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Introduction

This is a joint work with Naoki Tanaka at Okayama University.
In this note we are concerned with the abstract quasilinear integrodifferential equations

of hyperbolic type

(QiE) { w(t) = A, u@)ut) + [ B, s,u(s)u(s)ds
u(0) = ug

in a pair of Banach spaces (Y, X ) such that Y is continuously imbedded in X. Our main
purpose is to study the problem of existence and uniqueness of local classical solutions to
(QIE) without assuming that Y is dense in X, where by a classical solution u to (QIE) on
[0, T] we mean that u € C([0,T] : Y)NC*([0,T] : X) and that u satisfies (QIE).

Our investigation of the problem (QIE) is motivated by the work of DA PRATO AND

SINESTRARI [5] stated as follows : they studied the inhomogenedué abstract Cauchy problem

u'(t) = Au(t) + f(t)

(ACP;uo, f) ' { u(0) = ug

for a closed linear operator A in X satisfying the Hille-Yosida condition with the exception

of the density of the domain D(A) of A

(H-Y) there exist M > 1 and w > 0 such that (w, 00) C p(A) and
IA-A)™| < MA—w)™ foral A\ >wandn=1,2,---,

and proved the following interesting result for (ACP;uo, f).

Theorem 0. Suppose that a closed linear operator A in X satisfies the Hille-Yosida condition
(H-Y) and let f € WHY(0,T : X). Then the problem (ACP;ug, f) has a unique classical
solution w € C([0,T] : D(A))NCY([0,T] : X) if and only if ug € D(A) and the compatibility

condition that Aug + f(0) € D(A) holds.
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Remark. The “only if” part is easy to prove. In fact, let u be a unique classical solution
to (ACP;uo, f). Then we have u(t) € D(A) for t € [0,T] and Aug + f(0) = «/(0) =
limp o h‘l(u(h) - ’IL(O)) S D(A)

We shall show an advantage of Theorem 0 by giving a concrete example.

Example 1. Let »C [0, 1] be the Banach space of continuous functions on the closed interval
[0,1] and f € W(0,T : C[0,1]). Consider the following partial differential equation with

periodic boundary condition :

{ ws(t, ) +u(t,x) = f(t,z), (t,z)€[0,T]x[0,1],

(P) u(0,z) =wo(z), z€|0,1],

u(t,0) = u(t,1), te[0,T].

We will solve the problem (P) by two different methods. One is the way to solve by using
Theorem O (the case (A)) and the other is the (Cp)-semigroup theory ( the case (B)).

(A) By Theorem O :
Let X = C[0,1]. Define an operator A in X by

{ D(A) = {u € CY[0,1] : w(0) = u(1)}
(Au)(z) = —u/(z) for z € [0,1].

Then A is a closed linear operator satisfying that (0, 00) C p(A) and ||A(A — A)7Y| <1 for
A > 0 (see e.g. [6]). Theorem 0 asserts that if ug € C'[0, 1] satisfying uo(0) = uo(1) and if

the compatibility condition that —ug(0) + f(0,0) = —ue(1) + f(0,1) holds, then there exists

a unique classical solution u to the problem (P).

(B) By the (Cp)-semigroup theory :
Let Xy := {u € C[0,1] : u(0) = u(1)} and define an operator Ag in X, by

{ D(Ag) = {u € C'[0,1] : w(0) = u(1),w'(0) = w/(1)}
(Aou)(z) = —u'(z) for z € [0,1].

Then Aq generates a (Cp)-semigroup on Xo. Therefore if ug € C*[0, 1] satisfies uo(0) = uo(1)
and u}(0) = u)(1) and if £(¢,0) = f(t,1) for all t € [0,T], then the problem (P) has a unique

classical solution.
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This example shows that the condition imposed on the initial value ug and the inhomo-
geneous term f in the case of (A) is weaker than that in the case of (B). However if f =0,

then both (A) and (B) give the same solvability of the problem (P).
Next we turn to the integrodifferential equation.

Example 2. Let f € W11(0,T : C[0,1]). Consider the integrodifferential equation :°

w(t,x) + ux(t,z) = /t b(t,s, x)ux(s,z)ds, (t,x) € [0,T] x [0,1],

u(0,x) = uwo(x), = 60[0,' 1],
u(t,0) =wu(t,1), te|0,T].

Let X and A be as in Example 1. For each (¢,s) € A := {(t,s) : 0 < s < ¢t < T} we define
an operator B(t,s) in X by

{ D(B(t,s)) = D(A)
(B(t, s)u)(z) = b(t,s,z)u/(z) for x € [0,1].

In the case of (A) we make only the regularity assumption of the function b(t,s,z) with
respect to (t,s) € A, while in the case of (B) the condition that b(t,s,-)u'(-) € X, for
u € D(Ag) must be satisfied, namely an additional assumption that b(t, s,0) = b(t, s, 1) for
all (t,s) € A is required. |

This is the reason why we study the integrodifferential equation of the form
t
{ W' (t) = Au(t) + / B(t, syu(s)ds
0
u(0) = ug
for a non-densely defined closed linear operator A in X satisfying the Hille-Yosida condition

(H-Y). We refer the reader to [22] for some results for this problem.

The quasilinear integrodifferential equation (QIE) will be solved in the following manner
: we consider the linearized equation

¢

Ny —

(LIE) o/(t) = Al o(®)u(t) + [ B(t,s,v(s))u(s)ds
u(0) = ug ,

for a function v belonging to some function space. If this problem (LIEY) has a unique

solution o for given v, then it defines a mapping v +— u. The fixed points of this mapping

are classical solutions to (QIE).
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To solve the problem (QIE), the theory of linear integrodifferential equations

t
(LIE) w/(t) = Altu(t) + /0 B(t, s)u(s)ds
w(0) = uo '
needs to be developed and it will be done in Section 2. The idea for solving (LIE) is to

regard the integral term of (LIE) as an inhomogeneous term of the linear evolution equation

i '(t) = A)u(t) + f(t
(LE;u0, f) { Z((O)):uo() (t) + £(2)

and to find the fixed point of the mapping defined in the usual way, by using the estimates
of solutions to problem (LE;ug, f), and is therefore based on the theory of linear evolution
equations (LE;ug, f) established in Section 1.

Our approach to linear evolution equations (LE;ug, f) are different from [28]. Our main
concern is to study the problem of existence and uniqueness of generalized solutions of
(LE;ug, f) which are well—knbwn as DS-limit solutions in the nonlinear semigroup theory
(see [15]) and to obtain the estimates of genéralized solutions which is véry important for
our discussion later, bﬁt his paper is devoted to the construction of the evolution operator
generated by a family {A(t) : t € [0,T]} of non-densely defined operators in X and the
representation of solutions in terms of the variation of constants formula in a generalized
sense. -

Section 3 discusses the quasilinear integrodifferential equations (QIE). By the result ob-
tained in Section 2 we shall construct approximate solutions {u.} of problem (QIE) induc-
tively by defining u,, to be the unique solution of (LIE*"-1) and ug(t) = ug. The convergence
of {u,} in C([0,T] : X) will be first proved by using the estimate (see (3.6)) of solutions
to integrodifferential equations adding the forcing term f to (LIEY). By this fact we next
show that the limits A(t) := lim,_c A(t, un(t)) and B(t,s) := lim_o B(t, 3, un(s)) exist
in L(Y, X), and then by Theorem 1.1 and Corollary 1.4, given v € C([0,T] : Y) we find a

unique generalized solution w := w" to the problem

{ w/'(t) = A(t)w(t) + dA()(t) — Ao(Ho)(t) + (d/dt)(Ho)(t)
w(0) = (A(0) — Ao)uo,

where QA(t) is the derivative of A(t), (Hv)(t) := J B(t,s)v(s)ds and Ao € p(A(t)). If the
mapping (®v)(t) := (A(t) — Xo)~H(w"(t) — (Hv)(t)) has a unique fixed point v, then u,
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converges to v in C([0,T] : Y) as n — oo, since the v satisfies the relation (A(t) — Ao)v(t) +
2 B(t, s)v(s)ds = w*(t). In the proof of this claim, the estimate (1.5) of generalized solutions
to problem (LE;ug, f) plays a crucial role é,gain. Finally, we shall give an application of
our abstract theory to a quasilinear hyperbolic system of infegfodiffefential equations from

viscoelasticity.

1 Linear Evolution Equations

In this section we study linear evolution equations in a Banach space X with norm | - ||

(LE;uo, f) { 40 = Al + 70, te o T)

We shall denote by (LE;A, ug, f) the problem (LE;uO, f) in the case where one needs
to indicate {A(t) : t € [0,T]}. Let Y be another Banach space with norm || - ||y which
is continuously imbedded in X. We impose the following three conditions on a family

{A(t) : t € [0,T]} of closed linear operators in X.
(A1) D(A(t)) =Y is independent of t € [0, T7.
(A2) There are constants M >1 and w :2 0 such that

(w,00) C p(A(t)) for t € [0,T]

ko
[T — A(t)™

J:l 3
and every finite sequence {tj};?:l with 0<#; <t <---<tx, <Tand k= 1,2,

<MA—w)™® for A>w (1.1)

We write {A(t) : t € [0,T]} € S3(X, M,w) for such family {A(t) : t € [0,T]}.

We obtain a fundamental theorem for linear evolution equations (LE;uo, f).
Theorem 1.1. Let f € L'(0,T : X) and ug € Y (the closure of Y in X). Suppose that a
Jamily {A(t) : t € [0,T]} of closed linear operators in X satisfies (A1), (As) and

(A3) the map t — A(t) is continuous and of bounded variation in the L(Y, X) norm.

Moreover assume that there exists a partition A, = {0 =t§ <7 <---<th =T, <T}

and sequences {x}} and {22} in X which satisfy the following :
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(1) liMamsoo |An| = liMpoo(T — To) =0,

1
where |A,| = maxi<k<n, bk, hy =t —tp_; and |An|w < 3,
n

Iy —
(ii) —k—,—l;?ﬁ:l—:A(tZ)xZJrz,?, et =ug, k=12 Ny, n>1,

k
(ifi) limnoo [[f™ = fllzr0m:x) = 0, where f*(t) = 2 on (f_y, 8], k=1,2,---, N
Then there exists a function u € C([0,T] : X) such that
lim sup [lu™(t) —u(t)l| =0,
0 te0,Tn)

where

n _ xz’ te(t;cl—l?tzL k:152""’Nna
u(t)—{UQ, t=0.

The following is the key lemma to prove Theorem 1.1.
Lemma 1.2([28, Lemma 1.1]). Assume that a family {A(t) : t € [0,T]} of closed linear
operators in X satisfies (Az). For each t € |0, T) we define another norm || - e on X by

A>w and
t<tH1 £ Lt <Tym >0

lzlle = sup {(,\ e

IO - A(t) 2
k=1

for z € X. Then we have :

Izl < llzlle < llzlls < Mllz]| (z€ X;50<s<t<T), (1.2)

IO = A®)) "elle < A —w)THizlle (2 € X5 > w;t €[0,T)). (1.3)
This lemma asserts the existence of norms || - ||s with respect to which the operator A(t) is

quasi-dissipative for each t € [0, T]. Theorem 1.1 can be proved by applying the well-known
technique in the theory of nonlinear evolution operators.
Remark 1.1.  The existence of a partition A, and two sequences {z}} and {z¢} in X

satisfying (i) through (iii) was shown in [7, Lemma 4.1].

Definition 1.1.  The limit function u € C([0,T] : X) obtained in Theorem 1.1 is called a

generalized solution of (LE;ug, f).

We shall list some estimates of generalized solutions to (LE;ug, f) which will play a crucial

role in studying quasilinear integrodifferential equations (QIE).
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Theorem 1.3. Let ug € Y,do € Y,f € L'(0,T : X) and f € BV([0,T] : X). Suppose
{A@t) : t € [0,T]} and {A@t) : t € [0, T} satisfy (A1), (A2) and (Az). If u and 4 are
generalized solutions of (LE; A, ug, f) and (LE;A,'&O, f ) respectively, then we have

Ju(6) a0 < Meap(zo) a0 = ol + O, ) [ 1406) - Ale)ixds (1)
NICE f(s)uds)

for t € [0, T), where C(A, i, f) is a constant depending on {A(t)}, o and f.
Corollary 1.4. Suppose that {A(t) : t € [0, T} satisfies (A1), (A2) and (A3). Let ug,fio € Y
and f,f € LY, T : X). Ifu and & are generalized solutions of (LE;uq, f) and (LE;'&g,f)

respectively, then we have

lu(e) - @) < Meap@eT) (Juo —ioll + [ 15() = fls)lds)  (1.9)

fort e [0,T].
Corollary 1.5. Suppose that {A(t) : t € [0, T} satisfies (A1), (A2) and (A3). Letug € Y
and f € L}(0,T : X). Then the generalized solution u of (LE;uo, f) satisfies the estimate

I0(t) = ol < {Mezp(2T) + }juo —yll + Meap(uT) [ 1(s) + Als)ullds (1.6
fort€[0,T] andy €Y.

Definition 1.2.  Suppose that {A(t) : t € [0, T} satisfies (A1), (Az) and (A3). Let {C(t)}
be a family of nonlinear continuous operators from X into itself defined for a.e. t € [0, 7]

satisfying the condition
(c1) C(")x € LY0,T: X) for z € X.

Then a function u € C(|0, T : X) is called a generalized solution of the initial-value problem

{ o' (t) = A(t)u(t) + C(t)u(t), t € [0,T)

(LE;uO)per U(O) = ug

if u is a generalized solution of (LE;ug, C(-)u(-)).

The next proposition will be proved by using Theorem 1.1, Corollary 1.4 and Banach'’s
fixed point theorem.
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Proposition 1.6. Suppose that a family {A(t) : t € [0,T)} satisfies (A1), (Az2) and (As),
and that a family {C(t)} of nonlinear continuous operators from X into itself satisfies (cl)

and
(c2) there is a function ¢ € L'(0,T) such that

ICH)z — C@H)yll < o@)||z —yl|| for z,y € X and a.e. t € [0,T). (1.7)

If ug € Y, then there exists a unique generalized solution of (LE;uo)per-
We turn to the problem of existence and uhiqueness of classical solutions to (LE;uo, f).

Theorem 1.7. Let f € W11(0,T : X). Suppose that {A(t) : t € [0,T)} satisfies (A1), (A2)

and

(As) ACy € CH(0,T): X) fory €Y.
If ug € Y satisfies the compatibility condition that A(0)uo + f(0) € Y, then there exists
a unique classical solution u € C([0,T]: Y)NCY[0,T] : X) to the problem (LE;uo, f).

For later use we prepare'some estimates of the classical solution to (LE;uq, f).

Theorem 1.8. ‘Suppose that the assumptions of Theorem 1.7 are satisfied. The classical

solution u of (LE;uq, f) satisfies the following estimates :
1(A@) = do)u(t) + FDI < Mexp(2wT) (II(A(O) —Xo)uo+ Ol  (1.8)
[ 1A = o (5)+ Folles);

[o(®) = wolly < e{ Mewp(2T) + 1} (A©) — AoJuo + £(0) — y] 1.9)
+exMeap(2T) ( [ NA@uts)  dof(5) + ) + A(s)ynds)

teo ( A 1 (s) + A(s)u0||ds)

fory €Y andt € [0,T), where ¢1 := sup,eoy I(A®F) — o) Hlv,x.
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2 Linear Integrodifferential Equations

In this section we state the result (see [23]) on linear integrodifferential equations

(LIE) {’Wﬂ=AmM0+£BmQM@@+fm,tEMH
- u(0) = uo.

Here {A(t) : t € [0,T]} is a given family of closed linear operators satisfying conditions
(A1),(Az) and (A4), and {B(t,s) : (,s) € A} where A = {(t,8) : 0<s <t < T} is a family
in L(Y, X) satisfying the following two conditions. ‘ ' |

(B1) For y €Y, B(t,s)y is continuous on A, differentiable with respect to t and
(0/0t)B(t, s)y is continuous on A. '

(By) For y € Y, B(t,s)y is differentiable with respect to s and (8/0s)B(t, s)y is continuous
on A.-

Theorem 2.1. Let f € WU(0,T : X) and suppose that ug € Y sdtisﬁes the compatibility
condition that A(O)ug + f(0) € Y. Then the problem (LIE) has a unique classical solution
€ C[0,T]: Y)NCY[0,T] : X) satisfying

fu@l < & (ol + [ 15@lds) @

fort € [0,T], where K is a constant depending on M,w and T.

3 Quasilinear Integrodifferential Equations
This section is devoted to the study of quasilinear integrodifferential equations
t
o o ’ _ \ .
(QIE) u@—A@MMMﬂ+AB@&MQM@®
We make the following hypotheses on the operators A(t,w) appe@rjpg in (QIE).
There are a bounded open subset W of Y and a real number Ty > 0 such that A(t,w)

is a closed linear operator in X defined for each (t,w) € [0, Tp] x W, and that the following

conditions are satisfied:

(a1) D(A(t,w)) =Y for (t,w) € [0,Tp] x W;
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(az) for each p > O there are constants M, > 1 and w, > 0 such that
[A@,v()) : t € [0, To]} € Sy(X, Mpyw0,)
for every v € D,. Here the set D, is defined by

D, ={v e C([0,To] : W) : |Ju(t) — v(s)|| < p|t —s| for t,s € [0, To]} for p > 0;

(a3) there is a function F : [0,Tp) x W x X — L(Y, X) satisfying two conditions (f;) and
(f2) below such that if v € C([0, To] : W) N C'([0,To] : X) and y € Y, then A(¢,v(t))y

is differentiable and
(d/dt)A(t,v(t))y = F(t,v(t),v'(t))y for t € [0, Tp};

(f1) forwe W,pe X and y €Y, F(-,w, p)y is continuous on [0, Tp] ;

(f2) for each p > 0, there are a constant ur, > 0 and a nondecreasing function or,,(-)

on [0, 00) with the property that limsg 0r,(6) = O such that
| F(t, w1, v1) — F(t,wa,v2)|lv,x < orp(llwr —wel) + prpllvr — ve]
for t € [0, To), w1, w2 € W and v1,1, € Bx(p) = {z € X : ||lz|| < p};
(ay) there is a constant ua > 0 such that

A, w1) — A, w2)||ly,x < pallwr —wel| for t € [0, Tp) and wy, wr € W.

We also impose the following on a family {B(t,s,w) : (t,s) € Ag,w € W} in L(Y, X),
where Ag = {(t,8) : 0 < s <t < Tp}.

(b)) For y € Y and w € W, B(t, s, w)y is continuous on Ay, differentiable with respect to t,
and (0/0t)B(t,s,w)y is continuous on Ag;

(bg) there exist constants ug > 0 and wg > 0 such that

|B(t,s,w1) — B(t,s, w2)|lv,x < pllwr — well;
1(0/8t)B(t, s,w1) — (8/0t) B(t, s, w2)|ly,x < wpllwr — wal|

for (t,s) € Ag and wy,ws € W,
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(b3) there is a function G : Ag x W x X — L(Y, X) satisfying two conditions (g;) and
(g2) below such that if v € C([0,Tp] : W) N C!([0,Ty] : X) and y € Y, B(t,s,v(s))y is

differentiable with respect to s and
(0/0s)B(t, s,v(s))y = G(¢,s,v(s),v'(s))y for (t,s) € Ao;
(g1) G: Ag x W x X — L(Y, X) is strongly continuous;
(g2) for p > 0O there exists a constant Ag, > 0 such that

||G(t,8,’w,p)||y,x < )‘G,P for (t,s, w,p) € Ag x W X BX(p)'

Remark 3.1.

(as) Condition (a3) implies that for each w € W, A(-,w) is continuous in the L(Y, X) norm
on [0, Tp]. This fact, the boundedness of W in Y and condition (a4) immediately show

an existence of A4 > 0 satisfying

AGE, w)llvx < Aa for (t,w) € [0, To] x W. - (3.1)

(f3) By (f1) and (f2), for each p > 0 there is a constant Ag, > 0 such that

IF @, w,p)llvx < Ar, for (t,w,p) € [0,To] x W x Bx(p). ~ (3.2)

(by) Since W is bounded in Y, conditions (b1) and (b) imply that there exist constants
Ap > 0 and A5 > 0 such that |

|B(t,s,w)|lvx < Ag, (3.3)
1(8/0t)B(t, s, w)|lv,x < Ap - (3.4)
for (t,s,w) € Ag x W.
Our main result is stated as follows.

Theorem 3.1. If ug € W satisfies the compatibility condition that A(0,ug)ug € Y, then
there is a T € (0, Tp] such that the quasilinear integrodifferential equation (QIE) has a unique

classical solution u on [0,T].
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Proof of Theorem 3.1.
We shall only state the outline of the proof. See [24] for the details.
Since W is open in Y, for any initial value ug € W of (QIE) satisfying the compatibility

condition that A(0,ug)ug € Y, we can choose an ry > 0 so that
By (ug,r0) :={w €Y : ||lw—wuglly <mo} CW
and then we put

po = (Aa + ABTo)(||luolly + 7o) (3.5)

For 1 € (0,Tp) let E; be the set of functions v satisfying

ve C([0,7]: Y)NCY[0,7] : X),v(t) € By(ug,m0) for all t € [0, 7],
v(0) = uo and ||V/(t)]| < po for all t € [0, 7).

For each v € E,, we write for simplicity

A¥(t) = A(t,v(t)) for t € [0, 7], and
B*(t,s) = B(t,s,v(s)) for (t,s) € A, :={(t,5): 0< s <t <7}

From conditions (a;) through (a4) and (b;) through (bs), we obtain the following result for
the linearized equation (LIEY) for v € E,.
Proposition 3.2. For any ug € W satisfying A(0,uq)ug € Y and v € E,, the linear
int_egrodiﬁerential eq'u,‘ation
(LIE) { W) = AWu(t) + [ B(t,s)u(s)ds, te[0,7]

_ . u(0) = up ,
has a unique classical solution uw € C([0,7]:Y)NC([0, 7] : X).

~ Proposition 3.2 enables us to define a map @ : E, — C([0,7] : Y) by ®v = u.

Then there is a 7 € (0, Tp] such that ®E, C E,. The claim that (®v)(t) € By (uo,70)
for all v € E; and t € [0, 7] can be proved by using the estimate (see (1.9)) of the classical
solution to the problem (LE;uq, H”(®v)) for v € E;, where for v € E; we define an operator
H?:C([0,7]: Y)NCY[0,7] : X) — CY([0,7] : X) by (H*w)(t) := J§ B*(t, s)w(s)ds.

In what follows, let 7 € (0,7Tp] be an arbitrary but fixed positive number satisfying

<I>(“ET) C E.. We make E, into a metric space by the distance function

d(v,w) == sup [|v(t) — w(t)|

tel0,7]
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forv,w € E,.
An application of Theorem 2.1 (cf. [23, Theorem 2.3]) gives the next result.
Proposition 3.3. Letv € E,, z € X and f € L*(0,7: X). Suppose that the problem

{ (1) = AE)ule) + | " BY(t, s)u(s)ds + f(t), te0,7]
uw(0) =2z

has a classical sblution u®. Then we have
t
lw’@l < G (lall + [ 17(s)lds) 69
fort € [0, 7], where C is a constant independent of x, f and v € E..

By (3.6) we obtain

Lemma 3.4. We have

d(®"v, d"w) <

(Cp'f(:,'Tb) d(’U,’l.U) fOT v, we€ E; andn = 1,2, Y (37)

We now define a sequence {u,} in E, by
uo(t) = ug for t € [0, 7] and up = Pup—y forn =1,2,---. - (3.8)

As a direct consequence of Lemma 3.4, we have
Corollary 3.5. The sequence {u,(t)} converges in X uniformly on [0,7].

For brevity in notation, we write.

An(t) = A(t,un(t)), Su(t) = A(t, un(t)) — Aol fort e [0, 7], and
Ba(t,s) = B(t,s,us(s)) for (t,s) € A,.

Corollary 3.5 and condition (a4) together imply that

lim Au(t) == A(®) in L(Y, X) and
Jim Sp(t)™! = Q(t) in L(X,Y)

exist uniformly in [0, 7], and then we see that A(-) € C([0,7] : L(Y, X)) with “A(t)”yx < Aa
and that Q(-) € C([O,%] : L(X,Y)). Putting S(t) = A(t) — A\oI, we have S(t)Q(t) = I on
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X and Q@)S(t) = I on Y ; hence §(-)! € C([0,7] : L(X,Y)). Condition (f2) shows
| F(t, un(t),p) = F(t,um(t), p)llv.x < 0F,p0(d(Un, um)) for ¢ € [0,7] and p € Bx(po), which
enables us to define F'(-,-) : [0, 7] X Bx(po) — L(Y, X) by

F(t,p) = lim F(t,ua(t),p)

for t € [0,7] and p € Bx(po). Here the convergence in the L(Y,X) norm is uniform for
(t,p) € [0,7] x Bx(po). We then see that the function F(-,-) has the following properties
(f4) and (fs) which immediately follow from (f;) together with (3.2) and (f2):

(fa) If p € C([0,T) : X) for some T € (0,7] and p(t) € Bx(po) for t € [0,T], then
F(,p() € C([0,T] : L(Y, X)) and [|E(t, p(t))llv,x < Ao for t € [0, T1;
(fs) |1 E(t,p1) — F(t,p2)lv,x < prpollpr — p2ll for ¢ € [0,7] and p1, p2 € Bx(po)-
Also by Corollary 3.5 and condition (b;) we have
Jim By(t,s) := B(t,s) in L(Y, X);
Jlim (9/0t)Ba(t, s) = dB(t,s) in L(Y, X)
uniformly on A,. It is obvious that both B(t, s)y and dB(t, s)y are continuous on A, in X

for y € Y, and so (8/0t)B(t, s)y = dB(t,s)y for y € Y and (t,s) € A,. Moreover we obtain
|1 B(t,s)llvx < Ap and ||B(t, s)lly,x < X for (£, s) € A

Let T € (0,7] and Ey = C([0,T] : By(ug,70)). Ey is a complete metric space by the

distance function
dy (v,w) == sup |lv(t) —w(t)lly
te[0,77

for v,w € Ey. Define two operators D, H : Ey — C([0,T]: X) by
(Dv)(t) = Ale)olt) + | " B(t, s)v(s)ds;
(H) 1) = [ * Bt s)v(s)ds

respectively. For v € Ey we have F(-, (Dv)(+)) € C([0,T) : L(Y, X)) (note that ||(Dv)(t)|| <
(Aa + ATo)|lv(@®)|ly £ po) and Hv € C*([0,T] : X). Since the family {A(t) : t € [0,T}
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satisfies (A;), (Az) and (Ag) in Theorem 1.1 with {A(t)} replaced by {A(t)}, Theorem
1.1 and Corollary 1.4 assert that for v € Ey there exists a unique generalized solution

u’(-) € C([0,T] : X) to the problem

I

A(tyu(t) + (Wo)(t)
uy := (A(0, up) — Ao)uo,

where (Wv)(t) := EF(t, (Dv)(8))v(t) — Ao (Hv)(t) + (d/dt)(Hv)(t) for v € Ey.
Define an operator ¥ : Ey — C([0,T]:Y) by

. | '(t)
(LE;A, w1, (Wo)(+)) { Z(o)

(To)(¢) = S(t) 7w’ (1) — (Hv)(1)).

Then there is a T' € (0, 7] such tha,t‘\Il(Ey) C Ey. This assertion can be proved by using the
estimate (see (1.6)) of the generalized solution to the problem (LE;A, u;, Wv) for v € Ey.
In what follows we fix T' € (0, 7] so that ¥(Ey) C Ey.
The use of the estimate (see (1.5)) of the difference between generalized solutions to

(LE;u;, Wv) and (LE;u,, Ww) for v,w € Ey gives the following.

Lemma 3.6. There is a unique fized pointu € Ey of V.

For any £ > 0 take 4 € Y and a function fe e CY([0,T] : X) such that |lu; —us|| < e
and ||((Wa)(-) — f()|l riorx) < & We then use the estimate (see (1.4)) of the diﬁérence
between the generalized solution to (LE;A,—1, %1, Wn—1u,) and the generalized solution to
(LE;A, uS, f¢) to find constants C;, Cy(¢)(depending on €), C3 > 0 and a null sequence {6,}
such that

t
un(t) —@)|ly < Cre + Cale)bn + (13[) (lun(s) —a(s)lly + llun-1(s) —a(s)llv)ds,
where (Wov)(t) := F(&, un(t), ul(t))v(t) — Ao(Hav)(t) + (d/dt)(Hrv)(t) and
(Hnv)(t) := J§ Bn(t,s)v(s)ds for v € Ey. Then by standard arguments we have

Lemma 3.7. lim,_. sup;epo 1 [|un(t) — @(t)|ly = 0.

The End of Proof of Theorem 3.1.
Since ), (t) = A(t, tn—1(t))un(t) + f5 B(t, s, un—1(s))un(s)ds converges to A(t,a(t))a(t) +
fs B(t, s, a(s))u(s)ds uniformly in [0,T] by Lemma 3.7, we conclude that % is a classical

solution of (QIE).
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- To prove thé uniqueness of classical solutions of (QIE), let u;(i = 1,2) be classical solu-
tions of (QIE) and set w = u; — u2. Then, an easy computation yields
w(t) = A(t,ur(t))w(t) + {A(t, ui(t)) — A(t, u2(t)) }ua(t)
+ /(;, B(t, s, u1(s))w(s)ds + [) {B(t, s,u1(s)) — B(t, s,u2(s)) }uz(s)ds

By (3.6) we have
@] < € [ fIAts.01(6) =~ Al e xlua(ol
+ [T 1B, ua (1)) = Bls,r, () lvxllua(m)llvdr | ds

t
< Cpo [) llw(s)l|ds,

and Gronwall’s inequality therefore asserts u; = ug. O

4 An Application

We shall give an application of our results obtained in the previous section to a quasilinear

hyperbolic system of integrodifferential equations from viscoelasticity :
(QHS)
Qv (t,x) = Opva(t,z) for (t,2) € [0,T] x [0,1]
1
CGe(t, ) = alt,z,v1(t, x),v2(t, x)))Ozv1 (t, x) +A b(t, s, z,v1(s,x),v2(s,x))0v1(s,x)ds

A : for (t,z) € [0,T] x [0, 1]
v1(t,0) = v1(t,1), v2(t,0) =v(t,1) fort e[0,T]
\ ’U](O,-T) = Qol(x)a ’1)2(0,11}') = (,02(37) fOI' T e [0’ 1]7

where the function a(t,&o, &1, &) is of class C! with the property that a > ag (> 0) on
[0, To] x [0,1] x R x R and the function b(t, s, &, &1, &) defined on Ag x [0,1] X R x R is of
class C'.

The (QHS) can be rewritten as follows :

’Ul(t, .’L‘) . 0 1 ’Ul(t,ﬂ'})
(’Ug(t,l'))t N ( a(t,z,vi(t,x),ve(t,x)) O )(vg(t,x))m

0 0 vl(s,m)v
+/ ( b(t,s,z,vi1(s,xz),v2(s,2)) O ) (vz(s,x))mds'

Let X = Cl0,1] x C[0,1] where C[0,1] is the Banach space of all continuous functions

on [0,1] with maximum norm || - ||cj,- The space X equipped with norm || - || defined by
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lvll = llvillero,y V llvelleoy for v = (:;) € X is a Banach space. As another Banach space
which is continuously imbedded in X we take A
Y ={w= (3;) € C'0,1] x C[0,1] : w1 (0) = wi(1), wa(0) = (1)},
lolly = lwillcto V llwallergy forw= () €Y,
where |lwilcijo, = llwillcp + llwillcp,y-
Let ¢ = (%) €Y. Take an R > 0 such that [|¢|ly < R and set W = {w € Y : [|lwlly < R}.
We now define P(t,w) € L(X) for t € [0,Tp] and w = (’;’;) € W by

>(P(t,w)v)(x) =P(t,w)(x)v(z) forve X,

_ \/1+a(t,x,w1(x),w2($)) ( \/a(t,a:,wl(a:),wg(x)) 1 )
2\/a(t,x,w1(a:),w2(:r)) _\/a(taxawl(x)aw‘Z(x)) 1

for (¢, w) € [0,T] x W, and then introduce another norm || - ||¢w) on X depending upon
(t,w) € [0,Tp] x W by

where P(t, w)(x)

lollgw = 1P w)v]| forve X.

Define a family {A(t,w) : (t,w) € [0,To] x W} of dlosed linear operatbrs in X and a
family {B(t, s,w) : (t,s,w) € Ao x W} in L(Y, X) by

(At wy) (z) = ( 0 1 ) (”1(3”)) for v = (”1) e D(A(t,w)) = Y;

a(t, z, w1 (z), w2(z)) 0

(%) (.’L') V2
_ 0 0\ (u(z) CAYE o
(B(t, s,w)v)(x) = ( b(t, 5, 2, wi(z), wa(z)) O ) (vz(x))xfor v= (vz) € D(B(t,s,w)) =Y.
Then the norm || - ||zw) is equivalent to the original norm || - || on X and there is a positive

constant w depending on R > 0 such that A(t,w) € G4(X,1,w) with respect to the norm
| - l¢,w) (see [28, Lemma 3.5]). This fact implies (az). It is easy to see that all the other

conditions in Theorem 3.1 are satisfied with

B 0 1 ;01(1‘) _ () C
(F(t, w, p)v)(z) = ( f(t,w,p)(x) O ) (vz(x))w forv = (’Uz) €Y
0 0) (u@) . v
(G(t,5,, p)v)(z) = ( g(t,s,w,p)(z) O ) (vg(gc))m forv = (v:) €

where

ftw,p)(x) = (8/0t)alt, x, wi(x), we(x)) + pr(x)(9/ OE1)a(t, x, wi(x), wa(x))



58

+p2(2)(0/0&2)a(t, z, wr (x), w2 ()
and
g(t,s,w,p)(x) = (8/0s)b(t, s, 2, w1(x), w2(x)) + p1(2)(0/0&1)b(t, s, T, w: (%), w2 (x))
+p2(2)(0/082)b(t, 5, Z, w1 (), w2 (7))

forw = (%) €Y and p = (1) € X. |

It is shown that if ¢, € CY0,1],¢1(0) = @1(1),2 € CY0,1],2(0) = ¥2(1),¥5(0) =
5(1) and a(0,0,¢1(0),#2(0)¢1(0) = a(0,1,¢1(1),2(1))¢1(1), there exists a T € (0,To]
such that the problem (QHS) has a unique classical solution v = (:;) e CY([0,T] : C[0,1]) x
cY([0,T] : C[0,1]).
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