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The motion of a vortex filament in an inviscid incompressible fluid is

described by the Biot-Savart law. The localized induction equation (LIE)

is the simplest model to capture the leading-order behavior of this motion

$[1, 2]$ . Hasimoto [3] showed that the L1E is equivalent to the cubic nonlinear

Schr\"odinger equation (NLS) for a complex variable, implying that the LIE is

completely integrable. Magri [4] unveiled the $\mathrm{b}\mathrm{i}$-Hamiltonian structure that

underlies this integrability and thereby manipulated a recursion operator

to generate an infinite sequence of integrals in involution and commuting

Hamiltonian vector fields. With the help of the connection between the

NLS and the $\mathrm{L}\mathrm{l}\mathrm{E}$ , Langer and Perline [5] constructed a recursion operator

to generate an infinite sequence of commuting vector fields associated with

the L1E for a class of asymptotically linear curves. We call this sequence
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the Langer-Perline hierarchy (LPH). Let $X=X(s, t)$ be a point on the

filament and $V^{(n)}=V^{(n)}(s, t)$ the n-th term of the LPH with $s$ and $t$ being

the arclength and the time, respectively. They are then listed as follows:

$V^{(1)}=x_{s^{\mathrm{X}X}sS}$ , (1)

V(2) $=X_{ss}S+ \frac{3}{2}\mathrm{x}_{SS^{\cross}}(X_{S}\mathrm{X}X_{Ss})$ , (2)...
$V^{(n)}=-X_{S}\cross V_{s}^{()}n-1+\tau^{(n)}\mathrm{x}_{S}$ , (3)

..$\cdot$

where the subscripts denote the partial differentiation with respect to the

indicated variables and $\mathcal{T}^{(n)}$ is a function to be determined by the condition

of the arclength parametrization: $V_{s}^{(n)}\cdot X_{s}=0$ . Equaling $V^{(1)}$ to $X_{t}$ , the

first equation gives the L1E with appropriately rescaled time. Further, if

we take $X_{t}=V^{(1)}-+\epsilon V^{(2)},$
$\epsilon$ some parameter, we recover the localized

induction equation of a vortex filament with an axial flow in the core $[6, 7]$ .

Note that it is equivalent to the Hirota equation [8] which results from a

summation of the first two terms of the NLS hierarchy as it should be.

With this observation, it is tempting to pursue the summation procedure

of the commuting vector fields of the LPH. Families of evolution equations
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that preserve local geometric invariants are produced by combining finite

terms of the LPH $[9, 10]$ .

$\ln$ this report, we consider the evolution equation of a curve obtained by

summing up all of the terms of the LPH, namely,

$X_{t}=V^{(1})+\epsilon V(2)+\epsilon^{2}V(3)+\cdot:$ . $= \sum_{n=1}^{\infty}\epsilon n-1V(n)$ (4)

Here, the coefficient of each terms is taken to be an integral power of some

constant $\epsilon$ . This infinite summation is rather formal.

By virtue of the recursion relation, the resulting equation is expressed

in a compact form:

$x_{ts}=X_{s}\cross \mathrm{x}S-\epsilon X_{S}\mathrm{X}X_{t}s+\tau_{X}S$ , (5)

where

$\mathcal{T}=\frac{1}{2}\epsilon X_{tt}$. $x+C(t)$ , (6)

with $C(t)$ being an arbitrary function of $t$ , and the condition $X_{s}\cdot X_{s}=1$

is to be kept in view. The derivation of (6) is straightforward; we first

differentiate the both side of (5) with respect to $s$ , and thereafter take

the inner product with $X_{s}$ . Using (5) again, we have $\mathcal{T}_{s}=\epsilon X_{stt}$. $X$ , from

which (6) follows. Langer and Perline picked out a restricted class of curves,

balanced asymptotically linear curves. As a consequence, $C(t)$ is absent in

their analysis. We retain it for a wider applicability.
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It is illuminating to rewrite (5) into an alternative form. By taking the

exterior product with $X_{s},$ (5) is converted into

$X_{st}\mathrm{x}X=-X_{ss}+\epsilon x_{St}$ . (7)

Then, after changing the variables:

$\eta=s$ , $\xi$

.
$= \frac{2}{\epsilon}t+S$ , (8)

we arrive at

$X_{\xi\xi\xi\eta}-X_{\eta}= \eta-\frac{2}{\epsilon}X\mathrm{X}X$ . (9)

This equation, supplemented by two auxiliary conditions:

$X_{\xi}^{2}+X_{\eta}^{2}=1-\epsilon C(t)$ , (10)

$X_{\xi} \cdot X_{\eta}=\frac{\epsilon}{2}C(t)$ , (11)

is no other than the Lund-Regge equation [11]. lt was derived as a model for

the motion of a relativistic string subject to a constant external field. Notice

that (10) and (11) differ from the original ones. To gain our expressions, it

suffices to choose $x^{0}= \frac{1}{2}(\xi+\eta)+\frac{1}{\epsilon}\int^{\frac{\epsilon}{2}}(\xi-\eta)_{\sqrt{1-2\epsilon C(t)}d}t$ in eq. (3.1) of

ref. [11]. Our equation meets the conditions (10) and (11) , which is proved

with no difficulty, as follows:

$X_{\xi}^{2}+X_{\eta}^{2}=X_{sst}^{2}- \epsilon X\cdot \mathrm{x}+\frac{\epsilon^{2}}{2}X_{t}^{2}=1-\epsilon C(t)$ , (12)

$X_{\xi} \cdot X_{\eta}=\frac{\epsilon}{2}X_{t}\cdot(X_{S}-\frac{\epsilon}{2}Xt)=\frac{\epsilon}{2}C(t)$ . (13)
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lt is noteworthy that the Lund-Regge equation is equivalent to the Lund-

$\mathrm{R}\mathrm{e}\mathrm{g}\mathrm{g}\mathrm{e}-\mathrm{p}_{0}\mathrm{h}\mathrm{l}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{y}\mathrm{e}\mathrm{r}$-Getlnanov equations, a complexified sine-Gordon equa-

tion, solvable by the inverse scattering method $[11, 12]$ . Moreover, (9) -

(11) ensure not only arclength preservation, but also writhe conservation

of an evolving curve.

$\ln$ keeping with the above procedure of infinite summation, we may

deduce the intrinsic form of (5) or (7) by implementing the corresponding

infinite summation of elements of the NLS hierarchy. lnstead, we directly

approach it along the line of Hasimoto’s procedure [3]

For the curve with curvature $\kappa$ torsion $\tau$ , and Frenet-Serret frame $\{t, n, b\}$ ,

let us introduce the complex curvature and the complex vector defined

$\psi_{=\kappa e^{i}}f^{s_{\mathcal{T}}}ds$ , $N=(n+ib)ei \int^{S}\mathcal{T}ds$ , (14)

From the idelltities: N. $N=0$ , N. $N^{*}=2$ , etc., the time derivative of $N$

can be expressed with some real function $R$ and some complex function $\gamma$ ,

$N_{t}=iRN+\gamma t$ . (15)

The integrability condition for $N$ leads to

$\psi_{t}=-\gamma_{s}+iR\psi$ , (16)

$\psi_{t_{t}}=-iR_{s}N-\frac{1}{2}\gamma(\psi^{*}N+\psi N*)$ . (17)
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Using (5) and (6), we obtain the expression for $R$ and $\gamma$

$R_{s}= \frac{1}{2}|\psi|_{s}^{2}-\frac{1}{2}\epsilon|\psi|^{2}tX_{s}=t$ . $Xt$ , (18)

$\gamma=-i\psi_{s}+i\epsilon\psi t$ , (19)

and then the intrinsic equation is

$\psi_{t}=i\psi_{S}s+\frac{i}{2}|\psi|2\psi_{-}i\epsilon(\psi_{ts}+\frac{1}{2}\psi\int^{s}|\psi|_{l}2d_{S})$ (20)

We remark that the same equation is reached via the use of the recursion

operator associated with the NLS hierarchy $[4, 5]$ . According to the form

of the operator, for asymptotically linear curve, the indefinite integral in

(20) is superseded by a definite integral:

$\frac{1}{2}[\int_{-\infty}^{s}\kappa\kappa tds-\int_{s}^{\infty}\kappa\kappa tds.]$ (21)

Splitting this equation into the real and imaginary part, we have the equa-

tions for $\kappa$ and $\tau$ :

$\kappa_{t}=-(2\kappa_{S}\mathcal{T}+\kappa \mathcal{T}_{s})+\epsilon(\kappa_{t}\tau+\kappa \mathcal{T}_{t}+\kappa_{s}\int^{s}\tau_{t}d_{S})$ , (22)

$\int^{s}\tau_{t}ds=\frac{\kappa_{sS}}{\kappa}-\mathcal{T}^{2}+\frac{\kappa^{2}}{2}-\epsilon[\frac{\kappa_{st}}{\kappa}-\tau\int^{s_{\mathcal{T}_{t}}}dS+\int^{s}\kappa\kappa_{t}d_{S}]$ , (23)

the later of which becomes, after differentiation with respect to $s$ ,

$\tau_{t}=(\frac{\kappa_{ss}}{\kappa})S^{-2_{\mathcal{T}\tau_{S}}\kappa}S^{-\epsilon}+\kappa[(\frac{\kappa_{st}}{\kappa})_{ss}-\mathcal{T}\int^{s}\tau_{t}ds-\mathcal{T}\mathcal{T}_{t}+\kappa\kappa_{t}]$ (24)

The one-soliton solution of (5) and (6) is readily available, by the change

of variable, from that of the Lund-Regge equation constructed by Sym et al.
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[14]. lt is a curve of constant torsion $\tau_{0}$ and is written as

$X+i \mathrm{Y}=\frac{2\nu}{\tau_{0^{+\nu^{2}}}^{2}}$ sech $Qe^{iP}$ , (25)

$Z=s- \frac{2\nu}{\tau_{0}^{2}+\mathcal{U}2}\tanh Q$ (26)

where $X=(X, \mathrm{Y}, Z)$ and

$P= \tau_{0}s-\frac{\tau 0^{22}-\nu-\epsilon \mathcal{T}0(\tau_{0^{+}}^{22}\nu)}{(1-\epsilon\tau_{0})2+\epsilon\nu^{2}2}t+c1$ , (27)

$Q= \nu[s-\frac{2\tau_{0}-\epsilon(\tau 0^{2}+\nu^{2})}{(1-\epsilon\tau 0)2+\epsilon 2\nu^{2}}t]+c_{2}$ , (28)

with $\nu,$ $c_{1}$ and $c_{2}$ being arbitrary constants. This has the same form as

the Hasimoto soliton of the $\mathrm{L}\mathrm{l}\mathrm{E}$ , except for the dispersion relation. Corre-

spondingly, the one-soliton solution of (22) and (5) is

$\kappa=2\nu$ sech $Q$ , $\tau=\tau_{0}$ . (29)

We point out that the coefficients of $t$ in (27) and (28) are obtainable from

that of the Hasimoto soliton simply by the replacement $\zeta^{2}=(\tau_{0}+i\nu)^{2}$ ト\rightarrow

$\zeta^{2}/(1-\epsilon\zeta)$ . Further, (25) $-(28)$ are reduced, up to $O(\epsilon)$ , to a soliton on a

vortex filament with an axial velocity [6, 7, 15].
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As a special case, our equation is collapsed into the sine-Gordon equa-

tion. In terms of the variables $\hat{t}=t$ and $\hat{s}--s+\frac{1}{\epsilon}t,$ (22) and (23) read

$\kappa_{\hat{t}}+\frac{1}{\epsilon}\kappa_{\hat{s}}=\epsilon[\kappa_{\hat{t}}\tau+\kappa\tau_{\hat{t}}+\kappa\hat{s}\int^{\hat{s}}\tau_{\hat{t}}d_{\hat{S}}]$ , (30)

$\int^{\hat{t}}\tau_{\hat{t}}ds+\frac{1}{\epsilon}\mathcal{T}=-\epsilon[\frac{\kappa_{\hat{s}\hat{t}}}{\kappa}-\tau\int^{\hat{s}}\tau_{\hat{t}}d\hat{S}+\int^{\hat{s}}\kappa\kappa_{\hat{t}}d_{\hat{S}}]$ , (31)

which leads, by differentiation with respect to $\hat{s}$ , to

$\tau_{\hat{t}}+\frac{1}{\epsilon}\tau_{\hat{s}}=-\epsilon[(\frac{\kappa_{\hat{s}\hat{l}}}{\kappa})_{\hat{S}}-\tau\hat{s}\int^{\hat{s}}\tau_{\hat{t}}d\hat{S}-\mathcal{T}\mathcal{T}+\hat{t}\kappa\kappa_{\hat{t}}]$ (32)

lf we set $\tau=1/\epsilon$ , the first equation is identically satisfied with an ap-

propriate choice of the integral constant such that $\int^{\hat{s}}\tau_{\hat{t}}d\hat{s}=1/\epsilon$. For

definiteness, we restrict our attention to the asymptotically linear curves.

Their curvature vanishes at infinity. $\ln$ view of (21), (31) becomes

$\frac{\kappa_{\hat{s}\hat{t}}}{\kappa}+\frac{1}{2}[\int_{-}^{\hat{s}}\infty\kappa\kappa_{\hat{t}}d_{\hat{S}}-\int_{s}^{\infty}\kappa\kappa_{\hat{t}}d_{\hat{S}}]=-\frac{1}{\epsilon^{3}}$ . (33)

Following Nakayalna et al. [16], we define

$\theta=\int_{-\infty}^{\hat{s}}\kappa d\hat{S}$ , (34)

and prescribe the temporal evolution of $\kappa$ as

$\kappa_{\hat{t}}=-\frac{1}{\epsilon^{3}}\sin\theta$ . (35)
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Substituting (34) and (35) and noting from (35) that $\sin\thetaarrow 0$ as $\hat{s}arrow\pm\infty$ ,

we find that (33) holds. The consistency of (34) with (35) gives rise to

$\theta_{\hat{s}\hat{t}}=-\frac{1}{\epsilon^{3}}\sin\theta$ . (36)

A kink solution of (36) coincides with (29) with $\tau_{0}=1/\epsilon$ . Other solutions

of (36) include ones that are not covered by soliton solution of (20).

We are grateful to Professor Yukinori Yasui for illuminating discussions

on integrable evolution equations.
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