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Elliptic KZ system, braid group of the torus and Vassiliev invariants

TosHITAKE KOHNO
ser % i L. (BRH3E)

Introduction

The purpose of this paper is to construct Vassiliev invariants for links in the product
of the torus and the unit interval by means of the elliptic Knizhnik-Zamolodchikov (KZ)
equation. ;

Let D be a chord diagram, which consists of oriented circles and chords marked on
them. Let ¥ be a closed oriented surface. We are going to consider chord diagrams on
Y. Namely, we consider the homotopy classes of continuous maps v : D — X for any
chord diagram D. The vector space spanned by all such chord diagrams on ¥ modulo the
4-term relation is denoted by A(Z). As was explained by Reshetikhin in [R], the vector
space A(X) has a structure of a Poisson algebra.

Let G be a Lie group whose Lie algebra is equipped with a non-degenerate adjoint
invariant symmetric bilinear form. Let ¢ be a flat G connection on ¥. To a chord
diagram T on ¥ and the flat connection ¢ we associate a scalar Ty4(I') satisfying the 4
term relation. In other words Ty, which is called the weight system associated with the
flat connection @, is considered to be an element of the dual space A(X)* of A(Z).

In [V], Vassiliev investigated the 0-th cohomology of the space of embeddings of a circle
into R3, and defined the notion of the invariants of finite order for oriented knots. In this
paper we adapt the formulation due to Birman and Lin [BL] to define the invariants of
finite order for oriented links in a 3-manifold M. Let us consider the case when M is the
product of the closed oriented surface ¥ and the unit interval I. Let v be an invariant
of finite order for oriented framed links in ¥ X I. It can be shown that v determines in a
natural way an element of A(X)*.

Now the problem is to reconstruct an invariant of finite order for oriented framed links
from a given element of A(X)*. In the case of knots in R3, this problem was solved by
Kontsevich [K] using the iterated integral of the universal KZ connection.

Let us recall that the KZ connection is defined associated with the simplest rational
solution of the classical Yang-Baxter equation of the form r(u) = Q/u, where  is the
Casimir element. A systematic classification of non-degenerate solutions of the classical
Yang-Baxter equation was established by Belavin and Drinfel'd ([BD]). In this paper
we focus on the elliptic solutions to define the associated local system on the space of
configuration of n distinct points on the elliptic curve E = C/Z + Z7, Im 7 > 0. We
shall call such local system the elliptic KZ system. This system was studied extensively
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by Etingof [E] from the viewpoint of vertex operators. As the holonomy of the elliptic
KZ system, we obtain projectively linear representations of the braid group of the torus.

The situation we are going to discuss in this paper is the case when M is the product
of the elliptic curve E and the unit interval I. We consider a projective local system on
E determined by a representation of the Heisenberg group, which is considered to be a
central extension of H1(E,Zy). Associated with the Lie algebra si(N, C) and the above
local system on E we can define a weight system for chord diagrams on the torus. The
KZ connection in the case M = R3 is replaced by the elliptic KZ system in our case.
We integrate the above weight system to construct invariants of finite order for oriented
framed links in E x I by investigating the holonomy of the elliptic KZ system.

The paper is organized in the following way. In Section 1, we recall basic properties
of the elliptic solution of the classical Yang-Baxter equation and the associated elliptic
KZ system on the configuration space of the elliptic curve. In Section 2, we describe
representations of the braid group of the torus obtained as the holonomy of the elliptic
KZ system. Section 3 starts from an exposition of a general framework to define the
weight system for chord diagrams on a closed oriented surface, associated with a flat
G connection and representations of G. Then, we explain the case of the torus for
representations of the Lie algebra sl(IV, C) together with the Heisenberg group action.
Finally, in Section 4, we integrate the weight system for chord diagrams on the torus
defined in Section 3 to construct invariants of finite order for oriented framed links in
E x I. A part of this work was presented at the meeting “Knotentheorie”, Oberwolfach
in September, 1995.

Acknowledgement: This work was partially supported by Grant-in-Aid for Scientific
Research on Priority Areas 231 “Infinite Analysis”.

1. Elliptic KZ system

Let g be a finite dimensional complex simple Lie algebra. First, we recall the definition
of the classical Yang-Baxter equation following Belavin and Drinfel’d [BD]. We fix an
associative algebra A with unit containing g. Let r(u) be a meromorphic function with
values in the tensor product g® g. The functional equation for () in A® A® A of the
form

[r12(u1—u2), r13(u1 —u3)]+[ria(ur —u2), ros(ua—ug)|+[r13(u1 —u3), o3 (ug—us)] = 0 (1.1)

is called the classical Yang-Baxter equation. Here the meaning of the suffix is as follows.
We define the embedding p12: g®g - A® A® A by 12(a®b) = a®b® 1 and we put
p12(r(u)) = r12(u). Analogously we define r13(u) and ro3(u).

Non-degenerate solutions of the classical Yang-Baxter equation with the unitarity con-
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dition

r12(—u) = —ra1(u) (1.2)
have been classified by Belavin-Drinfel’d [BD] into three classes — rational solutions,
trigonometric solutions and elliptic solutions. We denote by {I,} an orthonormal basis
of g with respect to the Cartan-Killing form. We put

m

Then the function 7(u) = Q/u is a typical rational solution of the classical Yang-Baxter
equation.

Let m; : g — End(Vj),1 < j < n, be finite dimensional representations of the Lie
algebra g. Let r(u) be an arbitrary solution of the classical Yang-Baxter equation. We
denote by 7ij(u) € End(Vi ® --- ® V), 1 < 1,j < n, the operation of r(u) on the i-th
and j-th components through the above representations. Let us consider the system of

partial differential equation for a function (21, -+ ,2,) With valuesin V1 ® --- ® V;, of
the form 9
L= Y mijlzi—z) p. (1.4)
0z, ..
Js J#

A solution of the above differential equation is considered to be a horizontal section of

the meromorphic connection

w = ZT,’j(Z,‘ — z;) (dz; — dz;) (1.5)
1<)

for a trivial vector bundle over C" with fiber V1 ® --- ® V,,. The following lemma was
observed by Cherednik [Ch].

Lemma 1.6. Ifr(u) is a solution of the classical Yang-Baxter equation, then the equation
. . L _ 8 ..
(1.4) is consistent. Namely, we have 333227 = azgz—. for any 1,7.

In the following of this section, we restrict ourselves to consider the Lie algebra g =
sl(N,C). Let ej, 1 < j < N, be the standard basis of the complex vector space CV. We
put € = e2™V=1/N et A; and A, be the matrices defined by

Alej=ej"1ej, 1<j<N

. (1.7)
Asej=ej41, 1<jJ<N-—1, Agey =er

Then, A; and A, satisfy AjA; = €A24;. Let a; and ag be the inner automorphisms of
sl(N, C) defined by
aj(X) = A7IXA;, j=1,2 (1.8)
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for X € sl(N,C). We see that a; and ay are commuting automorphisms of order N and
that they do not have a common non zero fixed vector. For I, m € Z, we define (™) by

Q™ = (alal ® 1)(0). (1.9)
It can be checked that we have the relation
(alad ® 1)(Q) = (1@ ag'a;™)(Q). (1.10)

Putting a = (I, m), and considering o as an element of the direct sum Zy & Zy, we
write Q2 for Q™). Here Zy denotes the cyclic group of order N. We can easily check
the following lemma.

Lemma 1.11. The above Q% a € Zy @ Zy, satisfies the following properties.

(1) We have PQ™ = Qr_o‘, where P is the permutation operator defined by P(zQy) = y®=z.
(2) The relation
(05, + O, Q%] =0

holds if o — B + v = 0. Here the meaning of the suffiz for Q is the same as r;; in the
equation (1.1).
(8) We have

T =

a€EZNDZ N

The elliptic solution which we are going to discuss appeared in the work of Belavin
[B]. To describe the solution we first recall some basic properties of the Weierstrass ¢
function. Let w; and wy be complex numbers with Im we/w; > 0 and L the lattice
defined by L = {lwy + mwsy | [,m € Z}. The Weierstrass ¢ function is defined by the

series
1

=2+ ¥ |

z w€el w#0

1 1 z
+_+_2]a

1.12
Z—Ww W w ( )

which is a meromorphic function with simple poles at w € L. We put w3 = w; +ws. The
function ((z) is an odd function of z, with the properties

((z+w) =¢(2)+2 (Z), i=123 (1.13)

In particular, for w; =1 and wy = 7 with Im 7 > 0, the function {(z) is also denoted by

((z]7).
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With the above notation, we put

o(2) = (<l N7)
+ > Q™ [¢(z = 1 = m7|NT) + ((l + m7|N7)].
0<l,m<N-1,(1,m)#(0,0) (114)

The following proposition was shown in [BD](see also [E])

Proposition 1.15. The function p(z) satisfies the following properties.

(1) p(2) is a meromorphic function which has only poles of order 1 atl+m7 withl,m € Z.
The residue of p(z) at z = |+ mt is Q™).
(2)
p(z+1) = (1 ®1)p(2), p(z+7)=(a2®1)p(2)
where a1 and ay are inner automorphisms of sl(N, C) defined as in (1.8).
(8) p(2) 1s a solution of the classical Yang-Bazter equation.
Moreover, p(z) is characterized by the above properties (1) ~ (3).

Since a; and ag are automorphisms of order N, it follows from the above property (2)
that we have

p(z+ N) = p(z), plz+ NT) = p(2). (1.16)
This implies that p(z) defines a meromorphic function on the elliptic curve Ey = C/Ly,

with the lattice
Ly ={IN+mN7|l,neZ}.

On the elliptic curve E = C/Z + Z, p(z) defines a multivalued meromorphic function
with only one pole.

2. Representations of the braid group of the torus
Let Hy denote the Heisenberg group with generators z,y with relations
2 = y" =1, (lz,5),9] = [[e, 9], y] = L. (2.1)
The central element [z,y] is denoted by c. We have the follbwing cxact sequence

0—Zy — HyBHH\(E,Zy) — 0 (2.2)

where H1(E,Zy) & Zy ® Zy has as a basis the homology cycles corresponding to the
deck transformations A and g defined by A(z) = z 4+ 1 and u(z) = z + 7 respectively.
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The above map p : Hy — Hi(E,Zy) is given by p(z) = A and p(y) = u. We have the
embedding ¢ : Hy — GL(N, C) defined by «(z) = A1, (y) = Az and j(c) = I, where the
matrices A; and Aj are given as in (1.7). Let s : H1(T;Zy) — Hy be the map defined by
s(IX+mp) = AL AP, In the following, we fix the above section s for the exact sequence
(2.2).

For a manifold M, we denote by Con f,(M) the configuration space of ordered n points
in M. Namely, we set

Confo(M) ={(z1,- ,2a) | T1, -+ ,Zn € M, z; #x; if 1#j}.

As is the previous section, we denote by Ey the elliptic curve C/Ly. We fix finite
dimensional representations 7; : si(N,C) — End(V;), 1 £ j < n. Let us consider the
meromorphic 1-form on C” with values in End(V; ® - - ® V,,) defined by

w= 27r_1\/_-——_1; lsgsn pij(zi — z;) (dzi — dzj), (2.3)
where p(z) is the elliptic solution of the classical Yang-Baxter equation as in Section 1
and x is a non-zero complex parameter.

Let us denote by A; and pj, 1 < j < n, the deck transformations on C" defined by
Mi(z1, o324, 2n) = (21, 241,y z0) and pj(z1, 25, 5 2m) = (21, - ,zj+
T, ,2) respectively. It follows from ( 1.16) that the 1-form w is invariant under the deck
transformations /\j-v and ,u.j-v for 1 < j < n. Thus it defines a meromorphic 1-form over
the Cartesian product E};. The 1-form w on E% has poles whenever z; — 2j € Z+7Z7. We
consider w as a meromorphic connection for a trivial vector bundle with fiber V; ®---®V,
over the base space E%. This determines a local system £ over EY; with singularities.

The Heisenberg group Hy acts on Ey by z(z) = 2+ 1, y(z) = 2z + 7 and ¢(2) = 2,
which induces a natural action of the direct sum Hﬁ" =Hy®---® Hy on E}. On the
other hand, Hﬁ" acts naturally on V1 ® --- ® V,, through ¢ : Hy — GL(N, C). It follows
from part (2) of Proposition 1.15 that the connection w is compatible with the action of
Hﬁ". Considering the quotient by this action, we obtain a projective local system Z over
E™. The induced connection does not have poles on Con fa(E). We call the above local
system L the elliptic KZ system.

The 1-form w defines a projectively flat connection on £. The holonomy of this connec-
tion gives a projectively linear representation of the pure braid group of the torus with
n strings

0:m(Confu(E),*) » GL(V1 ® - Q@ V,). (2.4)

Let us notice that the meromorphic 1-form w defined on C" is written as

(.I., m)

! Z Z 1 (dz; — dZJ’) + (2.5)

27/ —1k 1<i<i<nimez % — % — l—m7
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with a holomorphic 1-form ¢. We describe the relations satisfied by the matrices Qg-’m).

Since Qg-’m) = Qg-”ml) if I = ', m = m’ modulo N, we consider a = (I, m) as an element of
Zy ®Zy. It follows immediately from Lemma 1.11 that the matrices 27}, 1 <1 #3<n,
satisfy the following relations:
(1) 9f =97,
(2) (9 + 95, Q%] for distinet 4,5,k with a—B+7=0,
(3) [Qg, Q%) =0 for distinct 4,5,k,1,
(4) Zaezyozy ;=0

Let us notice that in the case N = 1 the above relations (2) and (3) were called infinites-
imal pure braid relations in [Kol] and [Ko2].

Let us describe the monodromy representation ¢ in terms of the iterated integral of the
1-form w. We take an element of 71 (Con f,(E), *), which is lifted to a path y(¢),0 <t < 1,
in C™ with a basepoint v(0) = (29,29, ,z0). We suppose that the basepoint satisfies
zd, .- ,.’B?l € R and 0 < .’L‘(l) < .-+ < z) < 1. For each j, 1 < j < n, we denote by
¢; € L the deck transformation sending 7;(0) to v;(1). Identifying the lattice L with
Hy(E,Zy), we obtain an element of the Heisenberg group s(¢;) € Hy by means of the
section s defined in the previous section. Let us recall that the Heisenberg group Hy acts
naturally on the representation space V;. We denote by X; the linear transformation on
V1 ®---®V, obtained as the action of s({;) on the j-th component of V1 ® --- ® V.

Pulling back w by v : [0,1] — C", we set 7*w = «(t) dt. We consider the iterated
integral

WW e = a(tl)a(tg)---a(tm) dtidty - - - dt,. (2.6)

LT /0<t1 <t2<-<tm<1

We have the following Proposition.

Proposition 2.7. The holonomy of the local system L over Confn(E) for the horizontal
section 1is expressed as the sum of the iterated integrals

0 :XX...Xn I+ w+/ww+.+/ww.w+.
(1) = Xa X, (/ [ [y )

m

with the linear transformations X1, --- , X, defined above. This determines a projectively
linear representation

0: m(Confp(E),*) = GL(V1® - Q@ Vy).
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Here the associated 2-cocycle ¢ determined by 6(z1z2) = c(z1,z2)0(z1)8(z2), z1,22 €
n1(Confa(E), *), satisfies c(z1,zo) = 1.

Proof: We start with the trivial vector bundle over C" with fiber Vi ®- - -® V;, equipped
with the connection w. Let us consider the parallel transport for the connection w along
the lifted path 7(¢), 0 <t < 1, in C™. We may suppose that 7(t) does not pass through
the poles of w. The parallel transport is expressed as the iterated integral

é =I+/w+/ww+...+/ww...w+-...‘
™ 0 2 T

The parallel transport for the induced connection of the trivial vector bundle over Ey is
also expressed as the same integral. Now we consider the quotient by the action of Hﬁ".
The holonomy along the path v on Confn(E) is written as s(¢1) ® - - - ® 5(,)0(y), which
shows the first part of the proposition. Let us suppose that z; and z5 in m(Confn(E), *)
are represented by the paths v; and 7, respectively. For the composition of paths, we
have 6(7172) = 8(71)8(72). We denote by (£11,--- , é1,) and (€21, -+ - , £20) the elements
of Hﬁ" corresponding to y; and -, respectively. The 2-cocycle in the statement of the
proposition is expressed as c(z1,z3) = c¢1---c, with ¢j, 1 < j £ n, determined by
s(€15625) = cjs(&15)s(€25). Thus we have c(z, z2)" = 1. This completes the proof.

For a fixed elliptic curve E = C/Z + Zr, the above construction gives projective
representations of the pure braid group of the torus with parameter x. The term with
the iterated integral of length m contains x~™™. If V; = ... = V,,, then we get projective
representations of the braid group of the torus. The explicit form of such representations
was computed by Etingof [E]. We refer the reader to [CFW] for a different approach to
representations of the braid group of the torus based on quantized universal enveloping
algebras. In [Ko3], Vassiliev invariants for pure braids were discussed in terms of the
representation of the pure braid group into the algebra defined by the infinitesimal pure
braid relations. An elliptic analogue of such construction will be discussed in a separate
publication.

3. Chord diagrams on surfaces and their weight systems

First, we describe some basic facts on chord diagrams on surfaces. Let G be a Lie group
whose Lie algebra g is equipped with an adjoint invariant symmetric non-degenerate
bilinear form B : g x g — R. Let ¥ be a closed oriented surface of genus g, and consider
the moduli space Mg(G) of flat G connections on ¥. The moduli space Mx(G) is
identified with the set of conjugacy classes of representations of the fundamental group
m1(X) into G. The variety Mz(G) contains an open set Mx(G)® corresponding to the



conjugacy classes of irreducible representations of m(¥), which has a structure of a

symplectic manifold.
A chord diagram is a collection of finitely many oriented c1rcles with finitely many

chords attached on them, regarded up to orientation preserving diffeomorphisms of the
circles. Here we assume that the endpoints of the chords are distinct and lie on the circles.
The chords are depicted by dashed lines as in Figure 1.

Figure 1: a chord diagram

Let D be a chord diagram. We consider a continuous map 7 : D — X and we denote by
[v] its free homotopy class. We call such [y] a chord diagram on ¥. Up to homotopy we
shrink the chords on ¥ as shown in Figure 2 to get loops with transversal intersections.
We represent [y] by loops with specified vertices. Here the vertices correspond to the
shrunk chords as depicted in Figure 2.

.

Figure 2: shrinking chords on the torus

We denote by Ds. the complex vector space spanned by all chord diagrams on ¥ and
by A(Z) its quotient space modulo 4 term relations as depicted in Figure 3.

As was explained by Reshetikhin in [R], A(X) has a structure of a Poisson algebra in
the following way. Let 'y and I'y be chord diagrams on ¥ where the chords are shrunk
and are represented by the specific vertices as explained above. We suppose that I'; and
I's intersect transversely on X. Let p be one of the intersections of I'y and I';. We denote
by I'; Up I’y the chord diagram on ¥ which is the union of I'y and I'z, with p considered to
be the specific vertex corresponding to a shrunk chord. For a chord diagram I" we denote
by [T] its equivalence class in A(Z). We can check the following.

50
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o g

Figure 3: 4 term relation

Proposition 3.1. We define the bracket by

{1, T2} = Y. e12(p)[T1Up T
pel NI’y

where €12(p) is set to be 1 or —1 according as the way of intersection as shown in Figuré
4a. Then the above bracket is anti-symmetric and satisfies the Jacobi identity.

Iy ,><Dp2 r2><?r1 | >< - ‘> < |

€12(p) =1 exz(p) = ~1

Figure 4

Let A"(X) denote the subspace of A(X) spanned by the chord diagrams on ¥ with n
circles. Then A"(X) is a graded vector space ®;>0A%(X) where AZ(X) is the subspace
spanned by the chord diagrams on ¥ with n circles and %k chords.

We observe that the quotient space of A'(X) by the ideal spanned by the diagrams
which look locally as depicted in Figure 4b is the Poisson algebra structure on the free
homotopy classes of loops on ¥ introduced by Goldman [G].

Let D be a chord diagram with n oriented circles C;, Cs,--+ ,Cy and v : D — ¥ a chord
diagram on X, considered up to free homotopy. Asin the previous paragraph we shrink the
chords on ¥ and represent I' = [] by n loops on ¥ with transversal intersections and with
the specified vertices corresponding to the shrunk chords. We assign finite dimensional
representations R; : G — Aut(V;), 1 < j < n, and the associated representations of the
Lie algebra are denoted by r; : g — End(V;), 1 <j < n.

Let ¢ be a flat G connection on ¥. Associated with ¢ and the above representations
r; 1 g — End(V;),1 < j < n, we define a function 7y : A*(X) — C in the following
way. The representation r;, 1 < j < n, is considered to be an element of g* ® VJ-* ® V.
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We show it graphically as in Figure 5a. The invariant bilinear form B : g x g —» R
defines ) € g ® g by identifying g with its dual, which is shown graphically as in Figure
5b associated to each chord. By the endpoints of the chords, each oriented circle Cj,
1 < j £ n, is divided into several arcs Cji, k = 1,2,---. Considering the holonomy along
the path 7(Cjk) on £ we obtain a linear map Hol,(c;,) : V; — Vj, which is considered to
be an element of V;* ® V; and is shown graphically as in Figure 5c.

Our way of defining 74(T') is quite similar to the method to define the weight system in
[BN]. Contracting the above three kind of tensors according to the chord diagram on T
we obtain a scalar which is denoted by 74(T"). We call 74(T") the weight system associated
with the holonomy ¢ and the representations r; : g — End(V}),1 < j < n. We have the
following proposition.

-8

5a 5b 5¢
Figure 5: graphical representation of the tensors

Proposition 3.2. The above Ty(T") is compatible with the 4 term relation and defines a
map
T, A*(Z) - C.

Let us go back to the case of the torus. We are going to discuss a slightly modified
version of the above general framework in the case of the torus. Let E = C/Z + Z7 be an
elliptic curve with the basis A, u of H1(E,Z) as in the previous section. Let g be the Lie
algebra sl(IN, C) and we fix representations 7; : g — End(V;),1 < j < n. The Heisenberg
group Hy acts naturally on V; by means of the embedding ¢ : Hy — GL(N, C) defined by
the matrices A; and A as in Section 2. We consider the projectively linear representation
a: H(E,Z) — Aut(Vj), 1 <j < n defined by A — A; and g — Az. More precisely, we -
consider the representation of the Heisenberg group & : Hy — Aut(V}), by corresponding
to each element z of H;(E,Zy) the linear transformation p(s(z)), where s is as defined
in Section 2.

Let I" be a chord diagram on the torus with n circles. Then, by means of the process
of the contraction of the tensors using the above representations 7;, 1 < j < n, and the
projectively linear representation « of Hy(E,Zy), we obtain a scalar, which is denoted
by 7(T'). Let us notice that since our representation of the fundamental group of the
torus is projectively linear, 7(I') is only well-defined up to a multiplication of a N-th
root of unity.
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So far, we have represented the chord diagram on the torus by shrinking the chords.
To compute 7 (') using the chord diagram with chords not necessarily shrunk, we notice
that forv € V,w € V*, g € Hy and X € g we have < w, X(gv) >=< gw, Ad(9)X (v) > .
The above adjoint action of the Heisenberg group is exactly the same as in (1.8).

4. Vassiliev invatiants

Let us recall the definition of an invariant of finite order for oriented links in an oriented
3-manifold M following [BL]. Any C valued invariant v of oriented links in M can be ex-
tended to be an invariant of immersed circles in M, which are allowed to have transversal
intersections, using the rule:

(X) = (A)-+(X)

Here we think of the above graphs as parts of bigger graphs which are identical outside
a small sphere. Let k be a non-negative integer. An invariant v of oriented links in
M is called an invariant of order k, if v vanishes on singular links with more than k
intersections. An invariant v of oriented links in M is called a Vassiliev invariant, or an
invariant of finite order, if it is of order k for some non-negative integer k. We denote by
Vi the vector space of Vassiliev invariants of order % for oriented links in M. The space
of all Vassiliev invariants V = U5V is a vector space with the increasing filtration

VocWViC---VpCe-v (4.1)

Let us now consider the case when M is the product of a closed oriented surface & and
the unit interval I = [0,1]. We have a natural projection map p: M — . Let L be an
oriented link with n components in M = £ x I. Projecting L onto X by p, we obtain a
link diagram drawn on . The notion of the framing is well-defined for links in ¥ x I.

Let Vi}(Z) denote the space of all C valued invariants of order k for oriented framed
links in 3 x I. For a chord diagram I' on £ we define w(v)(T') € C by the rule:

o (3 )= (34)-+() ()



It can be checked that the above w(v) is compatible with the 4 term relation and is called
the weight system associated with the invariant v. This induces a map

w : Vi (2)/Vi_1(B) — Homc(Ag(E), C). (4.2)

In the previous section we have shown that associated with representations of a Lie
group R; : G — Aut(Vj),1 < j < n, and a flat G connection ¢ on ¥, we can define
T4 € Homg(AR(Z),C). From the viewpoint of the Chern-Simons perturbative theory it
would be natural to ask if one can integrate 7y to construct a Vassiliev invariant v such
that w(v) = Ty.

We now go back to the case of the torus with the projective local system defined in
the previous section. For a chord diagram I' on the elliptic curve E = C/Z + Zr we
have defined the weight 7(T') satisfying the 4 term relation. We are going to construct
a Vassiliev invariant v of an oriented framed link in E x I satisfying w(v) = 7. Our
method is based on the holonomy of the elliptic KZ system. We refer the reader to [Go]
and [S] for a different approach in the case of links in a solid torus.

Before explaining our construction of Vassiliev invariants for links, let us first describe
tangles in E x I. Weset By = EXx {t} C ExI,0<t <1 AtangleTin FEx1Iis
a one-dimensional submanifold with boundary of E x I such that the boundary 0T is
contained in EgU Ej. Let J denote the segment in E defined as the image of the open
interval (0,1) by the covering map 7 : C — E. We suppose that 8T N Ep and 8T N Ey
consist of distinct points in the segment J. In the following we consider a tangle in £ X I
such that each connected component is oriented and framed.

Let T be an oriented framed tangle in E x I. To each connected component T; of T', we
assign a finite dimensional representation of si(N, C). We consider the parameter ¢ for
the unit interval [0,1] as a height function. Deforming the tangle up to regular isotopy,
we may suppose that there exists a partition of the unit interval 0 =9 <t; <--- <t <
ti+1 < -+ < t, = 1 satisfying the following conditions:

(1) For each i, 1 < i < p, Ey; intersects transversely with the tangle T, and T' N Ey,
consists of distinct points in the segment J.
(2) The restricted tangle T N E X [t;,ti41] is one of the following three types.

(i) a tangle with only one minimal point,
(ii) a tangle with only one maximal point,
(iii) a braid of E.

We denote by n(i) the number of points in TNEy; and we put TNEy; = {21, 22, -+ , Za(i)}
with 21,--- ,2,) € J and 21 < 29 < -+ < 2,5 Let Vi5, 1 < j < n(i), be the repre-
sentation of sl(V, C) assigned to the component of T' passing through z; € T'N Ey;. We
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J Jj+1

Figure 6: tangle with one minimal point

correspond to z; € T'N Ey; the representation Vf(i)

;> where €(¢) is 1 or —1 according as T
passes through E;, downward or upward. The notation V;j stands for V;; if € = 1 and for
the dual representation of V;; if e = —1.

For each t;, 1 <4 < p, we consider the tensor product

v =vievi e e V). (43)
Let us denote by T; ;41 the tangle T restricted to the interval [t;,¢;11]. We are going to
construct a map

ZEV V() — Vitiy1), 0<i<p-—1. (4.4)
Our construction is quite similar to the well-known one due to Reshetikhin and Turaev
[RT] and others, except that we are considering braids of the torus.

In the case when the tangle T;:+1 is a braid of the torus, we assign the linear map
ZF:V(t;) — V(tip1) obtained as the holonomy of the elliptic KZ system.

Let us now consider the case when the tangle T; ;41 contains only one minimal point
at t = s, t; < s; < ti41 as shown in Figure 6. We set V'(s;) = V(¢;) and to the tangle
restricted to [t;, s;] we assign the identity map. We denote by U the tangle T restricted to
[si,tit1]. Let € be a sufficiently small positive number and we decompose the tangle U into
2 parts, [s;, s; +¢€] and [s;i +¢,t;4+1]. We denote by U, the tangle restricted to [si +&,tiva].
To the tangle U, we assign the linear map f, : V(s; + €) — V(t;41) obtained as the
holonomy of the elliptic KZ system. We have a natural injection ¢ : V(s;) — V(s; + ¢)

determined by the canonical embedding C — Vz-j-(j ) ® V:J(fl'l) Here V-f](ﬂl) is the dual

1
representation of Vij-m. We define Z(U;) : V(s;) = V(ti4+1) to be the composition f. o e.
We set

Z() = }:1_'1% Z(Ug) exp <—%jilogs> . (4.5)

Investigating the local behaviour of the solution of the elliptic KZ system, it can been
shown in a similar way as in [LM] that the above limit is convergent. This construction
defines a linear map

Z(U) : V(si) = V(tit1)- (4.6)

By composing the identity map V' (¢;) — V(s;), we obtain the map Zf"'l V() = V(tig1).



In the case when the tangle T} ;41 contains only one maximal point, we define Z,-i"'1 in

a similar way using

oy Q;,j+1
Z(N) = él_’n%)exp (mlog e) Z(N¢). (4.7)

Now we define Z(T) by the composition ZP?_, .- Z?Z}. Using the integrability of the
elliptic KZ system, we can show in a similar way as in [BN] the following proposition.

Proposition 4.8. For an oriented framed tangle T in E X I, the map Z(T) : V(0) —
V(1) is invariant by a horizontal move preserving the framing, up to a multiplication of
a N-th root of unity.

Let L be an oriented framed link in E x I with n components. To each component L;
we assign Vj, a finite dimensional representation of sl(V, C) and we regard L as a colored
oriented framed tangle. The above construction gives a linear map Z(L) : C — C. We
denote by the same symbol Z(L), or Z(L; Vi, -+ ,V,) the complex number Z(L)(1).

Let C be a trivial knot with 0-framing possessing 2 minimal points and 2 maximal
points. We put y; = Z(C;V;). Asin [K] (see also [BN] and [LM]), we normalize Z(L) as

Z(L) = 4™ o™ Z(L), (4.9)

where m;, 1 < j < n, is the number of maximal points on the j-th component of L. The
above Z(L) has an expansion with respect to h = k71 of the form

Z(L) = Zo(L) + 3 Zi(L)A*. (4.10)
k>0

Theorem 4.11. Let L be an oriented framed link in the product of an elliptic curve
E and the unit interval I. Then, up to a multiplication of a N-th root of unity, Z(L)
- satisfies the following properties.

(1) Z(L) s a fegular 1sotopy invariant of L.
(2) Z(L) is a Vassiliev invariant of order k.
(8) ForT' a chord diagram on E with k chords, we have w(Z)(T') = T(T).

Proof: To show the assertion (1), it is enough to verify that 2(L) is invariant under
vertical moves preserving the framing. Let L’ be the link obtained by the move on the
j-th component, creating a kink with one extra minimal point and one extra maximal
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point. Then we have Z(L') = v;Z(L). Thus Z (L) is invariant under the above move.
Using this, in a similar way as in [BN}, one can conclude that Z (L) is a regular isotopy
invariant. The assertion (2) follows directly from the definition of invariants of finite order
and the expression of the holonomy of the elliptic KZ system given as in Proposition 2.7.
Finally, to evaluate w(Z;) on a chord diagram I" with k chords, we notice that the 1-form
w is written in the form as in (2.5) and that the local monodromy along z; = 2; is given
by §j/k. Comparing with the definition of 7(I'), we obtain the assertion (3). This
completes the proof.

Remark: If the link L is contained in a 3-ball, then it is clear that our invariants coincide
with usual Vassiliev invariants of oriented framed links in R? for si(N, C).
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