce the operator @1(1) by the relations:
T

{®1’p(x)f,01,v(x)ﬁ.®1’9(x)ﬁ}

QRO(A)(EO) + (1—w)L(A)"bf for any f € Xq(Q),

(3.4) @1(A)f

Then by (3.2) and (3.3) we have

T 1 2 2 .
(3.5) 0,0 € wq(Q)qu(Q)qu(Q) for any [ € X (2,
(3.86) "Ql(l)f"Xq(Q) + HP®1(A)EH2,q’Q

< C(q,l,b)NfHXq(Q) for any [ € Xq(Q),

and
(3.7a) (1+%)®1(1)f = f + Y()f in Q,
(3.7b) P@l(k)ﬁ = 0 on 99,
where V()T = T{Vp(x)f,V(A)f,V(A)ﬁ} and
(3.8a) Vp(k)ﬁ = Yv¢[R0,v(l)(fo)_Lv(l)nbf]ﬁ
(3.8b) VoI = - alae+2(9;0)9,1[R, () (Fy)-L, ()m ]

- 3V{9j¢[Ro,v(l)(fo)'Lv(*)"bf]j}
- BVw{diV[Ro’v(l)(fo)—Lv(A)nbf]}
+ yvcp[RO p(A)(ﬁO)—Lp(A)ﬂbﬁ]

+ m8j¢[RO’9(A)(fo)—Le(A)ﬂbf]j,

(3.8c) Ve(x)ﬁ - K[Am+28jw8j][Ro’e(l)(ﬁo)—Le(A)ﬂbﬁ]
+ 09j¢[RO’v(k)(fo)—Lv(A)ﬂbﬁ]j-
Our task is to prove that I + ¥(x) has the bounded inverse from Xq(Q)
onto itself. It follows from (3.2), (3.3) and (3.8) that TW(A) €
2 1 1 . . _
3(Xq(Q),Wq(Q)qu(Q)qu(Q)) for each x € ¥. Since supp¥(\)f c Dy_q =

{x € R3; b-2 < |x] < b-1}, by Rellich’s compactness theorem ¥(x) is a

compact operator from Xq(Q) onto itself. Thus by Fredholm's
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alternative theorem, it suffices to show that I + ¥(x) is injective
in Xq(Q) in order to prove that I + ¥(x) has the bounded inverse. Let
(I+¥(x))f = 0 in Q, f € Xq(Q). Then it follows from (3.5), (3.7) and
Ker{x+A} = 0 that

®l(k)ﬁ 0 in Q,

[}

P@l(x)f 0 on 9Q,

which together with (3.4) and implies that

(3.9a) RO(A)(ﬁO) 0 for Ix|l 2b -1,

(3.9b) l(k)ﬂbf 0 for Ix| £ b - 2.

Put z = ﬂbRO(A)(ﬁO) - w where w = l(l)nbf in Qb and 0 in R3 N Q. By

T

(3.9b) we know that "w € Wé(Bb)xW§(Bb)xW§(Bb) and
(x+h)w = ﬂgﬁo in B, Pw = 0 on Ix| = b,
where ﬂgﬁo stands for the restriction of fo to Bb’ and hence we see
that
(x+4)z = 0 in B, Pu = 0 on Ix| =D,
which with the help of Theorem 1.1 means that z = 0 in B, . As a

results, we have

(3.10) . RO(A)(WO) = LO)mf in Q.

Combining (3.4) and (3.10), we see that

(3.11) Ry (1) () = @{Ry (1) (F5)-L(A)IM ) + Ro(x) (fg)

®1(x)f = 0 in Qb.
It follows from (3.9) and (3.11) that RO(A)(fO) = 0 in Q, which

together with (2.1) implies that ﬁo = f = 0 in Q. Therefore, we have

1

prove that (I+¥(x)) has the bounded inverse (I+¥Y(x)) — from Xq(Q)

€, (0 (I+V (), by (3.7)

1]

onto itself. Given f € Xq(Q), if we put u

and (3.6) we see that (x+&)u = f in Xq(Q) and u € 2(4), which means

1

that the inverse (x+4) & of (x+4) exists, and it is bounded, that is
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by (3.6)
Ley + IP(x+d) L1

T (x+4) Xq(Q) 2,q.0

< C(q,b,x) I (I+¥(x)) I

Ly |
B(x (@) "X (@)

for any f € Xq(Q), which completes the proof.
§4. Behaviour of (A+A)—1 near 1 = 0

In this section we shall discuss behaviour of (A+&)—1 near x = 0.
Our goal 6f this section is to prove the following theorem. Set

Yo p(®) = {f € Y (®); f(x) = 0 for x € R3 ~ B}

" Theorem 4.1. Let 1 < q < =, b0 be a number such that Bb o R3 N
0

Q and let b > bO' Put D8 = {x € C; Rex 20, 0 < |al <&}, % =

v%(Yq b(Q);@(ﬁx)) and d(DS;@) is the set of all ¥-valued holomorphic
functions in D8' Then, there exists a positive number € and R(x) €
d(DS;W) such that R(x)f = (A+A)-lﬁ and

d \k d \k
”(EI) R(x) £l + 1) PR(A)E“Z,

Xq(Qb) q,Q

< C(q,b,k,e)max{1, ix

b

11/2-Ky gy kK = 0,1,2.

Xq(Q)’

for any x € D8 and f € Yq ().

,b
In Theorem 4.1, in view of proof of Remark 1.4, taking ¢ €

Cg(Qb) such that f ¥Y(x)dx = 1, we have the following corollary:
Q
b

Corollary 4.2. Let 1 < q < =, b, be a number such that B 5 RrS
0

N @ and let b > bO‘ Put 4 = 38(Xq b(Q);@(A)). Then, there exists a

positive number £ and R(x) € ﬁ(DS;%) such that R()f = (x+%)_1ﬁ and

d \k d \k
"(HI) R(A)ﬂ"xq(g + "(HI) PR(A)ﬁHZ’q,Qb

1/2-k -1
l }{anxq(g)+lx| 0. ot

b)
< C(q,b,k,g)max{1, |x

for k = 0, 1, 2, any x € D8 and [ = {fl,fz,f3} € Xq,bKQQ' Mprgover,
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R(2) = ROUN, + TROON, + 3N,
where Nj = Nj(w,Qb) j =1, 2, 38, are the same symbols as in (1.2).

To prove Theorem 4.1, in the same way to the proof of Theorem A
we shall construct a parametrix near x = 0. The key in our argument
is the following proposition concerning the uniqueness, which was
proved by Iwashita [9].

Proposition 4.3. Let ; < q < » and let WE,E(Q) = {u; there
exists a U € wg,loc(Rs) suéh that u = U in Q}. Suppose that u €
Wé’E(Q)x Wi,E(Q)xwg,E(Q) satisfies the homogeneous equation:

Au = 0 in Q, Pu = 0 in 9Q
and satisfies

1im 1_ Im(x)lqu = 0.

R-w R3 R<Ix|<2R
Then p = 0, v = 0 and 8 = 0 in Q.

§5. Proof of Theorem B

In this section, we shall prove Theorem B. To do this we prepare
the following lemma, which was proved by Shibata. (see Theorem 3.2
and 3.7 of [18])

Lemma 5.1. Let X be a Banach space with norm |- | Let f(t) be a

X"
function of Cm(R—{O};X) such that f(t) = 0, |tl =2 a with some a > 0.
Assume that there exists a constant C(f) depending on f such that
for any 0 < |tl £ a,

-1/2-k

ko1, < e el kK =0, 1.

Put g(t) = j f(r)e—ittdr. Then

18(t) 1, < c(1+t) M Zen).
Now we shall prove Theorem B. In view of the facts that when 0 <

< 1 by Theorem A we have
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-th M -th

uafe + 1PaYe” Myl

ully, (¢
X () 2,q,Q:

M+N Ft& -N-M

< Cl(1+4) MHX (Q) < Ct " ul
q

X (§)-
q( )
for any u € Xq(Q) and any integers N > 1, M > 0, we only to show the

case t =2 1. Note that by Corollary 7.5 of [186, Chapter 1] we can

write
: B+ (oo
(5.1) e_t&m = zl.f tl(A+zﬁ) Luax
A B £
B+ (o
_ 1 txd -1
B—tw
for all mu € Q(Az), because
d -1 C(8)
(5.2) HEI(A+ﬁ) 'M"Xq(Q) < I:T:TEHMHX (Q) for any Rex > 8

by Theorem A. Since Q(Az) is dense in Xq(Q), the equation (5.1) holds

i X .

in q(Q) |
First we shall consider the case u € Yq b(Q). Let b > bO and let

¥ € CS(R3) such that y¥(x) =1 for Ix] < b and = 0 for Ix| > b + 1.

Since we can move the path in the following integral to the imaginary

axis by Theorem 4.1, (5.1) and (5.2), we have

B+
o, -tk 2
o%we Ty = I X{f ¥d- (e d) THuda)
_ tts,d o, -1
= 2nt X{f wds(Ls+A) nds}
for any u € Yq,b(Q) and multi-index o = (al,az,a3): az = (az’l,az,z,
a2,3), oy <1, Iazl < 2 and gy < 2. Taking n(s) € C (R) so that n(s)
=1 for |s|l £ 1/4 and = 0 for Is| = 1/2 we have
o, —-tA
(5.3) 8X¢e n = Jo(t)m + ﬂl(t)u
where

Iyt = o X(wf e‘*n(s)3-(is+s) tuas),
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J_(t)u = E%Eag(wf_me‘ts(l-n(s))%g(zs+&)"1mds).

By Theorem A we have

o d \N, . -1
(5.4) Hax(l—n(s))(ag) (is+h) MHq’Q
. -N-1 . . ay~-N-1
< (1—n(s)){“(ls+A) MIIXq(Q)""P(IS‘*A) ‘ M"Z,Q,Q}
-N
< C(N)(1+1Isl) "”"Xq(Q)’
and hence by the relation %-%Ietl = etl, we have
M -N
(5.5) Hatﬁw(t)mﬂq,Q < C(N,M,x)t "M"Xq(Q)
for any integers N > 2, M > 0. On the other hand, notingAthat
M o
M 1 MY \M-n_,-1.c, ist . ynd .
atjo(t)ﬁ = Eﬁnfo(njat t ax{wf_me n(s)(is) agﬁ(zs)ﬁds}
M ©
.- (M+1) o ist,d \n . ynd .
-t nfoc(n)ax{wf_me ™ n(s) (15)"FR(25) Thds),

it follows from Theorem 4.1 and Lemma 5.1 that

M ~(M+3/2)
(5.6) Hatﬂo(t)mﬂq,Q < C(M,b,q) (1+t) "m"Xq(Q)

for any u € Yq b(Q), integer M 2 0 and t 2 1. Combining (5.3), (5.5)

b4

and (5.6) we have for any u € Yq b(Q), integer M > 0 and t 21

(5.7) uafe‘tﬁ -th < c(1+t) 732 My

M
+ HatPe z’q’Qb Yq b(Q)'

ull ull
Yq,b(Q)

Next we shall consider the case mu € Xq b(Q). Taking ¢ € C:(Qb),

such that I ¢(x)dx = 1, in view of Remark 1.4, we have
Q

b

(1+A)_1u - (x+A)‘1N1M + %(1+A)_1W2U + %Nsu for u € Xq,b(Q)

where Nj = Nj(¢,Qb) (j = 1,2,3) be the same symbol as in (1.2).

Combining this and (5.1), we have

B+ i
“th 1 ta, -1
(5.8) e thy - 2nifg-éme (x+4) "IN, udx

B+ i
1 tx -1 dx
+ znffg_ime (x+4) Wzml
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B-i=

- t _.a ‘
Putting T (b,¢,t)u = e tAwlm and T,(b,¢,t)u = f e ShNjuds + Ny,
0

B+iw
1,ta

. 1
since 27’([] X

of [16, Chapter 1] we have

udx = u for any u € Xq(Q), and since by Theorem 7.4
B-(

t B+ i _
I e—SAmds = 21.f etl(x+ﬁ) 1Ugi for uw € 2(4) and t > O,

it follows from (5.1) and (5.8) that the relation (0.6) holds.

Moreover, noting that Nlm, sz € Yq b(Q), since by (5.1) and (5.8) we

have
B+ [ _
(5.9) o ety - at{ziif ™ (x+4) "IN, wdx)
B-iw
B+ (o
-1 ta -1
+ Znif e T(a+h) Wzmdx.

B-iw

it follows from (5.7), (5.8) and (5.9) that the estimates (0.7) and
(0.8) hold. This completes the proof of Theorem B.
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