GREENBERG'S CONJECTURE AND RELATIVE UNIT GROUPS FOR REAL QUADRATIC FIELDS # TAKASHI FUKUDA (洛區田隆·日大生產工) ABSTRACT. For an odd prime number p and a real quadratic field k, we consider relative unit groups for intermediate fields of the cyclotomic \mathbb{Z}_p -extension of k and discuss the relation to Greenberg's conjecture. ### 1. Introduction Greenberg's conjecture claims that $\mu_p(k)$ and $\lambda_p(k)$ both vanish for any prime number p and any totally real number field k (cf. [9]). Here $\mu_p(k)$ and $\lambda_p(k)$ denote the Iwasawa invariants for the cyclotomic \mathbb{Z}_p -extension of k. A Galois extension K/k is called a \mathbb{Z}_p -extension if the Galois group G(K/k) is topologically isomorphic to the additive group of the ring of p-adic integers \mathbb{Z}_p and said to be cyclotomic if it is contained in the field obtained by adjoining all p-power-th roots of unity to k (cf. [13]). This conjecture is still open in spite of the efforts of many mathematicians (cf. [3], [4], [6], [8], [10], [11], [15], [16], [18], [19]) even in real quadratic case. In [3], we verified numerically the conjecture for p=3 and some real quadratic fields k in which 3 splits, using the invariants $n_0^{(2)}$ and $n_2^{(2)}$ which were defined generally in [20]. In order to calculate $n_0^{(2)}$ and $n_2^{(2)}$, we introduced the notion of relative unit group in [3]. In this paper, we study the structure of the relative unit groups for all intermediate fields of the cyclotomic \mathbb{Z}_p -extension of k, and see that the relative unit group is closely related to Greenberg's conjecture. #### 2. RELATIVE UNIT GROUP Let p be an odd prime number and k a real quadratic field. Let $\mathbb{Q} = \mathbb{Q}_0 \subset \mathbb{Q}_1 \subset \cdots \subset \mathbb{Q}_\infty$ and $k = k_0 \subset k_1 \subset \cdots \subset k_\infty$ be the cyclotomic \mathbb{Z}_p -extensions. Note that \mathbb{Q}_n is a cyclic extension of degree p^n over \mathbb{Q} , $k_n = k\mathbb{Q}_n$ is a cyclic extension of degree $2p^n$ over \mathbb{Q} and $k \cap \mathbb{Q}_n = \mathbb{Q}$. We denote by E(F) the unit group of an algebraic number field F and by $N_{L/F}$ the norm map for a finite ¹⁹⁹¹ Mathematics Subject Classification. Primary 11R23, 11R11, 11R27. Key words and phrases. Iwasawa invariants, real quadratic fields, unit groups. Galois extension L/F. We define the relative unit group $E_{n,R}$ for k_n by $$E_{n,R} = \{ \varepsilon \in E(k_n) \mid N_{k_n/\mathbb{Q}_n}(\varepsilon) = \pm 1, \ N_{k_n/k}(\varepsilon) = \pm 1 \}.$$ Note that this definition is slightly different from the original one of Leopoldt (cf. [17]). **Lemma 2.1.** The free rank of $E_{n,R}$ is $p^n - 1$. *Proof.* Let ε be any element of $E(k_n)$. Then, $$\varepsilon^{2p^n} N_{k_n/\mathbb{Q}_n}(\varepsilon)^{-p^n} N_{k_n/k}(\varepsilon)^{-2} \in E_{n,R}$$ and hence $$E(k_n)^{2p^n} \subset E(\mathbb{Q}_n)E(k)E_{n,R} \subset E(k_n)$$. Since $E(\mathbb{Q}_n)E(k)\cap E_{n,R}=\{\pm 1\}$, we see that $$egin{aligned} \operatorname{rank}_{\mathbb{Z}}(E_{n,R}) &= \operatorname{rank}_{\mathbb{Z}}(E(k_n)) - \operatorname{rank}_{\mathbb{Z}}(E(\mathbb{Q}_n)) - \operatorname{rank}_{\mathbb{Z}}(E(k)) \ &= 2p^n - 1 - (p^n - 1) - 1 \ &= p^n - 1 \,. \end{aligned}$$ The Galois group $G(k_n/\mathbb{Q})$ acts on $E(k_n)$ and $E_{n,R}$. We investigate the Galois module structure of $E_{n,R}$. It is well known that there exists so called Minkowski unit in $E(k_n)$. We see that $E_{n,R}$ also has such a unit. **Lemma 2.2.** Let K_1 and K_2 be finite Galois extensions over \mathbb{Q} satisfying $K_1 \cap K_2 = \mathbb{Q}$ and let $L = K_1K_2$. Let $$E_R = \{ \varepsilon \in E(L) \mid N_{L/K_i}(\varepsilon) = \pm 1 \text{ for } i = 1, 2 \}.$$ Then there exists $\eta \in E_R$ such that $$(E_R:<\eta^\sigma\mid\sigma\in G(L/\mathbb{Q})>)<\infty$$. *Proof.* Let $G = G(L/\mathbb{Q})$ and let $H_i = G(L/K_i)$, $h_i = |H_i|$ for i = 1, 2. For $\varepsilon \in E(L)$ and $\sigma \in G$, we see that $$N_{L/K_i}(arepsilon)^\sigma = \prod_{ au \in H_i} arepsilon^{ au\sigma} \stackrel{ au}{=} \prod_{ au \in H_i} arepsilon^{\sigma(\sigma^{-1} au\sigma)} = N_{L/K_i}(arepsilon^\sigma)\,.$$ Therefore E_R is stable under the action of G. Let ε be a Minkowski unit of L. Then $m = (E(L) : < \varepsilon^{\sigma} \mid \sigma \in G >)$ is finite and $$\eta = \varepsilon^{h_1 h_2} N_{L/K_1}(\varepsilon)^{-h_2} N_{L/K_2}(\varepsilon)^{-h_1} \in E_R.$$ Let ξ be any element of $E_{n,R}$. We can write $$\xi^m = \prod_{\sigma \in G} \varepsilon^{a_\sigma \sigma}$$ with suitable integers a_{σ} . Then, $$\prod_{\sigma \in G} \eta^{a_{\sigma}\sigma} = \xi^{mh_1h_2} N_{L/K_1}(\xi)^{-mh_2} N_{L/K_2}(\xi)^{-mh_1}$$ $$= \pm \xi^{mh_1h_2}.$$ Hence we have $E_R^{mh_1h_2} \subset <-1, \, \eta^{\sigma} \mid \sigma \in G> \subset E_R$. \square We fix a topological generator σ of $G(k_{\infty}/\mathbb{Q})$ and write $\varepsilon_i = \varepsilon^{\sigma^i}$ for $\varepsilon \in E(k_{\infty})$ and $i \in \mathbb{Z}$. Our argument in this section is based on the following simple property of conjugation in $E_{n,R}$. Let $r = p^n - 1$. **Lemma 2.3.** We have $\varepsilon_r = \pm (\varepsilon_0 \varepsilon_2 \cdots \varepsilon_{r-2})(\varepsilon_1 \varepsilon_3 \cdots \varepsilon_{r-1})^{-1}$ for $\varepsilon \in E_{n,R}$. *Proof.* Since $N_{k_n/\mathbb{Q}_n}(\varepsilon) = \varepsilon_0 \varepsilon_{r+1} = \pm 1$, we have $\varepsilon_{r+1} = \pm \varepsilon_0^{-1}$. Then, $$N_{k_n/k}(\varepsilon) = \varepsilon_0 \varepsilon_2 \cdots \varepsilon_{r-2} \varepsilon_r \varepsilon_{r+2} \cdots \varepsilon_{2r}$$ $$= \varepsilon_0 \varepsilon_2 \cdots \varepsilon_{r-2} \varepsilon_r (\varepsilon_1 \cdots \varepsilon_{r-1})^{-1}$$ $$= \pm 1.$$ From this we have the desired relation. \square The next corollary follows from Lemmas 2.2 and 2.3, and this leads us to the following definition. Corollary 2.4. There exists $\varepsilon \in E_{n,R}$ such that $$(E_R:<-1,\,\varepsilon_0,\,\varepsilon_1,\,\cdots,\,\varepsilon_{r-1}>)<\infty$$. **Definition 2.5.** We say that $E_{n,R}$ has a *p-normal basis* if there exists $\varepsilon \in E_{n,R}$ such that <-1, ε_0 , ε_1 , \cdots , $\varepsilon_{r-1}>$ has a finite index prime to p in $E_{n,R}$. We put $$E_{n,R,p^n} = \{ \varepsilon \in E_{n,R} \mid \varepsilon^{1+\sigma} \in E_{n,R}^{p^n} \}.$$ We see that E_{n,R,p^n} is a fairly small subgroup of $E_{n,R}$. Indeed, if we put $$V_n = E_{n,R,p^n} / E_{n,R}^{p^n},$$ then V_n is a finite group. **Proposition 2.6.** The order of V_n is p^n . Now, we define the p-rank $r(V_n)$ of V_n to be $\dim_{\mathbb{F}_p}(V_n/V_n^p)$. Since the map $V_n \ni \Phi E_{n,R}^{p^n} \mapsto \Phi^p E_{n+1,R}^{p^{n+1}} \in V_{n+1}$ is injective, we obtain the following lemma. **Lemma 2.7.** $r(V_n) \le r(V_{n+1})$ for all $n \ge 1$. On the other hand, as we shall see in the following sections, $r(V_n)$ is bounded. The following proposition states a relation between the group structure of V_n and the Galois module structure of $E_{n,R}$. **Proposition 2.8.** V_n is cyclic if and only if $E_{n,R}$ has a p-normal basis. In order to prove Propositions 2.6 and 2.8, we have to prepare some lemmas. For a subgroup E of $E(k_n)$, we put $\bar{E} = E/\text{tor}(E)$ and denote by $\bar{\varepsilon}$ the image of ε under the homomorphism $E \to \bar{E}$. **Lemma 2.9.** The endomorphism $1 + \sigma$ of $\bar{E}_{n,R}$ is injective. *Proof.* Let ε be an element of $E_{n,R}$ satisfying $\varepsilon^{1+\sigma}=\pm 1$. Then we have $\varepsilon_1=\pm \varepsilon_0^{-1}$ and $\varepsilon_2=\varepsilon_0$. Since r is even, we have $\varepsilon_0=\varepsilon_r=\pm \varepsilon_0^{-r}$ from Lemma 2.3. Hence $\varepsilon^{r+1}=\pm 1$. Since k_n is real, we have $\varepsilon=\pm 1$. \square **Lemma 2.10.** Let $\varepsilon \in E_{n,R}$ and N = <-1, ε_0 , ε_1 , \cdots , $\varepsilon_{r-1} >$. If $(E_{n,R} : N)$ is finite, then $\bar{N}/\bar{N}^{1+\sigma} \simeq \mathbb{Z}/p^n\mathbb{Z}$. *Proof.* It is clear from Lemma 2.9 that $\{\bar{\varepsilon}_0, \bar{\varepsilon}_1, \cdots, \bar{\varepsilon}_{r-1}\}$ forms a free basis of \bar{N} over \mathbb{Z} and $\{\bar{\varepsilon}_0^{1+\sigma}, \bar{\varepsilon}_1^{1+\sigma}, \cdots, \bar{\varepsilon}_{r-1}^{1+\sigma}\}$ forms a free basis of $\bar{N}^{1+\sigma}$ over \mathbb{Z} . From Lemma 2.3, we have $\bar{\varepsilon}_{r-1}^{1+\sigma} = (\bar{\varepsilon}_0\bar{\varepsilon}_2\cdots\bar{\varepsilon}_{r-2})^{-1}\bar{\varepsilon}_1\bar{\varepsilon}_3\cdots\bar{\varepsilon}_{r-3}\bar{\varepsilon}_{r-1}^2$. It is easy to see that the invariant of $r \times r$ matrix $$\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 1 \\ -1 & 1 & -1 & \cdots & -1 & 2 \end{pmatrix}$$ is $(1, 1, \dots, 1, p^n)$. The desired isomorphism immediately follows from this. \square **Lemma 2.11.** Let M be a finitely generated free \mathbb{Z} -module and f an injective endomorphism of M. If N is a submodule of M such that $(M:N) < \infty$ and $f(N) \subset N$, then (M:f(M)) = (N:f(N)). *Proof.* Let rank_Z(M) = n. There exist $v_i \in M$, $x_i \in \mathbb{Z}$ $(1 \le i \le n)$ such that $$M = \bigoplus_{1 \le i \le n} \mathbb{Z}v_i \,, \quad N = \bigoplus_{1 \le i \le n} \mathbb{Z}x_i v_i \,.$$ We write $$f(v_i) = \sum_{1 \le j \le n} a_{ij} v_j$$ with suitable integers a_{ij} . Then, $$(M:N)(N:f(N)) = (M:f(N))$$ $$= |\det(x_i a_{ij})|$$ $$= |\prod_i x_i| \cdot |\det(a_{ij})|$$ $$= (M:N)(M:f(M)).$$ From the finiteness of this expression, we have (M:f(M))=(N:f(N)). **Proof of Proposition 2.6.** From Corollary 2.4, we can choose $\eta \in E_{n,R}$ such that $N = \langle -1, \eta_0, \eta_1, \cdots, \eta_{r-1} \rangle$ has a finite index in $E_{n,R}$. Then we have (1) $$(\bar{E}_{n,R}:\bar{E}_{n,R}^{1+\sigma}) = (\bar{N}:\bar{N}^{1+\sigma}) = p^n$$ from Lemmas 2.9, 2.11 and 2.10. We claim that $$\bar{E}_{n,R,p^n}^{1+\sigma} = \bar{E}_{n,R}^{p^n}$$. Indeed, $\bar{E}_{n,R,p^n}^{1+\sigma} \subset \bar{E}_{n,R}^{p^n}$ is clear from definition. Conversely, take $\varepsilon \in E_{n,R}$. Then $\bar{\varepsilon}^{p^n} \in \bar{E}_{n,R}^{1+\sigma}$ from (1) and hence $\bar{\varepsilon}^{p^n} = \bar{\gamma}^{1+\sigma}$ for some $\gamma \in E_{n,R}$. It is clear that $\gamma \in E_{n,R,p^n}$ and so $\bar{\varepsilon}^{p^n} \in \bar{E}_{n,R,p^n}^{1+\sigma}$. Then we have $$(2) \quad V_n \simeq \bar{E}_{n,R,p^n}/\bar{E}_{n,R}^{p^n} \simeq \bar{E}_{n,R,p^n}^{1+\sigma}/\bar{E}_{n,R}^{p^n(1+\sigma)} = \bar{E}_{n,R}^{p^n}/\bar{E}_{n,R}^{p^n(1+\sigma)} \simeq \bar{E}_{n,R}/\bar{E}_{n,R}^{1+\sigma}$$ from Lemma 2.9. Therefore (1) implies that $|V_n| = p^n$. \square **Lemma 2.12.** Let M be a finitely generated \mathbb{Z} -module, N a submodule of M and p a prime number. If M = pM + N, then (M : N) is finite and prime to p. *Proof.* The assertion follows from p(M/N) = (pM + N)/N = M/N. \square **Proof of Proposition 2.8.** First assume that V_n is cyclic. Then there exists $\Phi \in E_{n,R}$ such that $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$. We choose $\varphi \in E_{n,R}$ such that $\Phi^{1+\sigma} = \varphi^{p^n}$. The isomorphism (2) implies that $\bar{E}_{n,R} = \langle \bar{\varphi} \rangle \bar{E}_{n,R}^{1+\sigma}$. Then, we have $$\begin{split} \bar{E}_{n,R} &= <\bar{\varphi} > \bar{E}_{n,R}^{1+\sigma} \\ &= <\bar{\varphi}, \ \bar{\varphi}^{1+\sigma} > \bar{E}_{n,R}^{(1+\sigma)^2} \\ &\vdots \\ &= <\bar{\varphi}, \ \bar{\varphi}^{1+\sigma}, \cdots, \ \bar{\varphi}^{(1+\sigma)^r} > \bar{E}_{n,R}^{(1+\sigma)^{r+1}} \\ &= <\bar{\varphi}_0, \ \bar{\varphi}_1, \cdots, \ \bar{\varphi}_{r-1} > \bar{E}_{n,R}^p \end{split}$$ because $\bar{E}_{n,R} \supset \bar{E}_{n,R}^p \supset \bar{E}_{n,R}^{(1+\sigma)^{p^n}}$. Hence, Lemma 2.12 immediately shows that $E_{n,R}$ has a p-normal basis. Conversely assume that there exists $\varphi \in E_{n,R}$ such that $N = \langle -1, \varphi_0, \varphi_1, \cdots, \varphi_{r-1} \rangle$ has a finite index prime to p in $E_{n,R}$. Put $$\Phi = \varphi_0 \varphi_1^{-2} \varphi_2^3 \cdots \varphi_{r-1}^{-r} .$$ We see from Lemma 2.3 that $\Phi^{1+\sigma}=\pm(\varphi_0\varphi_1^{-1}\varphi_2\cdots\varphi_{r-1}^{-1})^{p^n}$ and hence $\Phi\in E_{n,R,p^n}$. If the order of $\Phi E_{n,R}^{p^n}$ in V_n is less than p^n , then $\Phi^{p^{n-1}}\in E_{n,R}^{p^n}$ and so $\Phi^{1/p}\in E_{n,R}$. Then $$<-1, \, \varphi_0, \, \varphi_1, \, \cdots, \, \varphi_{r-1}> = <-1, \, \Phi, \, \varphi_1, \, \cdots, \, \varphi_{r-1}>$$ $$\label{eq:definition} \begin{subarray}{l} \subsetneq <-1, \, \Phi^{1/p}, \, \varphi_1, \, \cdots, \, \varphi_{r-1}> \\ \subset E_{n,R} \end{subarray}$$ shows that $(E_{n,R}:N)$ is divisible by p. This is a contradiction. Hence, the order of $\Phi E_{n,R}^{p^n}$ is not less than p^n and $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$ from Proposition 2.6. \square We give two more lemmas to use in the following sections. Throughout the following, we abbreviate $E_n = E(k_n)$. **Lemma 2.13.** Let ϕ be the fundamental unit of k and s an integer such that $0 \leq s \leq n$. Then $N_{k_n/k}(E_n) \supset E_0^{p^s}$ if and only if $\phi^{p^s} \eta \in E_n^{p^n}$ for some $\eta \in E_{n,R,p^n}$. *Proof.* First assume that $N_{k_n/k}(E_n) \supset E_0^{p^s}$ and take $\varepsilon \in E_n$ such that $N_{k_n/k}(\varepsilon) = \phi^{p^s}$. Then $$\eta = \varepsilon^{2p^{n-s}} N_{k_n/\mathbb{Q}_n}(\varepsilon)^{-p^{n-s}} \phi^{-2} \in E_{n,R}$$ and moreover $\eta^{p^s} \in E_{n,R,p^n}$. We see that $\phi^{2p^s} \eta^{p^s} \in E_n^{p^n}$. Conversely, if $\phi^{p^s} \eta = \varepsilon^{p^n}$ for some $\eta \in E_{n,R,p^n}$ and $\varepsilon \in E_n$, then $N_{k_n/k}(\varepsilon)^{p^n} = \pm \phi^{p^{n+s}}$ and hence $N_{k_n/k}(\varepsilon) = \pm \phi^{p^s}$ because k is real. \square **Lemma 2.14.** Assume further that $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$ is cyclic under the same conditions in Lemma 2.13. Then $N_{k_n/k}(E_n) = E_0^{p^s}$ if and only if $\phi^i \Phi \in E_n^{p^{n-s}}$ for some integer i and $\phi^j \Phi \notin E_n^{p^{n-s+1}}$ for any integer j. Proof. First we give a notice when s=0. Namely, we have $\phi^j\Phi\not\in E_n^{p^{n+1}}$ for any integer j. Indeed, if $\phi^j\Phi\in E_n^{p^{n+1}}$ for some j, then $\phi^j\Phi=\alpha^{p^{n+1}}$ for some $\alpha\in E_n$. It easily follows that j is prime to p and that $\phi\in E_0^p$ by applying $N_{k_n/k}$, which is a contradiction. Now assume that $N_{k_n/k}(E_n)\supset E_0^{p^s}$. Then, from the above lemma, $\phi^{p^s}\eta\in E_n^{p^n}$ for some $\eta\in E_{n,R,p^n}$. Since $V_n=\langle\Phi E_{n,R}^{p^n}\rangle$, we can write $\eta=\Phi^j\alpha^{p^n}$ for some $j\in\mathbb{Z}$ and $\alpha\in E_{n,R}$. We see that $\phi^{p^s}\Phi^j\in E_n^{p^n}$ and hence $j=p^sj'$ with (j',p)=1. Hence, $\phi\Phi^{j'}\in E_n^{p^{n-s}}$. Since j' is prime to p, there exists an integer i such that $\phi^i \Phi \in E_n^{p^{n-s}}$. Conversely, if $\phi^i \Phi \in E_n^{p^{n-s}}$ for some integer i, then we easily see that $N_{k_n/k}(E_n) \supset E_0^{p^s}$. Hence we have $$N_{k_n/k}(E_n) \supset E_0^{p^s} \Longleftrightarrow \phi^i \Phi \in E_n^{p^{n-s}}$$ for some i . This completes the proof because $N_{k_n/k}(E_n) = E_0^{p^s}$ is equivalent to $N_{k_n/k}(E_n) \supset E_0^{p^s}$ and $N_{k_n/k}(E_n) \not\supset E_0^{p^{s-1}}$. \square # 3. APPLICATION TO GREENBERG'S CONJECTURE (NON-SPLIT CASE) Throughout this section, we assume that p does not split in k. We discuss a relation between V_n and Greenberg's conjecture of this case. Let A_n be the p-Sylow subgroup of the n-th layer k_n of the cyclotomic \mathbb{Z}_p -extension of k. Let $\iota_{n,m}:k_n\to k_m$ be the inclusion map for $0\leq n\leq m$. The equality $$(S_0: N_{k_n/k}(E_n)) = |\operatorname{Ker}(A_0 \longrightarrow A_n)|$$ which was proved in [12] is fundamental in this case. The following theorem gives an necessary and sufficient condition for the conjecture in this case. **Theorem 3.1 (Theorem 1 in** [9]). $\mu_p(k) = \lambda_p(k) = 0$ if and only if $\iota_{0,n} : A_0 \to A_n$ is zero map for some $n \ge 1$. The capitulatory affair of $A_0 \longrightarrow A_n$ is related to the property of V_n through Lemmas 2.13 and 2.14. We first state the boundedness of $r(V_n)$. **Lemma 3.2.** If $$|Ker(A_0 \longrightarrow A_n)| \leq p^s$$, then $r(V_n) \leq s+1$. Proof. Since $|\operatorname{Ker}(A_0 \longrightarrow A_n)| \leq p^n$ from (3), we may assume that $s \leq n$. Furthermore, if $n-1 \leq s \leq n$, then the claim is clear from proposition 2.6. So we assume that s < n-1. We have $(E_0: N_{k_n/k}(E_n)) \leq p^s$ again from (3). Therefore $N_{k_n/k}(E_n) \supset E_0^{p^s}$ and $\phi^{p^s} \eta \in E_0^{p^n}$ for some $\eta \in E_{n,R,p^n}$ from Lemma 2.13. If $r(V_n) \geq s+2$, then the exponent of V_n is less than p^{n-s} from Proposition 2.6. Therefore $\eta^{p^{n-s-1}} \in E_{n,R}^{p^n}$ and so $\eta \in E_{n,R}^{p^{s+1}}$. It follows that $\phi \in E_n^p$, which is a contradiction. Hence, $r(V_n) \leq s+1$. \square Corollary 3.3. If $|A_0| = p^s$, then $r(V_n) \leq s + 1$ for all $n \geq 1$. Corollary 3.4. If $\iota_{0,n}:A_0\to A_n$ is injective, then V_n is cyclic. As we shall see later, the converse of Corollary 3.4 is not always true. But we have the following theorem. **Theorem 3.5.** $\iota_{0,n}:A_0\to A_n$ is injective for all $n\geq 1$ if and only if V_n is cyclic for all $n\geq 1$. *Proof.* Assume that $\iota_{0,m}:A_0\to A_m$ is not injective for some $m\geq 1$. Since $|\operatorname{Ker}(A_0\longrightarrow A_n)|$ is bounded, there exists $n\geq 1$ such that $$|\operatorname{Ker}(A_0 \longrightarrow A_n)| = |\operatorname{Ker}(A_0 \longrightarrow A_{n+1})| = p^s > 1.$$ If V_{n+1} is cyclic, then V_n is also cyclic from Lemma 2.7. Let $V_{n+1} = \langle \Psi E_{n+1,R}^{p^{n+1}} \rangle$ and $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$. Let $\Phi^p = \Psi^j \alpha^{p^{n+1}}$ for some $j \in \mathbb{Z}$ and $\alpha \in E_{n+1,R}$. Since Ψ is not p-th power in $E_{n+1,R}$ and Φ is not p-th power in $E_{n,R}$, j is divisible by p but not divisible by p^2 . Hence $\Psi = \Phi^i \beta^{p^n}$ for some $\beta \in E_{n+1,R}$ and integer i prime to p. Now, $N_{k_{n+1}/k}(E_{n+1}) = E_0^{p^s}$ and Lemma 2.14 imply that $\phi^j \Psi = \phi^j \Phi^i \beta^{p^n} \in E_{n+1}^{p^{n-s+1}}$ for some integer j. It follows that $\phi^j \Phi^i \in E_{n+1}^{p^{n-s+1}}$ because $s \geq 1$ and that $\phi^j \Phi^i \in E_n^{p^{n-s+1}}$ because k_{n+1}/k_n is a cyclic extension of degree p of real fields. Hence $\phi^{j'} \Phi \in E_n^{p^{n-s+1}}$ for some integer j' because i is prime to i . This is a contradiction in view of i of i and Lemma 2.14. This completes the proof. \square We give a few examples when p = 3. Let $H_n = \text{Ker}(A_0 \longrightarrow A_n)$. The calculations have been done with a computer. **Example 3.6.** Let $k = \mathbb{Q}(\sqrt{257})$. Then $|H_1| = |A_0| = 3$ (cf. [6]) and $V_1 \simeq \mathbb{Z}/3\mathbb{Z}$. This is a trivial counter example for the converse of Corollary 3.4. Next let $k = \mathbb{Q}(\sqrt{443})$. Then $|H_1| = 1$, $|H_2| = |A_0| = 3$ (cf. [6]) and $V_2 \simeq \mathbb{Z}/9\mathbb{Z}$. This is a non-trivial counter example. **Example 3.7.** Let $k = \mathbb{Q}(\sqrt{1937})$. In Table 1 of [6], the value of $\lambda_3(k)$ was not known. But we see that $V_2 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and that $A_0 \longrightarrow A_2$ is zero map from Corollary 3.4. Hence $\lambda_3(k) = 0$ from Theorem 3.1. The same argument can be applied for $\mathbb{Q}(\sqrt{3305})$, $\mathbb{Q}(\sqrt{5063})$ and $\mathbb{Q}(\sqrt{6995})$. **Example 3.8.** There are 31 k's in Table 1 of [6] for which the value of $|H_2|$ is not known. For four k's in Example 3.7, we have $|H_2| = 3$ because $A_0 \longrightarrow A_2$ is zero map. For the rest 27 k's, we verified that V_2 is cyclic and $|H_2| = 1$ by constructing numerically a unit ε of k_2 such that $N_{k_2/k}(\varepsilon) = \phi$ using Lemma 2.14. **Example 3.9.** Let $k = \mathbb{Q}(\sqrt{254})$. Then $|A_0| = 3$. We could verify that $A_0 \longrightarrow A_3$ is injective by constructing a unit ε of k_3 such that $N_{k_3/k}(\varepsilon) = \phi$ using Lemma 2.14. It seems that $A_0 \longrightarrow A_4$ is also injective. But the calculation exceeded the capacity of computer. **Remark.** In recent papers [10], [15] and [16], it was proved independently that $\lambda_3(\mathbb{Q}(\sqrt{254})) = 0$. Their arguments show that $A_0 \longrightarrow A_5$ is zero map. We discuss a relation about a normal integral basis. We say that a \mathbb{Z}_p -extension K/F has a normal p-integral basis if $\mathfrak{O}_{F_n}[1/p]$ is a free $\mathfrak{O}_F[1/p][G(F_n/F)]$ -module for each intermediate field F_n of K/F. Here \mathfrak{O}_{F_n} denotes the ring of integers of F_n . We restrict our argument to the case p=3 because a connection to a normal integral basis becomes clear in this case. Let $k=\mathbb{Q}(\sqrt{d})$ for a positive square-free integer d which is congruent to 2 modulo 3 and $k^-=\mathbb{Q}(\sqrt{-3d})$. It is known that k^- has the \mathbb{Z}_3 -extension k^-_∞ such that k^- is a Galois extension over \mathbb{Q} and $G(k^-_\infty/\mathbb{Q})$ is isomorphic to the semi direct product of $\mathbb{Z}/2\mathbb{Z}$ and \mathbb{Z}_3 . It is called the anti-cyclotomic \mathbb{Z}_3 -extension of k^- . Then the next result is known (cf. Corollary 3.9 of [1]). See also Theorem 2.3 of [14] and Theorem of [5]. **Theorem 3.10.** k_{∞}^-/k^- has a normal 3-integral basis if and only if $A_0 \longrightarrow A_n$ is injective for all $n \ge 1$. Using Proposition 2.8 and Theorem 3.5, we can give equivalent conditions in terms of relative unit groups. **Theorem 3.11.** The following three conditions are equivalent. - (1) k_{∞}^{-}/k^{-} has a normal 3-integral basis. - (2) $E_{n,R}$ has a 3-normal basis for all $n \geq 1$. - (3) V_n is cyclic for all $n \geq 1$. Viewing Theorems 3.1 and 3.10, we are led to the next conjecture which is weaker than Greenberg's conjecture. Conjecture 3.12. Let k be a real quadratic filed in which 3 remains prime. If the class number of k is divisible by 3, then k_{∞}^{-}/k^{-} does not have a normal 3-integral basis. Professor K. Komatsu first told the author the importance of studying this conjecture in connection with Greenberg's one. Concerning this conjecture, we give two examples. **Example 3.13.** Let $k = \mathbb{Q}(\sqrt{32009})$. Then $A_0 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $|H_1| = 3$. Hence, k_{∞}^-/k^- does not have a normal 3-integral basis from Theorem 3.10. Furthermore, we can see that $V_2 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $|H_2| = 9$ using Lemma 2.13. Hence $\lambda_3(k) = 0$ from Theorem 3.1. This example is interesting by reason that A_0 is not cyclic. Similar examples in the split case are given in [7]. **Example 3.14.** Let $k = \mathbb{Q}(\sqrt{53678})$. Then $A_0 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ and $|H_1| = 1$. we can see that V_2 is cyclic and $|H_2| = 3$ using Lemma 2.14. Hence k_{∞}^-/k^- does not have a normal 3-integral basis. We do not know whether $\lambda_3(k) = 0$. **Remark.** Dr. Sumida kindly informed the author that he verified $\lambda_3(\mathbb{Q}(\sqrt{53678}))$ = 0 with the method in [11]. ## 4. Application to Greenberg's Conjecture (split case) Throughout this section, we assume that p splits in k. As in the preceding section, We discuss a relation between V_n and Greenberg's conjecture in this case. Let $(p) = \mathfrak{pp}'$ be the prime decomposition of p in k and \mathfrak{p}_n the prime ideal of k_n lying over \mathfrak{p} . Let $D_n = \langle \operatorname{cl}(\mathfrak{p}_n) \rangle \cap A_n$ and B_n the subgroup of A_n consisting of elements which are invariant under the action of $G(k_n/k)$. We note that $D_n \subset B_n$. The following theorem is known as a necessary and sufficient condition for the conjecture in this case. **Theorem 4.1 (Theorem 2 in** [9]). $\mu_p(k) = \lambda_p(k) = 0$ if and only if $B_n = D_n$ for all sufficiently large n. An integer n_2 was defined in [4] by $$(p)^{n_2} || (\phi^{p-1} - 1),$$ where ϕ denotes the fundamental unit of k. Then the behavior of $|B_n|$ is explicitly described as follows. **Proposition 4.2 (Proposition 1 in** [4]). We have $|B_n| = |A_0|p^{n_2-1}$ for all $n \ge n_2 - 1$. Therefore, in order to investigate Greenberg's conjecture, it is important to study the behavior of $|D_n|$. Since \mathbb{Q}_n is contained in $\mathbb{Q}(\zeta_{p^{n+1}})$, the unique prime ideal of \mathbb{Q}_n lying over p is principal. We fix an generator π_n of it and put $$\Theta_n = (p\pi_n^{-p^n})^{r/2},$$ where $r = p^n - 1$ as before. Then Θ_n is a unit of \mathbb{Q}_n and satisfies $$\Theta_n^{1-\sigma} \in E_n^{p^n},$$ $$p\Theta_n^2 \in k_n^{p^n}$$ and $$\Theta_n/\Theta_{n+1} \in E_{n+1}^{p^n} .$$ We note that Θ_n can be written explicitly in terms of cyclotomic units in certain cases (cf. Lemma 3.1 of [3]). Then the order of D_n is described using Θ_n and V_n as follows. **Lemma 4.3.** Let ϕ be the fundamental unit of k and s an integer such that $0 \leq s \leq n$. Let d be the order of $\operatorname{cl}(\mathfrak{p})$ and take a generator $\alpha \in k$ of \mathfrak{p}^d . Then $|D_n| \leq p^s |D_0|$ if and only if $\alpha^{p^s} \Theta_n^{dp^s} \phi^i \eta \in k_n^{p^n}$ for some $i \in \mathbb{Z}$ and $\eta \in E_{n,R,p^n}$. Proof. Note that $\alpha^{1+\sigma}=\pm p^d$. Assume that $|D_n|\leq p^s|D_0|$ and take a generator $\beta\in k_n$ of $\mathfrak{p}_n^{dp^s}$. Then $(\beta^{p^{n-s}})=\mathfrak{p}_n^{dp^n}=\mathfrak{p}^d=(\alpha)$. Hence, $\beta^{p^{n-s}}=\alpha\varepsilon$ for some $\varepsilon\in E_n$. From this, we see that $N_{k_n/k}(\varepsilon)\in E_0^{p^{n-s}}$. Let $N_{k_n/\mathbb{Q}_n}(\varepsilon)=\tau$ and $N_{k_n/k}(\varepsilon)=\pm\phi^{ip^{n-s}}$. Then, $\eta=\varepsilon^{2p^s}\tau^{-p^s}\phi^{-2i}\in E_{n,R}$ and $\alpha^{2p^s}\tau^{p^s}\phi^{2i}\eta\in k_n^{p^n}$. Taking norm from k_n to \mathbb{Q}_n , we see that $p^{2dp^s}\tau^{2p^s}\in k_n^{p^n}$ and hence $\tau^{p^s}\Theta_n^{-2dp^s}\in k_n^{p^n}$ from (5). Therefore, $\alpha^{2p^s}\Theta_n^{2dp^s}\phi^{2i}\eta\in k_n^{p^n}$. Since $(\alpha\Theta_n)^{1+\sigma}=\pm p^d\Theta_n^{d(1+\sigma)}\equiv\Theta_n^{-d(1-\sigma)}\pmod{k_n^{p^n}}$, we have $(\alpha\Theta_n)^{1+\sigma}\in k_n^{p^n}$ from (4). Therefore, we see that $\eta\in E_{n,R,p^n}$. Since p is odd, we completed one side of the proof. Conversely, if $\alpha^{p^s}\Theta_n^{dp^s}\phi^i\eta=\beta^{p^n}$ with $\beta\in k_n$, then $\mathfrak{p}_n^{dp^{n+s}}=\mathfrak{p}^{dp^s}=(\alpha)^{p^s}=(\beta)^{p^n}$ and hence $\mathfrak{p}_n^{dp^s}=(\beta)$. \square If V_n is cyclic, then Lemma 4.3 becomes the following form. **Lemma 4.4.** Assume further that $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$ is cyclic under the same conditions in Lemma 4.3. Then $|D_n| = p^s |D_0|$ if and only if $\alpha^{p^s} \Theta_n^{dp^s} \phi^i \Phi^j \in k_n^{p^n}$ for some integers i, j and $\alpha^{p^{s-1}} \Theta_n^{dp^{s-1}} \phi^i \Phi^j \notin k_n^{p^n}$ for any integers i, j. Proof. The proof is straightforward. We only give a remark in the case that s=0. Namely it holds that $\alpha^{p^{-1}}\Theta_n^{dp^{-1}}\phi^i\Phi^j \notin k_n^{p^n}$ for any integers i, j. Indeed, if $\alpha\Theta_n^d\phi^i\Phi^j=\beta^{p^{n+1}}$ for some $i, j\in\mathbb{Z}$ and $\beta\in k_n$, then $\mathfrak{p}^d=(N_{k_n/k}(\beta))^p$. This is a contradiction. \square Now, we can describe the boundedness of $r(V_n)$. **Lemma 4.5.** If $|D_n| \le p^s |D_0|$, then $r(V_n) \le s + 1$. Proof. Since $|D_n| \leq p^n |D_0|$, we may assume that $s \leq n$. Furthermore, if $n-1 \leq s \leq n$, then the claim is clear from Proposition 2.6. So we assume that s < n-1. Applying Lemma 4.3 with the same notations, we have $\alpha^{p^s} \Theta_n^{dp^s} \phi^i \eta \in k_n^{p^n}$ for some $i \in \mathbb{Z}$ and $\eta \in E_{n,R,p^n}$. If $r(V_n) \geq s+2$, then the exponent of V_n is less than p^{n-s} , so $\eta^{p^{n-s-1}} \in E_n^{p^n}$ and $\eta \in E_n^{p^{s+1}}$. From this, we see that i is divisible by p^s and $\alpha \Theta_n^d \phi^j \in k_n^p$ for some $j \in \mathbb{Z}$. If we put $\beta = \alpha \phi^j$, then we see that $\beta^{1-\sigma} \in k_n^p$ from (4), and hence $\beta^{1-\sigma} = \gamma^p$ for some $\gamma \in k$ because k is real. Then $(\mathfrak{p}^{1-\sigma})^d = (\alpha^{1-\sigma}) = (\beta^{1-\sigma}) = (\gamma)^p$ implies that p divides d. Thus, from $p^d = \pm \alpha^{1+\sigma} = \pm \beta^{1+\sigma} = \pm \beta^2 \gamma^{-p}$, we can write $\beta = \delta^p$ for some $\delta \in k$. Then we have $\mathfrak{p}^d = (\alpha) = (\beta) = (\delta)^p$, and hence $\mathfrak{p}^{d/p} = (\delta)$, which contradicts the fact that d is the order of $cl(\mathfrak{p})$. Hence $r(V_n) \leq s+1$. \square **Corollary 4.6.** If $|A_0/D_0| = p^s$, then $r(V_n) \le n_2 + s$ for all $n \ge 1$. *Proof.* We have $|D_n| \leq p^{n_2+s-1}|D_0|$ from Proposition 4.2 for all sufficiently large n and apply Lemmas 4.5 and 2.7. \square Corollary 4.7. If $|D_n| = |D_0|$, then V_n is cyclic. We remark a difference between split case and non-split case. In the split case, if $A_0 = D_0$, then the genus formula for k_n/k yields that $$|D_n| = |D_0| rac{p^n}{(E_0: N_{k_n/k}(E_n))}$$. Hence, we see the following. non-split case: $$N_{k_n/k}(E_n) = E_0 \iff |\operatorname{Ker}(A_0 \longrightarrow A_n)| = 1 \implies V_n : \operatorname{cyclic}$$ split case with $A_0 = D_0$: $$N_{k_n/k}(E_n) = E_0^{p^n} \quad \Longleftrightarrow \quad |D_n| = |D_0| \quad \Longrightarrow \quad V_n: \text{ cyclic}$$ Namely, the opposite properties of the norm map $N_{k_n/k}: E_n \longrightarrow E_0$ both implies the cyclicity of V_n . We notice some relations between the norm map and the order of D_n that hold without the assumption $A_0 = D_0$. **Lemma 4.8 (cf. Proposition 6.3 of** [2]). If $N_{k_n/k}(E_n) = E_0$, then $|D_n| = p^n |D_0|$. *Proof.* Let B'_n denote the subgroup of B_n consisting of ideal classes which contain an ideal invariant under the action of $G(k_n/k)$. Then $B_n = \iota_{0,n}(A_0)D_n$ and the genus formula for k_n/k yields that $$|B_n'| = |A_0| rac{p^n}{(E_0:N_{k_n/k}(E_n))} = p^n |A_0| \, .$$ Hence, from $$|p^n|A_0| = rac{|i_{0,n}(A_0)|\,|D_n|}{|i_{0,n}(A_0)\cap D_n|} \leq rac{|i_{0,n}(A_0)|\,|D_n|}{|i_{0,n}(D_0)\cap D_n|} = rac{|i_{0,n}(A_0)|\,|D_n|}{|D_n^{p^n}|} \leq p^n\,|i_{0,n}(A_0)|\,,$$ we see that $|i_{0,n}(A_0)| = |A_0|$ and hence $i_{0,n}$ is injective. Therefore, we have that $$\frac{|D_n|}{|D_0|} = \frac{|D_n|}{|i_{0,n}(D_0)|} = \frac{|D_n|}{|D_n^{p^n}|} = p^n.$$ **Lemma 4.9.** If $$|D_n| = |D_0|$$, then $N_{k_n/k}(E_n) = E_0^{p^n}$. Proof. We see that V_n is cyclic from Corollary 4.7 and apply Lemma 4.4 with the same notations. Namely we have $\alpha\Theta_n^d\phi^i\Phi^j\in k_n^{p^n}$ for some $i,j\in\mathbb{Z}$. Now assume that $\phi^{j'}\Phi\in E_n^p$ for some $j'\in\mathbb{Z}$. Then we see that $\alpha\Theta_n^d\phi^{i'}\in k_n^p$ for some $i'\in\mathbb{Z}$ and derive a contradiction as in the proof of Lemma 4.5. Hence $\phi^{j'}\Phi\not\in E_n^p$ for any $j'\in\mathbb{Z}$ and the claim follows from Lemma 2.14. \square Corollary 4.7 indicate a relation between the cyclicity of V_n and the order of D_n . But the converse of Corollary 4.7 is not always true. Furthermore an analogue to Theorem 3.5 is also not true. Namely we can not conclude that $|D_n| = |D_0|$ for all $n \ge 1$ even if V_n is cyclic for all $n \ge 1$. However, by numerical calculations, we are led to the following conjecture. Conjecture 4.10. $A_n = D_n$ for all $n \ge 0$ if and only if V_n is cyclic for all $n \ge 1$. At present, concerning this conjecture, we can only prove that the first condition implies the second one. First we give a remark about the first condition. Remember the integer n_0 defined in [20]. Namely, let d be the order of $cl(\mathfrak{p})$ and take a generator α of \mathfrak{p}^d . Then n_0 is defined to be the integer satisfying $$\mathfrak{p}'^{n_0} || (\alpha^{p-1} - 1).$$ The inequality $n_0 \leq n_2$ is needed for the uniqueness of n_0 . Then we obtain the following lemma. **Lemma 4.11.** The following three conditions are equivalent: - (1) $A_n = D_n$ for all $n \geq 0$. - (2) $A_1 = D_1$. - (3) $A_0 = D_0$ and $n_0 = 1$. Proof. It is clear that (1) implies (2). Next assume (2). Then it follows that $A_0 = D_0$ because norm maps $A_1 \longrightarrow A_0$ and $D_1 \longrightarrow D_0$ are both surjective. If $n_0 \ge 2$, then $n_2 \ge 2$ and so $|D_1| = p|D_0|$ from Proposition 4.2. Let d be the order of $\operatorname{cl}(\mathfrak{p})$ and take a generator α of \mathfrak{p}^d . Then, by local class field theory, α is a \mathfrak{p}' -adic norm for k_1/k and also \mathfrak{l} -adic norm if \mathfrak{l} is a prime ideal of k_1 prime p. Hence, by the product formula of the norm residue symbol and Hasse's norm theorem, α is a global norm. Let $\alpha = N_{k_1/k}(\alpha_1)$ for some $\alpha_1 \in k_1$ and $\mathfrak{a} = \mathfrak{p}_1^d(\alpha_1^{-1})$. Then $N_{k_1/k}(\mathfrak{a}) = (1)$ and hence $\mathfrak{a} = \mathfrak{b}^{\rho-1}$ for some ideal \mathfrak{b} of k_1 , where ρ is a generator of $G(k_1/k)$. Therefore $D_1^d \subset A_1^{\rho-1}$. Since $|D_1| = p|D_0|$, it follows that $A_1^{\rho-1} \ne 1$, which contradicts the assumption $A_1 = D_1$. Hence $n_0 = 1$. Therefore (2) implies (3). Finally assume (3). Since $n_0 = n_1$ in the case that $n_0 = n_0$, Theorem 1 in [4] shows that $n_0 = n_0$ for all sufficiently large n. Noting that norm maps $n_0 = n_0$ and $n_0 = n_0$ are both surjective for any n, we conclude that (1) holds. \square Now we give a partial answer for Conjecture 4.10. **Theorem 4.12.** If $A_n = D_n$ for all $n \ge 0$, then V_n is cyclic for all $n \ge 1$. Proof. We see that $A_0 = D_0$ and $n_0 = 1$ from Lemma 4.11. Let n be a sufficiently large integer. We have $|D_n| \leq p^{n_2-1}|D_0|$ from Proposition 4.2. Let d be the order of $cl(\mathfrak{p})$ and take a generator α of \mathfrak{p}^d satisfying $\mathfrak{p}' \mid\mid (\alpha^{p-1}-1)$. From Lemma 4.3, we see that $\alpha^{p^{n_2-1}}\Theta_n^{dp^{n_2-1}}\phi^i\eta = \beta^{p^n}$ for some $i \in \mathbb{Z}, \eta \in E_{n,R,p^n}$ and $\beta \in k_n$. Then $N_{k_n/k}(\beta) = \pm \alpha^{p^{n_2-1}}\phi^i$. If p divides i, then $\mathfrak{p}'^{n_2} \mid\mid (N_{k_n/k}(\beta)^{p-1}-1)$, which is a contradiction because n is sufficiently large. Hence p does not divide i. Now assume that V_n is not cyclic. Then $\eta^{p^{n-1}} \in E_{n,R}^p$ and so $\eta \in E_{n,R}^p$. Therefore $\alpha^{p^{n_2-1}}\Theta_n^{dp^{n_2-1}}\phi^i \in k_n^p$. If $n_2=1$, then we see that $\alpha\Theta_n^d\phi^i \in k_n^p$, which is a contradiction as we have seen in the proof of Lemma 4.5. Otherwise, if $n_2>1$, then we see that $\phi \in k_n^p$ and so $\phi \in k^p$, which is also a contradiction. Hence V_n is cyclic for all sufficiently large n. The claim immediately follows from Lemma 2.7. \square If we assume Greenberg's conjecture, then we can prove that the converse of Theorem 4.12 is also true. **Theorem 4.13.** Assume that Greenberg's conjecture holds for k and p. If V_n is cyclic for all $n \ge 1$, then $A_n = D_n$ for all $n \ge 0$. *Proof.* Let $|A_0/D_0| = p^t$ and $s = n_2 + t - 1$. Let n be sufficiently large. Since Greenberg's conjecture holds, we have $$|D_n| = |D_{n-1}| = p^s |D_0|$$ from Theorem 4.1 and Proposition 4.2. Let $V_n = \langle \Phi E_{n,R}^{p^n} \rangle$ and $V_{n-1} = \langle \Psi E_{n-1,R}^{p^{n-1}} \rangle$. We may assume that $\Phi = \Psi \gamma^{p^{n-1}}$ with suitable $\gamma \in E_n$. Let d de the order of $\operatorname{cl}(\mathfrak{p})$ and take a generator α of \mathfrak{p}^d satisfying $\mathfrak{p}'^{n_0} \mid \mid (\alpha^{p-1} - 1)$. From Lemma 4.4, we see that $\alpha^{p^s} \Theta_n^{dp^s} \phi^i \Phi^j = \beta^{p^n}$ for some integers i,j and $\beta \in k_n$. First assume that $s \geq 1$. If p divides i, then p also divides j because $\Phi \not\in k_n^p$. Let i = pi' and j = pj'. Using (6), we see that $\alpha^{p^{s-1}} \Theta_{n-1}^{dp^{s-1}} \phi^{i'} \Psi^{j'} \in k_{n-1}^{p^{n-1}}$. Then Lemma 4.4 again shows that $|D_{n-1}| \leq p^{s-1} |D_0|$, which contradicts $|D_n| = |D_{n-1}|$. Therefore p does not divide i. Since $N_{k_n/k}(\beta) = \pm \alpha^{p^s} \phi^i$ is a \mathfrak{p}' -adic p^{n-1} -th power in k and n is sufficiently large, we conclude that $n_0 + s = n_2$. This means that $n_0 = 1$ and t = 0. Next assume that s = 0. Then $n_2 + t - 1 = 0$ implies that $n_2 = 1$ and t = 0. This completes the proof. \square Finally we give a few examples when p=3 based on calculations with a computer. **Example 4.14.** Let $k = \mathbb{Q}(\sqrt{727})$. Then $|D_0| = 1$ and $|D_1| = 3$ (cf. [8]). This is a trivial counter example for the converse of Corollary 4.7. Next let $k = \mathbb{Q}(\sqrt{2713})$. Then $|D_0| = |D_1| = 1$ and $|D_2| = 3$ (cf. [3]). Furthermore we see that $V_2 \simeq \mathbb{Z}/9\mathbb{Z}$. This is a non-trivial counter example. **Example 4.15.** Let $k = \mathbb{Q}(\sqrt{m})$ where m = 3469, 5971, 6187 and 7726. For these k's, we could not calculate the values of $n_0^{(2)}$ and $n_2^{(2)}$ in [3]. Now we see that $V_2 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ for these k's. Corollary 4.7, Proposition 4.2 and Theorem 4.1 immediately show that $\lambda_3(k) = 0$ for m = 3469, 5971 and 6187. It can be also deduced from Theorem 2 in [8]. We calculated $n_0^{(2)}$ and $n_2^{(2)}$ using Lemmas 4.3 and 2.13. We show the results below. | m | $n_0^{(2)}$ | $n_2^{(2)}$ | $ D_2 $ | $\lambda_3(k)$ | |------|-------------|-------------|---------|----------------| | 3469 | 3 | 3 | 3 | 0 | | 5971 | 3 | 4 | 3 | 0 | | 6187 | 3 | 3 | 3 | 0 | | 7726 | 3 | 3 | 3 | ? | For m = 7726, we can not decide the value of $\lambda_3(k)$. **Remark.** In [11], it is shown that $\lambda_3(\mathbb{Q}(\sqrt{7726})) = 0$. #### REFERENCES - 1. V. Fleckinger and T. Nguyen Quang Do, Bases normales unités et conjecture faible de Leopoldt, Manus. Math. 71 (1991), 183-195. - 2. T. Fukuda, An effective algorithm of computing units in certain real cyclic sextic fields, Report of the Research Institute of Industrial Technology, Nihon Univ. 48 (1996), 1-14. - 3. T. Fukuda, Cyclotomic units and Greenberg's conjecture for real quadratic fields, to appear in Math. Comp. - 4. T. Fukuda and K. Komatsu, On \mathbb{Z}_p -extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95–102. - 5. T. Fukuda and K. Komatsu, Normal bases and λ -invariants of number fields, Proc. Japan Acad. 67A (1991), 243-245. - 6. T. Fukuda and K. Komatsu, A capitulation problem and Greenberg's conjecture on real quadratic fields, Math. Comp. 65 (1996), 313-318. - 7. T. Fukuda and H. Taya, Computational research of Greenberg's conjecture for real quadratic fields, Mem. School Sci. Eng., Waseda Univ. 58 (1994), 175–203. - 8. T. Fukuda and H. Taya, The Iwasawa λ -invariants of \mathbb{Z}_p -extensions of real quadratic fields, Acta Arith. LXIX.3 (1995), 277–292. - 9. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263–284. - 10. H. Ichimura and H. Sumida, On the Iwasawa λ -invariants of certain real abelian fields, preprint (1995) - 11. H. Ichimura and H. Sumida, On the Iwasawa λ -invariants of certain real abelian fields II, preprint (1995) - 12. K. Iwasawa, On the theory of cyclotomic fields, Ann. Math. 70 (1959), 530-561. - 13. K. Iwasawa, On \mathbb{Z}_{ℓ} -extensions of algebraic number fields, Ann. of Math. 98 (1973), 246–326. - 14. I. Kersten and J. Michaliček, On Vandiver's conjecture and \mathbb{Z}_p -extensions of $\mathbb{Q}(\zeta_{p^n})$, J. Number theory **32** (1989), 371–386. - 15. J. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135–155. - 16. M. Kurihara, The Iwasawa λ invariants of real abelian fields and the cyclotomic elements, preprint (1995) - 17. H.W. Leopoldt, Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper, Abh. Deutsch. Akad. Wiss. Berlin KI. Math. Nat. 1953, No. 2, 1–48. - 18. M. Ozaki and H. Taya, A note on Greenberg's conjecture of real abelian number fields, Manuscripta Math. 88 (1995), 311-210. - 19. H. Sumida, Greenberg's conjecture and the Iwasawa polynomial, preprint (1995) - 20. H. Taya, Computation of \mathbb{Z}_3 -invariants of real quadratic fields, to appear in Math. Comp. DEPARTMENT OF MATHEMATICS, COLLEGE OF INDUSTRIAL TECHNOLOGY, NIHON UNIVERSITY, 2-11-1 SHIN-EI, NARASHINO, CHIBA, JAPAN E-mail: fukuda@math.cit.nihon-u.ac.jp