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Flexible boundaries in deformations of
| hyperbolic 3-manifolds
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§0. Introduction.

This gives a detailed description of a process of caluculations performedbin the paper [3]
with the same title. ‘

Let M be a cusped hyperbolic 3-manifold with non—efnpty geodesic boundary. A small
Dehn filling deformation of M on the cusps can be performed so that the boundary is kept
to be geodesic. Then assigning to each deformation a hyperbolic structure on the boundary,
we get a map B)s from the space of such deformations to the Teichmiiller space of M. See
[3] for precise argument about this fact or §1 for its review.

In this note, we give examples of M so that we can explicitly show By is a local
embedding at complete structure. Especially we will describe concrete calculations to see
such a phenomenon. By using a polyhedral decomposition of M given in §2, we will compute
the derivative of By at the complete structure by hand in the later sections.

Neumann-Reid [5] and Fujii [2] discovered examples of M such that By, is a constant
map. In both of these cases, we can see it by some geometric reasons. In contrast to them,

we need some calculations in the case that Bas is a local embedding.
§1. The map By,.

We will define the map By. Let N be a noncompact, orientable, complete hyperbolic
3-manifold of finite volume, and 5, : (V) — PSL;(C) its holonomy representation. Ac-
~ cording to Thurston, p, has a lift po : 71(/N) — SLy(C). Since SLy(C) is an algebraic set. the

space of representations Hom(m; (/V), SLy(C)) is also an algebraic set. To each representation



72

p, associated is its character x,. Culler and Shalen [1] showed that the irreducible component
of Hom(m;(N),SL,(C)) containing po is mapped by this correspondence onto a closed affine
variety X. The preimage of a character X, D€ar X,, consists of conjugate representations to
p. Thus a small neighborhood of x,, in X is bijectively identified with the set of conjugacy
classes of SL;(C)-representations near the conjugacy class of po. Note that this small neigh-
borhood is also identified with the set of conjugacy clésses of PSL,(C)-representations near
the conjugacy class of p.

It has been known by the local rigidity together with the Poincaré duality argument as
in [4] that the complex dimension of X is equal to the number of cusps of N and that the
character of py is a smooth point. If we choose a set of meridional elements {m;} for all
cusps of N, then the traces of these elements turn out to be a local coordinate of X near
the conjugacy class of po.

Now, suppose that M is an orientable complete hyperbolic 3-manifold of finite volume
with both cusps and compact geodesic boundaries. Let DM be the double of M along the
boundary and po be a holonomy representation of DM. DM admits an obvious involution
T switching the sides. Fix the set of meridians m;’s closed under 7, and choose a small
neighborhood U of x,, so that the traces of m;’s become a local coordinate of X near x,,-
Then the obvious involution 7 on DM induces an involution on U which fixes a diagonal set
Dy in U. It is a smooth submanifold of real dimension = #{cusps of DM}, which will be

our deformation space of M.

LEMMA 1. The restriction of a representation p near po whose conjugacy class is in Dy

to m1(8oM) is fuchsian, where oM is a component of the boundary M.

See [3] for the proof.
Assigning the hyperbolic structure of the boundary to such a deformation DM, where

p € Dy, we get a map
By : Dy — T(0M)

where 7 is the Teichmiller space of M.
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§2. Construction of Examples and Results.

Consider the Whitehead link L = K; UK, in S3. Removing a thin tubular neighborhood
of K, from the complement of L, we obtain a manifold W with one compact toral boundary

and one toral end. Choose an arc ¥ connecting two points on W as in Figure 1.

Figure 1

To give hyperbolic orbifold structures O,’s on W with singular set ¥ indexed by natural
numbers n > 2, we recall the fact, for instance in 7], that the regular ideal octahedron is
a fundamental domain to create the hyperbolic manifold homeomorphic to the Whitehead
link complement. Replace the regular ideal octahedron by the truncated octahedron as
in Figure 2, where the dihedral angle along each edge connecting truncated faces is 7/2n
and that of each edge through oo is m/2. Then the faces topologically identified to creat
the Whitehead link complement are still isometric and the identification gives a hyperbolic

orbifold O, underlying on W where the singular set is 5 with rotation angle 27 /n.



Figure 2

Since O, has one cusp, the space Do, has real dimension 2. Also O, has a toral bound-
ary with two cone point of rotation angle 2r/n. Hence the Teichmiiller space of 0Oy is

homeomorphic to R*. Our goal is

THEOREM. The derivative of the map Bo, : Do, — T(00,) at the complete structure
“has rank 2.

Taking n-fold cyclic branched covers along %, we have

COROLLARY. There are infinitely many hyperbolic 3-manifold M with both a cusp and
a boundary such that the map By : Dy — T (0M) is a local embedding near the complete
structure.

§3. Truncated Tetrahedra.

The truncated octahedron to creat O is decomposed into four congruent truncated

tetrahedra as in Figure 3.
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In this section, we will give a parametrization of isometry classes of truncated tetrahedra.

Figure 3

Label the triangular faces by A, B, and their edges by A;, B; (i = 1,2,3) as in Figure
4. We call each of these edges an external edge, and denote the length of A; and B; by a;
and b; respectively.
A,
A

B

B, -
Figure 4

These lengths are subject to two identities.
One is the following. If we let [ be the length of the edge shared by two pentagonal

faces, then regarding it as a bottom of the left pentagon, we obtain an expression of [ in

terms of a; and b,,
cosh a; cosh b, + 1

| =
cosh sinh a; sinh b,

Simultaneously, if we regard it as the bottom of the right pentagon, we obtain an expression
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of | in terms of ay and b,
cosh a; cosh by + 1

sinh a5 sinh b;
Then since these two are the same quantity, we obtain one identity involving edge lengths.
1) cosha, cosh by + 1 B cosh ag cosh b; + 1 _
sinh a; sinh b, sinh a4 sinh b;

cosh! =

0.

The other concerns with angles. By the hyperbolic cosine rule for the top triangle, we

have
cosh a; cosha, — cosh as

cos 0 = ; ;
top sinh a; sinh aq

where Htop is the angle between A; and A;. If we look at the bottom triangle, then the

corresponding angle 6}, ;1 .., has an expression in terms of b;’s.

cosh b; cosh by — cosh b3

0 =
©%Ybottom sinh b; sinh b,

They represent the same dihedral angle, and we obtain another relation,

(2) cos Oop — cos O i1 om = 0-

It is not hard to verify that the set of six length variables subject to the relations (1)

and (2) parametrizes isometry classes of labelled truncated tetrahedra.
84. Gluing Consistency.

We will parametrize the deformation of O,, in terms of the parametrization of truncated
tetrahedra given in §3.

To create nonsingular but not necessarily complete hyperbolic orbifold structure on W,
it i1s sufficient to verify gluing consistency which consists of the isometricity conditions for
faces to be identified, and the cone angle conditions along edges. We will see when these are
satisfied.

If the external edges to be identified have the same length, then the isometricity con-
dition for face identification is satisfied. Since there are twelve such pairs, there are twelve
simple identities in the variables we must obviously require. For simplicity, we just assign
the same variable to each pair to be identified from the beginning and reduce the number of

the variables to the half. Here let us choose the followings as such twelve variables.

bi. es, a3, ca, d1, €1, fa, g1, ho, a3, 3, gs.
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Then the relations of type (1) and (2) for the four truncated tetrahedra become depen-
dent after gluing. In fact, reading off the lengths of the bottom edges of the pentagonal faces
in order, we can see that one of the four equations of type (1), say the equation corresponding
to the truncated tetrahedron parametrized by {g;,%;}, becomes a consequence of the other
three.

To compute the cone angle conditions along edges, we label them by P;, P, P; and
% as in Figure 1. The dihedral angle of each edge is described in terms of the lengths of
external edges as the above expression of etop' To obtain nonsingular orbifold structure,
the total sum of dihedral angles around the first three edges must be 27 and the last 27 /n.
These constrains give four identities. The last one is independent from the others, however
one of the first three identities is a consequence of the other two. To see this, recall that a
toral section of the end always admits a similarity structure. Then the total sum of angles
of triangles appeared in the horospherical triangulation is 4 x 2. It is equal to the sum of
the total sum of dihedral angles along P; and P, and twice of that of P;. Then we need the

following three equations:

2ece, (the dihedral angle along €) — 27 = 0,
Yece, (the dihedral angle along e) — 27 = 0,
Yecey (the dihedral angle along e) — 27 /n = 0,

where &; (resp. &x) is a set of edges of the truncated tetrahedra which are glued to be P;
(resp. ©). _
We thus have obtained ten relations with twelve variables from gluing consistency. These

relations define a map

f . R12 ___}RIO

such that its zero set W = f~1(0) consists of the points in R'? satisfying the gluing consis-
tency.
Denote by = and y the two variables indicated in Figure 2, and by z;, - - - z;0 the other

10 variables as follows:

r =b, ¥y = ées,

21 = a2, 23 = C, 23 = dl, Z4 = €1, 25 = fz, 26 = GJ1, 27 = hz, 2g = a3, Z9 = C3, 210 = g3.



Also let wg € R!? be the point corresponding to the complete hyperbolic structure.

Then we obtain

{
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( —a 0 0 Q Qa 0 0 0 0 0
o —a -« 0 0 0 0 0 0 0
0 0 0 o «a —« —a 0 0 0
p 0 0 —B B 0 0 V23 =28 0
of; p B -8 0 0 0 0 0 V2P 0
(az,. ("’0)) =l o 0 0 8 -8 B =B 0 0 —28
0 -6 B 0 0 g -8 —=Vv28 0 V2P
0% v V26 4 =26 =26 —V26 ) 26 0
—V26 =26 4 =26 o v v 6 0 26
2B 28 0 0 2B 0 28 2v28 V28 V2B
ofi . \\' _ . |
(am ('wo)) = (_a7a707_18a —ﬂa070777_\/§6a O)a
of;, \\"
L) = (0.00,0,-v25, V38.0.650)
where o = — 21 c—cos
cy/2¢ 1+c’ﬂ Ll 1o ,/2c(1+c \/
$ = sin —
2n

af:
aZj

the unique solutions of the following two linear equations in terms of w and v respectively:

(L)) w = (G
) (2

of; ofi
In fact, if we denote the unique solutions by ug and vo respectively, we have

Then we can see that the rank of the matrix ( ('wo)> is 10. Also it is not hard to find

aZj 8

ul = (-1,1,-1,-1,1,1,-1,0,0,0),
va = (0,-v2/2,v2/2,v2/2,—v2/2,0,0,-1,0,0).

Then we obtained
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LEMMA 2. W = f~1(0) is a 2-dimensional smooth manifold near w, and we have two
paths on W C R1?,

£(t) = wo + xt + (higher order), n(t) = wo + yt + (higher order),

such that
1 AO
T = 0 ) Y= 1 ’
o - ‘ Vo

where the y-component of £(t) and the z-component of n(t)‘are constant, and the z-

component of {(t) and the y-component of n(t) have no terms of degrees n (n > 2).
§5. Dehn Filling Space and Computation.

The space DFp,, the Dehn filling parameter space of O, is the set of complex lengths
of .the preferred meridian m for the cusp. The squares of the elements of DF o, turn out to
be a local coordinate of Dg, near the complete structure.

Consider a map |

G:W —DFo,,

which assigns to each element of W the corresponding Dehn filling parameter.

All inner angles of flat triangles, produced by cutting off the neighborhoods of the ideal
vertices of the truncated tetrahedra along horospheres, are described explicitly in terms
of the twelve parameters z,y, z,..., 210, by using hyperbolic trigonometry. Following [6]
[7]. the complex length G(w) of m is described by the angles of the triangles. Then by di-

rect computations, we can verify that the rank of the Jacobian of G at wg is 2. Thus we have
LEMMA 3. G is a local diffeomorphism at wo, € W.

Letting £ be the complex length of m, the trace of m is expressed by 2 cosh —g— Since the
complex length corresponding to the complete structure is 0, the natural map DFp, — Do,
is a 2-fold branched covering around the complete structure. Hence the composition 7 of G
with the natural map is also a 2-fold covering branched at wg. 7 is in fact the map locally

looks like a square function : z — 22,
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The lengths L; of geodesic segments S; (z = 1,...,4) which are illustrated by thick lines
in Figure 5 cause a quadruple (L;, Ly, L3, L4) which defines a global coordinate of 7(80,,).

Sy A S E

cone points

Figure 5

Let B be a map assigning to the element of W the corresponding hyperbolic structure of
the boundary. Then its induced map from Dy is Bp,. Let B; (resp. B;) be the composition
of B (resp. Bo,) with L;.

W ~
T \
D T " 4
oo T00) — 71T Ty R

Now consider a quadrilateral in general. If the lengths of four sides and one of diagonals
are known, then the length of the other diagonal can be expressed in terms of them by
hyperbolic trigonometry. Applying this to the quadrilateral in Figure 5 which is made of
two triangular faces, we have an expression of B; as a function of our length parameters.

Because of the local picture of 7, letting £(t) = 7 0£(v/?) and 7j(¢) = 7 on(v/t), we obtain

smooth paths on Dp, such that its tangent vectors

d—
v = af(t)lmo ) w= Eﬁ(t)h:o
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are nontrivial. The images of these vectors by the derivative dB; are now expressed by

i) = BED) B
dBi(w) = @‘E‘Zﬂ - dBi(Zl(t\/t_)) _

To carry out the actual computation of the right hand sides, we use the Taylor expansions

of £(t) and 7(t) up to the second degree. They can be deribed from the formula,

fi(€) 0% f; déy , . dE; of; d?¢;
7(0) = ;"E m(wo)'d—;(o)%(o) + XJ: 8_zj(wo) e7e (0).
By using it, we obtained the following:
0
0 0 .
0 V2(1 + s)/4sy/c(1 + ¢)
g\ﬁ%jﬁ V2(1 = ¢+ 55 + 3c¢s) /8sy/c(1 + ¢)
0 : V2(1 + s)v/T ¥ ¢/8sv/c
&2¢; 0 &2, ' V2(1 + 8)/T + ¢/8s+/c
(dt2 (O)> = V2T Fe//e | (dtz (0)): V2(1 —c+5s +3cs)/8sy/c(1+¢) | >
0 0
V2¢/T+ ¢/ /c V2(1 + 8)/4sy/c(1 + ¢)
;Vi'{'c/\/a V2(1 = ¢+ 35 + ¢s)/2s1/c(1 + ¢)
2%;% V2(1 —c+ s+ cs)/25,/c(1 + ¢)

V2(1 —c+ s+ cs)/2s,/c(1 + )

where ¢ = cos X, s = sin =.
2n? 2n

By performing rather lengthy but direct computations by hand, we verified the following:
LEMMA 4.

dBy(v) = —% (<0),  dBy(v)= = (>0),

1
e

dBl(w):Sz(Tl\/—_c—c) (>0), dBy(w) = ;:\'/15 (> 0),

T LT
where ¢ = cos o and s = sin —.
n



Lemma 4 shows that these tangent vectors on Dg, go to a linearly independent pair in

the tangent space of 7(90,,) at the original structure and we complete the proof of Theorem.
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