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\S 0. Introduction.

This gives a detailed description of a process of caluculations performed in the paper [3]

with the same title.

Let $M$ be a cusped hyperbolic 3-manifold with non-empty geodesic boundary. A small
Dehn filling deformation of $M$ on the cusps can be performed so that the boundary is kept
to be geodesic. Then assigning to each deformation a hyperbolic structure on the boundary,
we get a map $B_{M}$ from the space of such deformations to the Teichm\"uller space of $\partial \mathit{1}\mathrm{t}/I$ . See
[3] for precise argument about this fact or \S 1 for its review.

In this note, we give examples of $M$ so that we can explicitly show $B_{M}$ is a local
embedding at complete structure. Especially we will describe concrete calculations to see
such a phenomenon. By using a polyhedral decomposition of $M$ given in \S 2, we will compute

the derivative of $B_{M}$ at the complete structure by hand in the later sections.
Neumann-Reid [5] and Fujii [2] discovered examples of $M$ such that $B_{M}$ is a constant

map. In both of these cases, we can see it by some geometric reasons. In contrast to them,

we need some calculations in the case that $B_{M}$ is a local embedding.

\S 1. The map $B_{M}$ .

We will define the map $B_{M}$ . Let $N$ be a noncompact, orientable, complete hyperbolic
3-manifold of finite volume, and $\overline{\rho}_{0}$ : $\pi_{1}(N)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ its holonomy representation. Ac-
cording to Thurston, $\overline{\rho}_{0}$ has a lift $\rho_{0}$ : $\pi_{1}(N)arrow \mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . Since $\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ is an algebraic set. the
space of representations $\mathrm{H}\mathrm{o}\mathrm{m}(\pi 1(\mathit{1}\mathrm{V}), \mathrm{s}\mathrm{L}2(\mathrm{C}))$ is also an algebraic set. To each representation
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$\rho$ , associated is its character $\chi_{\rho}$ . Culler and Shalen [1] showed that the irreducible component

of $\mathrm{H}\mathrm{o}\mathrm{m}(\pi 1(N), \mathrm{s}\mathrm{L}2(\mathrm{C}))$ containing $\rho_{0}$ is mapped by this correspondence onto a closed affine

variety $X$ . The preimage of a character $\chi_{\rho}$ near $\chi_{\rho 0}$ consists of conjugate representations to

$\rho$ . Thus a small neighborhood of $\chi_{\rho 0}$ in $X$ is bijectively identified with the set of conjugacy

classes of $\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$-representations near the conjugacy class of $\rho_{0}$ . Note that this small neigh-

borhood is also identified with the set of conjugacy classes of $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ -representations near

the conjugacy class of $\overline{\rho}_{0}$ .

It has been known by the local rigidity together with the Poincar\’e duality argument as

in [4] that the complex dimension of $X$ is equal to the number of cusps of $N$ and that the

character of $\rho_{0}$ is a smooth point. If we choose a set of meridional elements $\{m_{j}\}$ for all

cusps of $l\mathrm{V}$ , then the traces of these elements turn out to be a local coordinate of $X$ near

the conjugacy class of $\rho_{0}$ .
Now, suppose that $M$ is an orientable complete hyperbolic 3-manifold of finite volume

with both cusps and compact geodesic boundaries. Let $DM$ be the double of $M$ along the

boundary and $\rho_{0}$ be a holonomy representation of $DM$ . $DM$ admits an obvious involution

$\tau$ switching the sides. Fix the set of meridians $m_{j}’ \mathrm{s}$ closed under $\tau$ , and choose a small

neighborhood $U$ of $\chi_{\rho_{0}}$ so that the traces of $m_{j}’ \mathrm{s}$ become a local coordinate of $X$ near $\chi_{\rho_{0}}$ .

Then the obvious involution $\tau$ on $DM$ induces an involution on $U$ which fixes a diagonal set

$D_{M}$ in $U$ . It is a smooth submanifold of real dimension $=\#$ { $\mathrm{c}\mathrm{u}\mathrm{s}_{\mathrm{P}^{\mathrm{S}}}$ of $DM$ }, which will be

our deformation space of $M$ .

LEMMA 1. Tlie restriction of a representation $\rho n$ear $\rho_{0}$ whose conjugacy class is in $D_{M}$

to $\pi_{1}(\partial_{0}M)$ is fucllsiani $wl_{ler}e\partial 0\mathrm{n}f$ is a componen$t$ of the bound$\mathrm{a}ry\partial M$ .

See [3] for the proof.

Assigning the hyperbolic structure of the boundary to such a deformation $Dl\iota,I_{\beta}$ where

$\rho\in D_{M}$ , we get a map
$B_{M}$ : $D_{M}arrow \mathcal{T}(\partial M)$

where $\mathcal{T}$ is the Teichm\"uller space of $\partial M$ .
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\S 2. Construction of Examples and Results.

Consider the Whitehead link $L–I\mathrm{f}_{1}\cup IC_{2}$ in $S^{3}$ . Removing a thin tubular neighborhood
of $I\mathrm{f}_{2}$ from the complement of $L$ , we obtain a manifold $W$ with one compact toral boundary
and one toral end. Choose an arc $\Sigma$ connecting two points on $\partial W$ as in Figure 1.

Figure 1

To give hyperbolic orbifold structures $O_{n}’ \mathrm{s}$ on $W$ with singular set $\Sigma$ indexed by natural
numbers $n\geq 2\text{ノ}$. we recall the fact, for instance in [ $7|$ , that the regular ideal octahedron is
a fundamental domain to create the hyperbolic manifold homeomorphic to the Whitehead
link complement. Replace the regular ideal octahedron by the truncated octahedron as
in $\mathrm{F}\mathrm{i}_{\mathrm{o}}\sigma \mathrm{u}\mathrm{r}\mathrm{e}2$ , where the dihedral angle along each edge connecting truncated faces is $\overline{\mathrm{I}},/2n$

and that of each edge through $\infty$ is $\pi/2$ . Then the faces topologically identified to creat
the $1^{\mathit{1}}\backslash ^{-}\mathrm{h}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{d}$ link complement are still isometric and the identification gives a hyperbolic
orbifold $O_{n}$ underlying on $W$ where the singular set is $\Sigma$ with rotation angle $2_{\overline{J1}}/n$ .
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Figure 2

Since $O_{n}$ has one cusp, the space $D_{O_{n}}$ has real dimension 2. Also $O_{n}$ has a toral bound-

ary with two cone point of rotation angle $2_{\overline{J1}}/n$ . Hence the Teichm\"uller space of $\partial O_{n}$ is

homeomorphic to $\mathrm{R}^{4}$ . Our goal is

THEOREM. $Tl_{l}e$ derivati $\iota^{\gamma}e$ of the map $B_{O_{n}}$ : $D_{O_{n}}arrow \mathcal{T}(\partial on)$ at the complete structure

has rank 2.

Taking $n$ -fold cyclic branched covers along $\Sigma$ , we have

COROLLARY. Tllere are infinitely $\mathrm{m}$any hyperbolic 3-manifold $\mathit{1}\mathrm{t}/I$ with $botl_{l}$ a cusp and

a boundary such tllat the map $B_{M}$ : $D_{M}arrow \mathcal{T}(\partial M)$ is a local $embeddin\mathrm{o}\sigma$ near the complete

structu$\mathrm{r}e$ .

\S 3. Truncated Tetrahedra.

The truncated octahedron to creat $O_{n}$ is decomposed into four congruent truncated

tetrahedra as in Figure 3.
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In this section, we will give a parametrization of isometry classes of truncated tetrahedra.

Figure 3

Label the triangular faces by $A,$ $B$ , and their edges by $A_{i},$ $B_{i}(i=1,2,3)$ as in Figure
4. We call each of these edges an external edge, and denote the length of $A_{j}$ and $B_{j}$ by $\mathit{0}_{j}$

and $b_{j}$ respectively.

Figure 4
These lengths are subject to two identities.

One is the following. If we let $l$ be the length of the edge shared by two pentagonal
faces., then regarding it as a bottom of the left pentagon, we obtain an expression of $l$ in
terms of $a_{1}$ and $b_{2}$ ,

$\cosh l=\frac{\cosh a_{1}\cosh b_{2}+1}{\sinh a_{1}\sinh b_{2}}$ .

Simultaneously, if we regard it as the bottom of the right pentagon, we obtain an expression
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of $l$ in terms of $a_{2}$ and $b_{1}$ ,
$\cosh l=\frac{\cosh a_{2}\cosh b1+1}{\sinh a_{2}\sinh b_{1}}$ .

Then since these two are the same quantity, we obtain one identity involving edge lengths.

(1) $\frac{\cosh a_{1}\cosh b_{2}+1}{\sinh a_{1}\sinh b_{2}}-\frac{\cosh a_{2}\cosh b_{1}+1}{\sinh a_{2}\sinh b_{1}}=0$ .

The other concerns with angles. By the hyperbolic cosine rule for the top triangle. we

have
$\cos\theta_{\mathrm{t}\mathrm{o}\mathrm{p}}=\frac{\cosh a_{1}\cosh a_{2^{-}}\cosh a_{3}}{\sinh a_{1}\sinh a_{2}}$ ,

where $\theta_{\mathrm{t}\mathrm{o}\mathrm{p}}$ is the angle between $A_{1}$ and $A_{2}$ . If we look at the bottom triangle, then the

corresponding angle $\theta_{\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{m}}\mathrm{O}$ has an expression in terms of $b_{j}’ \mathrm{s}$ .

$\cos\theta_{\mathrm{b}_{\mathrm{o}\mathrm{t}}\mathrm{o}}=\mathrm{t}\mathrm{m}\frac{\cosh b_{1}\cosh b_{2}-\cosh b_{3}}{\sinh b_{1}\sinh b_{2}}$ .

They represent the same dihedral angle, and we obtain another relation,

(2) $\cos\theta_{\mathrm{t}\mathrm{o}_{\mathrm{P}}}-\cos\theta=\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{t}\mathrm{o}\mathrm{m}0$ .

It is not hard to verify that the set of six length variables subject to the relations (1)

and (2) parametrizes isometry classes of labelled truncated tetrahedra.

\S 4. Gluing Consistency.

We will parametrize the deformation of $O_{n}$ in terms of the parametrization of truncated

tetrahedra given in \S 3.

To create nonsingular but not necessarily complete hyperbolic orbifold structure on $\mathrm{T}k/^{r}$ ,

it is sufficient to verify gluing consistency which consists of the isometricity conditions for

faces to be identified, and the cone angle conditions along edges. We will see when these are

satisfied.

If the external edges to be identified have the same length, then the isometricity con-

dition for face identification is satisfied. Since there are twelve such pairs, there are twelve

simple identities in the variables we must obviously require. For simplicity, we just assign

the same variable to each pair to be identified from the beginning and reduce the number of

the variables to the half. Here let us choose the followings as such twelve variables.

$b_{1:}e_{3},$ $a_{2},$ $c_{2},$ $d_{1},$ $e_{1},$ $f_{2},$ $g_{1},$ $h_{2},$ $a_{3},$ $c_{3},$ $g_{3}$ .
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Then the relations of type (1) and (2) for the four truncated tetrahedra become depen-
dent after gluing. In fact, reading off the lengths of the bottom edges of the pentagonal faces
in order, we can see that one of the four equations of type (1), say the equation corresponding
to the truncated tetrahedron parametrized by $\{g_{j}, h_{j}\}$ , becomes a consequence of the other
three.

To compute the cone angle conditions along edges, we label them by $P_{1},$ $P_{2},$ $P_{3}$ and
$\Sigma$ as in Figure 1. The dihedral angle of each edge is described in terms of the lengths of
external edges as the above expression of $\theta_{\mathrm{t}\mathrm{o}\mathrm{p}}$ . To obtain nonsingular orbifold structure,
the total sum of dihedral angles around the first three edges must be $2\pi$ and the last $2\pi/n$ .
These constrains give four identities. The last one is independent from the others, however
one of the first three identities is a consequence of the other two. To see this, recall that a
toral section of the end always admits a similarity structure. Then the total sum of angles
of triangles appeared in the horospherical triangulation is $4\cross 2\pi$ . It is equal to the sum of
the total sum of dihedral angles along $P_{1}$ and $P_{2}$ and twice of that of $P_{3}$ . Then we need the
following three equations:

$\Sigma_{e\in \mathrm{c}_{1}}c$ (the dihedral angle along $e$ ) $-2\pi=0$ ,

$\Sigma_{\mathrm{e}\in^{c}2}$. (the dihedral angle along $e$ ) $-2\pi=0$ ,

$\Sigma_{e\in}.c_{\Sigma}$ (the dihedral angle along $e$ ) $-2\pi/n=0$ ,

where $\mathcal{E}_{j}$ (resp. $\mathcal{E}_{\Sigma}$ ) is a set of edges of the truncated tetrahedra which are glued to be $P_{j}$

(resp. $\underline{\nabla}$ ).

We thus have obtained ten relations with twelve variables from gluing consistency. These
relations define a map

$f:\mathrm{R}^{12}arrow \mathrm{R}^{10}$ ,

such that its zero set $\mathcal{W}=f^{-1}(0)$ consists of the points in $\mathrm{R}^{12}$ satisfying the gluing consis-
tency.

Denote by $x$ and $y$ the two variables indicated in Figure 2, and by $z_{1},$ $\cdots z_{10}$ the other
10 variables as follows:

$x$ $=b_{1}$ , $y=e_{3}$ ,

$z_{1}$ $=a_{2},$ $z_{2}=c_{2},$ $z_{3}=d_{1},$ $z_{4}=e_{1},$ $z_{5}=.f_{2},$ $z_{6}=g_{1},$ $z_{7}=h_{2},$ $z_{8}=a_{3},$ $z_{9}=c_{3},$ $z_{10}=g_{3}$ .
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Also let $w_{0}\in \mathrm{R}^{12}$ be the point corresponding to the complete hyperbolic structure.

Then we obtain

$( \frac{\partial f_{i}}{\partial z_{j}}(w_{0})\mathrm{I}=(-\sqrt{2}\delta-\alpha 2\beta\beta\alpha\gamma\beta 000$ $-\sqrt{2}-\beta-\alpha_{\delta}2\beta\beta\gamma 0000$
$-\sqrt{2}-\alpha_{\delta}-\beta\gamma\beta 00000$

$-\sqrt{2}\delta-\beta\beta\alpha\alpha\gamma 0000$
$-\sqrt{2}\delta-\beta 2\beta\gamma\beta\alpha\alpha 000$

$-\sqrt{2}-\gamma\beta\beta 00^{\alpha_{\delta}}000$
$-\sqrt{2}-,’\beta--\alpha 2^{\wedge}\theta 00_{l}00\beta\delta$ $-\sqrt{2}\beta 2\sqrt{2}\mathit{3}\sqrt{2}00000^{\beta}\delta\delta$ $-\sqrt{2}\beta\sqrt{2}\beta\sqrt{2}\beta 2\delta 000000$ $-\sqrt{2}\beta\sqrt{2}\beta\sqrt{2}\beta 2000000\delta)$

$( \frac{\partial f_{i}}{\partial x}(w\mathrm{o})\mathrm{I}T=(-\alpha, \alpha, \mathrm{o}, -\beta, -\beta, 0,0, \gamma, -\sqrt{2}\delta, \mathrm{o})$ ,

$( \frac{\partial f_{i}}{\partial y}(W_{0}))^{T}=(0,0,0, \mathrm{o}, -\sqrt{2}\beta, \sqrt{2}\beta, 0, \delta, \delta, \mathrm{o})$ ,

where $\alpha=-\frac{s^{2}}{c\sqrt{2c(1+C)}},$ $\beta=-\frac{s^{2}}{\sqrt{2c(1+C)}},$ $\gamma=\frac{2c-1}{\sqrt{2c(1+c)}},$ $\delta=\frac{1}{2\sqrt{c(1+c)}},$
$c= \cos\frac{\pi}{2n}$ ,

$s= \sin\frac{\pi}{2n}$ .

Then we can see that the rank $\mathrm{o}\mathrm{f}$

.
the matrix $( \frac{\partial f_{i}}{\partial z_{j}}(w_{0})).\mathrm{i}\mathrm{S}10$ . Also it is not hard to find

the unique solutions of the $\mathrm{f}\mathrm{o}\mathrm{l}1_{\mathrm{o}\mathrm{w}1}\mathrm{n}\mathrm{g}$ two linear equations $\ln$ terms of $u$ and $v$ respectively:

$( \frac{\partial f_{i}}{\partial z_{j}}(w_{0})\mathrm{I}u$ $=-( \frac{\partial f_{i}}{\partial x}(w_{0})\mathrm{I}$ ,

$( \frac{\partial f_{i}}{\partial z_{j}}(w_{0}))v$ $=-( \frac{\partial f_{i}}{\partial y}(w_{0})\mathrm{I}\cdot$

In fact, if we denote the unique solutions by $u_{0}$ and $v_{0}$ respectively. we have

$u_{0}^{T}$ $=$ $($ -1,1, $-1,$ -1,1,1, -1,0,0,0 $)$ ,

$v_{0}^{T}$ $=$ $(0, -\sqrt{2}/2, \sqrt{2}/2, \sqrt{2}/2, -\sqrt{2}/2,0,0, -1, \mathrm{o}_{\int}.\mathrm{o})$ .

Then we obtained
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LEMMA 2. $\mathcal{W}=f^{-1}(0)$ is a 2-dimensional smooth manifold near $w_{0}$ and we have $t\iota\gamma O$

paths on $\mathcal{W}\subset \mathrm{R}^{12}$ ,

$\xi(t)=w_{0}+xt+$ ( $l_{l}ig\mathrm{A}er$ order), $\eta(t)=w_{0}+yt+$ ( $l_{l}ig\Lambda er$ order),

$sud_{l}$ that

$.\cdot.x=..,\cdot..$’ $y=..\backslash \cdot.$,

vvhere the $y$ -compon$ent$ of $\xi(t)$ and the $x$ -component of $\eta(t)$ are constant, and the x-
component of $\xi(t)$ and the $y$ -component of $\eta(t)$ Aa$ve$ no terms of degrees $n(n\geq 2)$ .

\S 5. Dehn Filling Space and Computation.

The space $D\mathcal{F}_{O_{n}}$ , the Dehn filling parameter space of $O_{n}$ , is the set of complex lengths
of the preferred meridian $m$ for the cusp. The squares of the elements of $D\mathcal{F}_{O_{n}}$ turn out to

be a local coordinate of $D_{O_{n}}$ near the complete structure.
Consider a map

$G$ : $\mathcal{W}arrow D\mathcal{F}_{O_{n}}$ ,

which assigns to each element of $\mathcal{W}$ the corresponding Dehn filling parameter.

All inner angles of flat triangles, produced by cutting off the neighborhoods of the ideal

vertices of the truncated tetrahedra along horospheres, are described explicitly in terms
of the twelve parameters $x,$ $y,$ $z_{1},$ $\ldots,$ $Z_{10}$ , by using hyperbolic trigonometry. Following [6]

[7]. the complex length $G(w)$ of $m$ is described by the angles of the triangles. Then by di-
rect computations, we can verify that the rank of the Jacobian of $G$ at $w_{0}$ is 2. Thus we have

LEMMA 3. $G$ is a local diffeomorpllism at $w_{0}\in \mathcal{W}$ .

Letting $\mathcal{L}$ be the complex length of $m$ , the trace of $m$ is expressed by 2 $\cosh\frac{\mathcal{L}}{2}$ . Since the

complex length corresponding to the complete structure is $0$ , the natural map $D\mathcal{F}_{O_{n}}arrow D_{O_{n}}$

is a 2-fold branched covering around the complete structure. Hence the composition $\pi$ of $G$

with the natural map is also a 2-fold covering branched at $w_{0}$ . $\pi$ is in fact the map locally

looks like a square function : $zarrow z^{2}$ .

79



The lengths $L_{i}$ of geodesic segments $S_{i}(i=1, \ldots,4)$ which are illustrated by thick lines

in Figure 5 cause a quadruple $(L_{1}, L_{2},L_{3}, L_{4})$ which defines a global coordinate of $\mathcal{T}(\partial O_{n})$ .

LUIIC }$\mathrm{J}\cup 111\iota \mathrm{i}$’

Figure 5

Let $\tilde{B}$ be a map assigning to the element of $\mathcal{W}$ the corresponding hyperbolic structure of

the boundary. Then its induced map from $D_{O_{n}}$ is $B_{O_{n}}$ . Let $\tilde{B}_{i}$ (resp. $B_{x}$ ) be the composition

of $\tilde{B}$ (resp. $B_{O_{n}}$ ) with $L_{i}$ .

$\pi\downarrow \mathcal{W}\backslash ^{\tilde{B}}$

$D_{O_{n}}\overline{B_{O_{n}}}\mathcal{T}(\partial On)$
$(L_{1}, L_{2_{}}.L3, L_{4})$

$\mathrm{R}^{4}$

Now consider a quadrilateral in general. If the lengths of four sides and one of diagonals

are known, then the length of the other diagonal can be expressed in terms of them by

hyperbolic trigonometry. Applying this to the quadrilateral in Figure 5 which is made of

two triangular faces, we have an expression of $\tilde{B}_{i}$ as a function of our length parameters.

Because of the local picture of $\pi,$ letting $\overline{\xi}(t)=\pi 0\xi(\sqrt{t})$ and $\overline{\eta}(t)=\pi 0\eta(\sqrt{t})$ , we obtain

smooth paths on $D_{O_{n}}$ such that its tangent vectors

$v= \frac{d}{dt}\overline{\xi}(t)|t=0$ , $w= \frac{d}{dt}\overline{\eta}(t)|_{t=}0$
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are nontrivial. The images of these vectors by the derivative $dB_{i}$ are now expressed by

$dB_{i}(v)$ $= \frac{dB_{i}(\overline{\xi}(t))}{dt}|_{t=0}$ $= \frac{d\tilde{B}_{i}(\xi(\sqrt{t}))}{dt}|_{t=0}$ ,

$dB_{i}(w)$ $= \frac{dB_{i}(\overline{\eta}(t))}{dt}|_{t=0}$ $= \frac{d\tilde{B}_{i}(\eta(\sqrt{t}))}{dt}|_{t=0}$

To carry out the actual computation of the right hand sides, we use the Taylor expansions
of $\xi(t)$ and $\eta(t)$ up to the second degree. They can be deribed from the formula,

$\frac{d^{2}f_{i}(\xi)}{dt^{2}}(0)=\sum_{j,k}\frac{\partial^{2}f_{i}}{\partial z_{j}\partial z_{k}}(w_{0)\frac{d\xi_{k}}{dt}(0})\frac{d\xi_{j}}{dt}(0)+\sum_{j}\frac{\partial f_{i}}{\partial z_{j}}(w_{0})\frac{d^{2}\xi_{j}}{dt^{2}}(0)$.

By using it. we obtained the following:

$( \frac{d^{2}\xi_{i}}{dt^{2}}(\mathrm{o}))=$

ノ
$0$

$\backslash$

$0$

$\sqrt{2}\sqrt{1+c}/\sqrt{c}$

$\sqrt{2}\sqrt{1+c}/\sqrt{c}$

$0$

$0$

$\sqrt{2}\sqrt{1+c}/\sqrt{c}$

$0$

$\sqrt{2}\sqrt{1+c}/\sqrt{c}$

$4\sqrt{1+c}/\sqrt{c}$

$2\sqrt{1+c}/\sqrt{c}$

$\backslash$

$2\sqrt{1+c}/\sqrt{c}$
$/$

, $( \frac{d^{2}\eta_{i}}{dt^{2}}(\mathrm{o}))=$ ,

where $c= \cos\frac{\pi}{2n},$ $s= \sin\frac{\pi}{2n}$ .
By performing rather lengthy but direct computations by hand, we verified the following:

LEMMIA 4.

$dB_{1}(v)=- \frac{1}{\sqrt{c}}$ $(<0)$ , $dB_{2}(v)= \frac{1}{\sqrt{c}}$ $(>0)$ ,

$dB_{1}(w)= \frac{s^{2}(1-c)}{4\sqrt{c}}$ $(>0)$ , $dB_{2}(w)= \frac{s+1}{8s\sqrt{c}}$ $(>0)$ ,

where $c= \cos\frac{\pi}{2n}$ and $s= \sin\frac{\pi}{2n}$ .
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Lemma 4 shows that these tangent vectors on $D_{O_{n}}$ go to a linearly independent pair in

the tangent space of $\mathcal{T}(\partial O_{n})$ at the original structure and we complete the proof of Theorem.
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