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'GREENBERG’S CONJECTURE AND RELATIVE UNIT
GROUPS FOR REAL QUADRATIC FIELDS

TAKASHI FUKUDA (Z%,_ mPe-BkekT)

ABSTRACT. For an odd prime number p and a real quadratic field ,
we consider relative unit groups for intermediate fields of the cyclotomic

Zp-extension of k and discuss the relation to Greenberg’s conjecture.

1. INTRODUCTION

Greenberg’s conjecture claims that p,(k) and A (k) both vanish for any prime
number p and any totally real number field &k (cf. [9]). Here p,(k) and A, (k)
denote the Iwasawa invariants for the cyclotomic Z,-extension of k. A Galois
extension K /k is called a Z,-extension if the Galois group G(K/k) is topologically
isomorphic to the additive group of the ring of p-adic integers Z, and said to be
cyclotomic if it is contained in the field obtained by adjoining all p-power-th roots
of unity to k (cf. [13]). This conjecture is still open in spite of the efforts of many
mathematicians (cf. [3], [4], [6], [8], [10], [11], [15], [16], [18], [19]) even in real

quadratic case. In [3], we verified numerically the conjecture for p = 3 and some
(2)

2)

real quadratic fields £ in which 3 splits, using the invariants n
were defined generally in [20]. In order to calculate n(()z and nz , we introduced
the notion of relative unit group in [3]. In this paper, we study the structure of the
relative unit groups for all intermediate fields of the cyclotomic Z,-extension of k,

and see that the relative unit group is closely related to Greenberg’s conjecture.

and n2 ) which

RELATIVE UNIT GROUP

Let p be an odd prime number and k a real quadratic field. Let Q = QO
Qi C--CQypand k =ky Cky C-- C ks be the cyclotomic Z,-extensions.
Note that Q,, is a cyclic extension of degree p™ over Q, k, =-k@n is a cyclic
extension of degree 2p™ over Q and k N Q, = Q. We denote by E(F) the unit
group of an algebraic number field F' and by Np,r the norm map for a finite
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Galois extension L/F. We define the relative unit group E, p for k, by
By ={c € E(k) | Nujo,(6) = £1, Npu(e) = £1}.

Note that this definition is slightly different from the origindl one of Leopoldt (cf.
[17]).

Lemma 2.1. The free rank of E, g s p" — 1.
Proof. Let € be any element of E(k,). Then,
%" Nt /@u(6) " Nieu/i(€)™? € Enpr,
and hence
E(k,)*" C E(Qn)E(k)Enr C E(k,).
Since E(Q,)E(k) N E, r = {£1}, we see that
rankz(E, r) = rankz(F(k;)) — rankz(E(Q,)) — rankz(E(k))
o -1 (" - 1) -1
—p" 1.
O

The Galois group G(k,./Q) acts on E(k,) and E, g. We Iinvestigate the Galois
module structure of F, g. It is well known that there exists so called Minkowski
unit in E(k,). We see that E, r also has such a unit.

Lemma 2.2. Let K; and K, be finite Galois extensions over QQ satisfying K; N
K,=Qandlet L=KK,. Let .

Ep={e € E(L)| Nyk.,(e) ==%1 fori=1,2}.
Then there ezists n € Ep such that
(Er:<n° |0 €eG(L/Q)>)< .
Proof. Let G = G(L/Q) and let H; = G(L/K;), h; = |H;| for i« = 1,2. For
€ € F(L) and 0 € G, we see that

Npjk,(e)° = H £ = H go(07o) = Npk.(€7).
TEH; TEH;
Therefore Eg is stable under the action of G. Let ¢ be a Minkowski unit of L.
Then m = (E(L):< € | 0 € G >) is finite and
n=e""Np/k, ()™ Nijx,(e)™™ € Er.
Let ¢ be any element of F,, r. We can write

gm — H Ea‘,a

c€EG
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with suitable integers a,. Then,

- [ % = €™M Nk, (€)™ Ny, (€)™

o€G ‘
— :l: é'mhlhg

Hence we have Ep™" c< —1,7° |0 € G >C Eg. O

We fix a topological generator o of G(ks/Q) and write ; = €% for & € E(koo)
and 7 € Z. Our argument in this section is based on the following simple property
of conjugation in E, g. Let r = p™ — 1.

Lemma 2.3. We have e, = £ (gg€ -+ €r3)(€163++Er1) " for e € E, p.
Proof. Since Ny, /q,.(€) = €0€r41 = £ 1, we have g,1; = +e5'. Then,

Nkn/k(é?) = €€ Er—2&pE€ry g Er
-1
= Eg€g - 57"—267‘(61 o 61‘—1)
==1t.

From this we have the desired relation. [

The next corollary follows from Lemmas 2.2 and 2.3, and this leads us to the
following definition.

Corollary 2.4. There exists € € E, g such that

(ER:< —1, E0y €1y 5 Er—1 >) < 00.
Definition 2.5. We say that FE,, p has a p-normal basis if there exists ¢ € E,
such that < —1, &g, €1, -+, €,—1 > has a finite index prime to p in E, g.
We put

Enppn ={e € Enr|c'* € EL 5}

We see that E, g~ is a fairly small subgroup of E, r. Indeed, if we put
Vi = Ey ppn/E% g,

then V, is a finite group.

Proposition 2.6. The order of V,, is p™.
Now, we define the p-rank r(V,) of V,, to be dimg, (V,/V/?). Since the map

" n+ . . .
Vo2 ®F? p — ®PET +11’ r € Vo4 is injective, we obtain the following lemma.

Lemma 2.7. 7(V,,) < 7(V,y1) for alln > 1.
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On the other hand, as we shall see in the following sections, 7(V;,) is bounded.
The following proposition states a relation between the group structure of V,, and
the Galois module structure of F,, g.

Proposition 2.8. V, is cyclic if and only if E, r has a p-normal basis.

In order to prove Propositions 2.6 and 2.8, we have to prepare some lemmas.
For a subgroup E of E(k,), we put E = E/tor(E) and denote by ¢ the image of
¢ under the homomorphism £ — E.

Lemma 2.9. The endomorphism 1 + o of E, g is injective.

Proof. Let € be an element of E, p satisfying ¢!t = +1. Then we have ¢; =
+e5! and €, = &;. Since r is even, we have gy = ¢, = +¢;" from Lemma 2.3.
Hence e"t! = £+ 1. Since k, is real, we have e = +1. []

Lemma 2.10. Lete € E, g and N =< —1, &, 51‘, coeyEpmg > If (B g N) is
finite, then N/N't9 ~ 7. /p"Z.

Proof. 1t is clear from Lemma 2.9 that {&0, &1, -+, &1 } forms a free basis of
N over Z and {7, &1*°, ---, 17 } forms a free basis of N'*? over Z. From

Lemma 2.3, we have ;1] = (883 -+ &r_2) 18183 -+ -&,_3&2_,. Tt is easy to see

that the invariant of » X » matrix

(1 1 0 -+ 0 0)
o 1.1 .- 0 O
o 0 --- 1 1 0
0 0 -~ 0 1 1
\ -1 1 =1 -+ -1 2}
is (1,1,---, 1, p*). The desired isomorphism immediately follows from this. [J

Lemma 2.11. Let M be a finitely generated free Z-module and f an injective
endomorphism of M. If N is a submodule of M such that (M : N) < oo and
f(N)C N, then (M : f(M)) = (N : f(N)).

Proof. Let rankz(M) = n. There exist v; € M, z; € Z (1 < i < n) such that

M = @Z’Ui, N = @Zaxzvz
1<i<n 1<i<n

We write

flo)= Y ayv;

1<j<n
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with suitable integers a;;. Then,

(M : N)(N: f(N)) = (M : f(N))

= |det(z;ai;)|
|]~_[:vz |det(a;;)
=(M N)(M : F(M)).

From the finiteness of this expression, we have (M : f(M)) = (N : f(N)). O

Proof of Proposition 2.6. From Corollary 2.4, we can choose 1 € E, g such
that N =< —1, 79, 1, - , Tr—1 > has a finite index in E, . Then we have

(1) (Bop: BY) = (N NW) ="

from Lemmas 2.9, 2.11 and 2.10. We claim that

E;.+}§p - Evz:TR
Indeed, E‘}j,g o C E'ﬁnR is clear from definition. Conversely, take ¢ € E,, z. Then
& ¢ El""’ from (1) and hence &#° = ¥'*? for some v € E, g. It is clear that
Y € E, pyn and so &7 € E}Y .. Then we have
(2) Vo By gy | BV o BYS 0 [ BTG = B o/ BS54 o B, /B

from Lemma 2.9. Therefore (1) implies that |V,,| =p". O

Lemma 2.12. Let M be a finitely generated Z-module, N a submodule of M and
p a prime number. If M = pM + N, then (M : N) is finite and prime to p.

Proof. The assertion follows from p(M/N)=(pM + N)/N=M/N. 0O

Proof of Proposition 2.8. First assume that V), is cyclic. Then there ex1sts
® € E, p such that V,, =< ®E? , >. We choose ¢ € E, g such that 177 = P

The isomorphism (2) implies that E, r =< @ > E}L"}g Then, we have

E.p=<¢>EY

— 2
=<, ¢ > E 17

- — o — o))" —1+0T+1
=< p, ‘101+ 7"'790(1-'—) >E£7,,R)

=< @0, P1; "y Pr—1 > Eﬁ,R
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because E, p D Eﬁ’ r D Eg;a)p . Hence, Lemma 2.12 immediately shows that
E, r has a p-normal basis. Conversely assume that there exists ¢ € E, g such
that N =< —1, o, ¢1, -+ -, ¢r—1 > has a finite index prime to p in F,, g. Put

® = popi ey iy

We see from Lemma 2.3 that &7 = £ (pop; @y -+ ¢2)?" and hence & €
E, pp~. If the order of @Eﬁ:LR in V,, is less than p™, then PP ¢ E,:R and so
®!/? ¢ E, . Then

< _1, Pos P1y 0y Pra1 > =< _1a @’ P1y "ty Pro1 >
;Ct < —1’ Ql/pa P1y "y Pr—1 >
CEn,R

shows that (F, g : V) is divisible by p. This is a contradiction. Hence, the order
of @EﬁTR is not less than p™ and V,, =< ®E? , > from Proposition 2.6. [

We give two more lemmas to use in the following sections. Throughout the
following, we abbreviate E,, = E(k,).

Lemma 2.13. Let ¢ be the fundamental unit of k and s an integer such that
0 <s<n. Then Ny, ;x(E,) D EY if and only if $?"n € EP" for somen € E, pon-

Proof. First assume that Ny /x(E,).D E?" and take ¢ € E, such that Nk, k() =
#*". Then

n= €2pn-—stn/Qn (E)_pn_s¢_2 € En,R

and moreover 7?° € E,, p,». We see that ¢*?" 97" € EP". Conversely, if 9* n = &P"
for some ) € E, g and € € E,,, then Ny_/(¢)?" = £ ¢?"" and hence Ny, /() =
+ ¢*" because k is real. [ '

Lemma 2.14. Assume further that V,, =< <I>E£7R > 1s cyclic under the same
conditions in Lemma 2.13. Then Ny /(E,) = E? if and only if $'® € EP"™" for
some integer i and ¢’ ® & Eﬁn_sﬂ for any integer 7. o

Proof. First we give a notice when s = 0. Namely, we have ¢’® ¢ Eﬁnﬂ for aﬁy
integer j. Indeed, if ¢'® € E,{"H for some 7, then ¢’ & = o™ for some a € E,.
It easily follows that j is prime to p and that ¢ € Ef by applying Ny, &, which
is a contradiction. Now assume that Ny /x(E,) D Egs. Then, from the above
lemma, ¢?'n € EP" for some 1 € E, gpn. Since V,, =< <I>E£TR'>, we can write
n = ®a?" for some j € Z and o € E, . We see that ¢*’ & ¢ EE" and hence
j = p*j' with (j’,p) = 1. Hence, ¢&/ € EZ""". Since j' is prime to p, there exists
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an integer i such that ¢'® € E2"". Conversely, if ¢'® € E2" " for some integer
i, then we easily see that Ny /x(E,) D Ef . Hence we have :

Ny, i(Ep) D EY <= ¢'® € EX""  for some i.

This completes the proof because Ny, /x(E,) = E?’ is equivalent to Ny /i(E,) D
s—1 :

EY and Ny, ;x(E.) 2 Ef . O

3. APPLICATION TO GREENBERG’S CONJECTURE (NON-SPLIT CASE)

Throughout this section, we assume that p does not split in k. We discuss
a relation between V, and Greenberg’s conjecture of this case. Let A, be the
p-Sylow subgroup of the n-th layer k, of the cyclotomic Z,-extension of k. Let
tnm : kn — ki, be the inclusion map for 0 < n < m. The equality

(3) (Eo : Ny, k(En)) = |Ker(4g — A,)]

which was proved in [12] is fundamental in this case. The following theorem gives
an necessary and sufficient condition for the conjecture in this case.

Theorem 3.1 (Theorem 1 in [9)). p,(k) = A,(k) = 0 if and only if o, :
Ay — A, is zero map for some n > 1.

The capitulatory affair of Ag — A,, is related to the property of V,, through
Lemmas 2.13 and 2.14. We first state the boundedness of r(V,,).

Lemma 3.2. If |Ker{Ay — A,)| < p°, then r(V,) < s+ 1.

Proof. Since |Ker(4y — A,)| < p" from (3), we may assume that s < n.
Furthermore, ifn—1 < s <n, then the claim is clear from proposition 2.6. So we
assume that s < n —1. We have (Ey : Ny, /x(E,)) < p° again from (3). Therefore

Ne,x(E,) D EY and ¢'n € E?" for some € E, gpn from Lemma 2.13. If
r(V,) > s + 2, then the exponent of V,, is less than p"™* from Proposition 2.6.

Therefore n?" € EﬁTR and so ) € E'fi;l. It follows that ¢ € E?, which is a
contradiction. Hence, 7(V,,) < s+ 1. O

Corollary 3.3. If |Ay| = p*, then r(V,) < s+ 1 for alln > 1.
Corollary 3.4. If i, : Ay — A, is injective, then V, is cyclic.

As we shall see later, the converse of Corollary 3.4 is not always true. But we
have the following theorem.

Theorem 3.5. ., : Ay — A, is injective for alln > 1 if and only if V, is cyclic
for allm > 1.
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Proof. Assume that ¢, : Ag — A, is not injective for some m > 1. Since
|Ker(Ay — A,)| is bounded, there exists n > 1 such that

- |Ker(Ap ——>An)[ = |Ker(4y — An41)| =p° > 1.

If V41 is cyclic, then V,, is also cyclic from Lemma 2.7. Let V,,;1 =< \IlEf;r;l R >
and V,, =< @EﬁTR >. Let & = ©io?"" for some j € Z and o € E, 41 . Since
¥ is not p-th power in F,,; g and ® is not p-th power in E,, g, 7 is divisible by
p but not divisible by p?. Hence ¥ = ®'37" for some 8 € E,,; r and integer
i prime to p. Now, Ny, /k(Ent1) = E?" and Lemma 2.14 imply that ¢/¥ =
PP € Eﬁl—ls“ for some integer j. It follows that ¢’®' € E,’i:__ls“ because
s > 1 and that ¢’®* ¢ Eﬁ"~s+l because k,.1/k, is a cyclic extension of degree
p of real fields. Hence ¢/ & ¢ E£"_5+1 for some integer j' because i is prime to

p. This is a contradiction in view of Ny, /x(E,) = Egs and Lemma 2.14. This
completes the proof. O

We give a few examples when p = 3. Let H, = Ker(4, — A,). The
calculations have been done with a computer.

Example 3.6. Let k£ = Q(+/257). Then |H;| = |A¢| = 3 (cf. [6]) and V; ~ Z/3Z.
This is a trivial counter example for the converse of Corollary 3.4. Next let
k = Q(+/443). Then |H,| = 1, |H;| = |Ao| = 3 (cf. [6]) and V, ~ Z/9Z. This is a

non-trivial counter example.

Example 3.7. Let k = Q(+/1937). In Table 1 of [6], the value of \3(k) was not
known. But we see that V; ~ Z/3Z x Z/37Z and that Ay — A, is zero map from
Corollary 3.4. Hence A3(k) = 0 from Theorem 3.1. The same argument can be

applied for Q(+/3305), Q(+/5063) and Q(+/6995).

Example 3.8. There are 31 k’s in Table 1 of [6] for which the value of |Hy| is
not known. For four k’s in Example 3.7, we have |H;| = 3 because 49 — A,
is zero map. For the rest 27 k’s, we verified that V; is cyclic and |Hy| = 1 by
constructing numerically a unit € of k; such that Ny, z(e) = ¢ using Lemma 2.14.

Example 3.9. Let k = Q(1/254). Then |4y| = 3. We could verify that 49 —
A, is injective by constructing a unit ¢ of ks such that Ny, /x(¢) = ¢ using Lemma
2.14. Tt seems that A; — A4 is also injective. But the calculation exceeded the
capacity of computer.

Remark. In recent papers [10], [15] and [16], it was proved independently that
A3(Q(+/254)) = 0. Their arguments show that Ay — A; is zero map.

We discuss a relation about a normal integral basis. We say that a Z,-extension
K/F has a normal p-integral basis if O, [1/p] is a free Op[1/p|[G(F,/F')]-module
for each intermediate field F,, of K/F. Here Op, denotes the ring of integers of



F.,. We restrict our argument to the case p = 3 because a connection to a normal
integral basis becomes clear in this case. Let k = Q(\/-J) for a positive square-
free integer d which is congruent to 2 modulo 3 and k= = Q(v/—3d). It is known
that k= has the Zs-extension k_ such that k7 is a Galois extension over Q and
G(kZ /Q) is isomorphic to the semi direct product of Z/2Z and Z;. It is called the
anti-cyclotomic Zs-extension of k~. Then the next result is known (cf. Corollary

3.9 of [1]). See also Theorem 2.3 of [14] and Theorem of [5].

Theorem 3.10. k2 /k~ has a normal 3-integral basis if and only if Ay — A,
is injective for alln > 1. '

Using Proposition 2.8 and Theorem 3.5, we can give equivalent conditions in
terms of relative unit groups.

Theorem 3.11. The following three conditions are equivalent.

(1) kz/k~ has a normal 3-integral basis.
(2) E, r has a 3-normal basis for alln > 1.
(3) Va is cyclic for alln > 1.

Viewing Theorems 3.1 and 3.10, we are led to the next conjecture which is
weaker than Greenberg’s conjecture. '

Conjecture 3.12. Let k be a real quadratic filed in which 3 remains prime. If
the class number of k is divisible by 3, then kL /k~ does not have a normal
3-integral basis.

Professor K. Komatsu first told the author the importance of studying this
conjecture in connection with Greenberg’s one. Concerning this conjecture, we
give two examples.

Example 3.13. Let £ = Q(+/32009). Then Ay ~ Z/3Z x Z/3Z and |H,| =
3. Hence, k7 /k~ does not have a normal 3-integral basis from Theorem 3.10.
Furthermore, we can see that V, ~ Z/3Z x Z/37Z and |H;| = 9 using Lemma 2.13.
Hence \3(k) = 0 from Theorem 3.1. This example is interesting by reason that
Ay is not cyclic. Similar examples in the split case are given in [7].

Example 3.14. Let k = Q(+/53678). Then Ay ~ Z/37 x Z/3Z and |H,| = 1.
we can see that V; is cyclic and |H;| = 3 using Lemma 2.14. Hence k2, /k~ does
not have a normal 3-integral basis. We do not know whether A3(k) = 0.

Remark. Dr. Sumida kindly informed the author that he verified A3 (Q(+/53678))
= 0 with the method in [11].

70
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4. APPLICATION TO GREENBERG’S CONJECTURE (SPLIT CASE)

Throughout this section, we assume that p splits in k. As in the preceding
section, We discuss a relation between V,, and Greenberg’s conjecture in this
case. Let (p) = pp’ be the prime decomposition of p in k¥ and p,, the prime
ideal of k, lying over p. Let D, =< cl(p,) > NA, and B, the subgroup of A4,
consisting of elements which are invariant under the action of G(k,/k). We note
that D,, C B,. The following theorem is known as a necessary and sufficient
condition for the conjecture in this case.

Theorem 4.1 (Theorem 2 in [9]). u,(k) = A,(k) = 0 if and only if B, = D,
for all sufficiently large n.

An integer ny, was defined in [4] by

()™ |l (¢ = 1),

where ¢ denotes the fundamental unit of k. Then the behavior of | B,,| is explicitly
described as follows.

Proposition 4.2 (Proposition 1 in [4]). We have |B,| = |4|p™2~! for all
n 2 Mg — 1. :

Therefore, in order to investigate Greenberg’s conjecture, it is important to
study the behavior of |D,|. Since Q, is contained in Q((,~+:), the unique prime
ideal of @@, lying over p is principal. We fix an generator 7, of it and put

0, = (pﬂ_;p")r/2 )

where 7 = p™ — 1 as before. Then O, is a unit of (Q,, and satisfies

(®) oL e By,
(5) | pO. € k¥
and

(6) en/en-l—l € Eﬁ:—l .

We note that ©, can be written explicitly in terms of cyclotomic units in
certain cases (cf. Lemma 3.1 of [3]). Then the order of D, is described using ©,
and V,, as follows. '

Lemma 4.3. Let ¢ be the fundamental unit of k and s an integer such that
0 < s <n. Let d be the order of cl(p) and take a generator a € k of p*. Then
|D,| < p*| Dyl if and only if o O ¢in € k2" for somei € Z andn € E, pyn. -
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Proof. Note that a'*® = £ p?. Assume that |D,| < p*|Dg| and take a generator
B € k, of pi°. Then (B7"7°) = p#" = p? = («). Hence, " = oae for
some ¢ € E,. From this, we see that Ny i(c) € EY . Let Ny jo.(€) = 7
and Ny, /i(€) = £¢#"°. Then, n = e 777 ¢~% € E, g and o’ 77 ¢%n € k%'.
Taking norm from k, to Q,, we see that p>® 72" € k2" and hence 72" ©,2% € k2"
from (5). Therefore, o’ ©2% ¢¥n ¢ k". Since (a®,)'t° = +plOiitd) =
©;41-%) (mod k"), we have (a©,)'*° € k2" from (4). Therefore, we see that
n € E, ppn. Since p is odd, we completed one side of the proof. Conversely, if
o’ @% ¢in = BP" with 8 € k,, then pipn+s = p%" = (a)” = (B)"" and hence
=) O

If V,, is cyclic, then Lemma 4.3 becomes the following form.

Lemma 4.4. Assume further that V, =< @EﬁTR > s cyclic under the same
conditions in Lemma 4.3. Then |D,| = p*|Dy| if and only if o’ O ¢'®7 ¢ k2"
for some integers 1, j and aps_l@flps $idT ¢ kE" for any integers i, j.

Proof. The proof is straightforward. We only give a remark in the case that
s = 0. Namely it holds that o?  ©% " ¢:®/ ¢ k2" for any integers 4, j. Indeed, if
a@lpiPl = BP"" for some 4, j € Z and B € ky, then p? = (N, /x(8))?. This is a
contradiction. [

- Now, we can describe the boundedness of 7(Va)-
Lemma 4.5. If |D,| < p*|Dy|, then #(V,) < s + 1.

Proof. Since |D,| < p™|Dy|, we may assume that s < n. Furthermore, if n —1 <
s < n, then the claim is clear from Proposition 2.6. So we assume that s < n —1.
Applying Lemma 4.3 with the same notations, we have o’ 0% ¢in € kP for
some i € Z and n € E, ppn. If 7(V,)) > s+ 2, then the exponent of V,, is less
than p"~°, so 'r)Pnns*l € EP" and 7 € EﬁsH. From this, we see that ¢ is divisible
by p* and a@%¢’ € kP for some j € Z. If we put § = a¢?, then we see that
B'=? € kP from (4), and hence 377 = 4P for some v € k because k is real.
Then (p'~9)? = (o}77) = (8'7°) = () implies that p divides d. Thus, from
p? = £t = £ 8119 = £ (32y7P, we can write 3 = 6? for some 6 € k. Then
we have p? = (a) = (8) = (6)?, and hence p?/? = (§), which contradicts the fact
that d is the order of cl(p). Hence r(V,) <s+1. [

Corollary 4.6. If |Ay/Dy| = p*, then r(V,) < ngy + s for alln > 1.

Proof. We have |D,| < p™**~!|Dy| from Proposition 4.2 for all sufficiently large
n and apply Lemmas 4.5 and 2.7. O

Corollary 4.7. If |D,| = |Dy|, then V,, is cyclic.
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We remark a difference between split case and non-split case. In the split case,
if Ag = Dy, then the genus formula for &, /k yields that

7

p

Hence, we see the following.
non-split case:

Ni,.k(Ep)=E;, <= |Ker(Ay — A,)|=1 = V,: cyclic
split case with Ay = Dy:
Nkn/k(En) = Egn < |D,|=|Dy] = V,: cyclic

Namely, the opposite properties of the norm map Ny, /i : E, — E; both
implies the cyclicity of V,,. We notice some relations between the norm map and
the order of D,, that hold without the assumption 4, = Dj.

Lemma 4.8 (cf. Proposition 6.3 of 2]). If Ny /x(E,) = Eg, then |D,| =
p"| Dy

Proof. Let B,, denote the subgroup of B,, consisting of ideal classes which contain
an ideal invariant under the action of G(k,/k). Then B,, = 1y ,(A¢)D, and the
genus formula for &, /k yields that

('

P
B, = | Ao

=" A4,!.
(B Ny P ol

Hence, from

o (Ao) [Dn| - [i0,n(A0)|[Dn] _ [f0n(Ao)l | Dnl

"Ay| = — < — = ~ < p"|io.n(40)|,
P S A0 Dl = fionDo) D = (pE] < el
we see that |y ,(Ao)| = |Ao| and hence iy, is injective. Therefore, we have that
Dal _ 1Dl _ IDu| _

[ Dol lion(Do)l  |DR|
O

Lemma 4.9. If |D,| = |Dy|, then Ny_,(E,) = E%".

Proof. We see that V,, is cyclic from Corollary 4.7 and apply Lemma 4.4 with the
same notations. Namely we have a©@%¢'®’ € k2" for some i, j € Z. Now assume
that ¢7' & € EP for some j' € Z. Then we see that a®2¢’ c kP for some i’ € Z
and derive a contradiction as in the proof of Lemma 4.5. Hence ¢’ & ¢ E? for
any j' € Z and the claim follows from Lemma 2.14. [J

Corollary 4.7 indicate a relation between the cyclicity of V,, and the order of D,,.
But the converse of Corollary 4.7 is not always true. Furthermore an analogue to



Theorem 3.5 is also not true. Namely we can not conclude that |D,| = |Dy| for
all n > 1 even if V,, is cyclic for all n > 1. However, by numerical calculations,
we are led to the following conjecture.

Conjecture 4.10. A, = D, for all n > 0 if and only if V,, is cyclic for all n > 1.

At present, concerning this conjecture, we can only prove that the first con-
dition implies the second one. First we give a remark about the first condition.
Remember the integer ny defined in [20]. Namely, let d be the order of cl(p) and
take a generator a of p?. Then ng is defined to be the integer satisfying

p Il (a7 = 1).

The inequality ny < n, is needed for the uniqueness of ng. Then we obtain the
following lemma.

Lemma 4.11. The following three conditions are equivalent:
(1) A, = D, for alln > 0.
(2) A1 == Dl.
(3) Ao = Dy and ny = 1.
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Proof. Tt is clear that (1) implies (2). Next assume (2). Then it follows that -

Ay = Dy because norm maps A; — Ay and D; — D, are both surjective. If
ny > 2, then ny > 2 and so |D;| = p|Dy| from Proposition 4.2. Let d be the order
of cl(p) and take a generator a of p%. Then, by local class field theory, o is a p'-
adic norm for k; /k and also [-adic norm if [ is a prime ideal of k; prime p. Hence,
by the product formula of the norm residue symbol and Hasse’s norm theorem,
o is a global norm. Let & = Ny, /(o) for some a; € k; and a = p¥(ai’). Then
N, /i(a) = (1) and hence a = b?~! for some ideal b of k;, where p is a generator
of G(ky/k). Therefore D¢ C A{™". Since |D;| = p|Dy|, it follows that A{™" # 1,
which contradicts the assumption A; = D;. Hence ny = 1. Therefore (2) implies
(3). Finally assume (3). Since ny = n; in the case that Ay = Dy, Theorem 1
in [4] shows that A, = D, for all sufficiently large n. Noting that norm maps
A,y1 — A, and D,y — D, are both surjective for any n, we conclude that

(1) holds. O
Now we give a partial answer for Conjecture 4.10.
Theorem 4.12. If A, = D,, for alln > 0, then V,, is cyclic for alln > 1.

Proof. We see that Ay = Dy and ny = 1 from Lemma 4.11. Let nbea sufficiently
large integer. We have |D,,| < p"2~!|Dy| from Proposition 4.2. Let d be the order
of cl(p) and take a generator o of p satisfying p’ || (! — 1). From Lemma
4.3, we see that apnz_l@ip"rlqbin = 7" for some i € Z, n € E, ppn and B € k.
Then Ny, /1(8) = + a7 ¢, If p divides 4, then p'™ || (Ny, /x(8)?P~! — 1), which

is a contradiction because n is sufficiently large. Hence p does not divide :. Now
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assume that V, is not cyclic. Then #*"~ € E?" g and so n € E} . Therefore
o OP T g ¢ kP, If n, = 1, then we see that a®2¢* € kP, which is a
contradiction as we have seen in the proof of Lemma 4.5. Otherwise, if n, > 1,
then we see that ¢ € k2 and so ¢ € kP, which is also a contradiction. Hence V,
is cyclic for all sufficiently large n. The claim immediately follows from Lemma

2.7. 0O

If we assume Greenberg’s conjecture, then we can prove that the converse of
Theorem 4.12 is also true.

Theorem 4.13. Assume that Greenberg’s conjecture holds for k and p. If V,, is
cyclic for alln > 1, then A, = D,, for alln > 0.

Proof. Let |Ag/Dy| = p* and s = ny +t — 1. Let n be sufficiently large. Since
Greenberg’s conjecture holds, we have

|Dy| = |Dps| = p*|Dy|

from Theorem 4.1 and Proposition 4.2. Let V, =< @EﬁfR > and V,; =<

OE? 11R >. We may assume that & = U4*"" with suitable v € E,. Let d de
the order of cl(p) and take a generator a of p satisfying p'™° || (ap 1 —1). From
Lemma 4.4, we see that a? ©@% ¢'®’ = 37" for some integers 7,5 and 8 € k,.
First assume that s > 1. If p d1v1des ¢, then p also d1v1des ] because & ¢ kP.
Let ¢ = pi’ and j = pj’. Using (6), we see that o’ @d” Rz kﬁn__ll. Then
Lemma 4.4 again shows that |D,_;| < p*~*|Dy|, which contradmts |Dn| = |Dp-1]-
Therefore p does not divide ¢. Since Ny, /x(8) = £ a® ¢ is a p’-adic p"~*-th power
in k and n is sufficiently large, we conclude that no + s = ny. This means that
ny = 1 and ¢ = 0. Next assume that s = 0. Then ny +¢ — 1 = 0 implies that
ny = 1 and ¢t = 0. This completes the proof. [J

Finally we give a few examples when p = 3 based on calculations with a
computer.

Example 4.14. Let k¥ = Q(+/727). Then |Dy| = 1 and |Dy| = 3 (cf. [8]).
This is a trivial counter example for the converse of Corollary 4.7. Next let

= Q(v/2713). Then |Dy| = |D;| = 1 and |D,| = 3 (cf. [3]). Furthermore we see
that V; o~ Z/9Z. This is a non-trivial counter example.

Example 4.15. Let £ = Q(4/m) where m =3469, 5971, 6187 and 7726. For
these k’s, we could not calculate the values of n(()z) and ngz) in [3]. Now we see
that V, ~ 7Z/37Z x 7/ 37 for these k’s. Corollary 4.7, Proposition 4.2 and Theorem
4.1 immediately show that A3(k) = 0 for m =3469, 5971 and 6187. It can be also
deduced from Theorem 2 in [8]. We calculated n$? and nd
and 2.13. We show the results below.

using Lemmas 4.3
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m |l | 0P | Dy | As(k)
3469 3 | 3 | 3 0
5971 3 | 4 | 3 0
6187 3 | 3 | 3 0
7726 3 3 3 ?

For m = 7726, we can not decide the value of A3(k).
Remark. In [11], it is shown that A;(Q(v/7726)) = 0.

1.

10.

11.

12.
13.

14.
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